首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore-forming rod-shaped bacteria that have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and death in humans and other animal species. A collection of 174 C. botulinum strains was examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine the genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT/A to BoNT/G). Analysis of the16S rRNA gene sequences confirmed previous identifications of at least four distinct genomic backgrounds (groups I to IV), each of which has independently acquired one or more BoNT genes through horizontal gene transfer. AFLP analysis provided higher resolution and could be used to further subdivide the four groups into subgroups. Sequencing of the BoNT genes from multiple strains of serotypes A, B, and E confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven toxin genes of the serotypes were compared and showed various degrees of interrelatedness and recombination, as was previously noted for the nontoxic nonhemagglutinin gene, which is linked to the BoNT gene. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for the treatment of botulism.  相似文献   

2.
Comparison of genes encoding type F botulinum neurotoxin progenitor complex in strains of proteolytic Clostridium botulinum strain Langeland, nonproteolytic Clostridium botulinum strain 202F, and Clostridium barati strain ATCC 43256 reveals an identical organization of genes encoding a protein of molecular mass of approx. 47 kDa (P-47), nontoxic-nonhemagglutinin (NTNH) and botulinum toxin (BoNT). Although homology between the protein components of the complexes encoded by these different species all producing botulinum neurotoxin type F is considerable (approx. 69–88% identity), exceptionally high homology is observed between the C-termini of the P-47s (approx. 96% identity) and the NTNHs (approx. 94% identity) encoded by Clostridium botulinum type F strain Langeland and Clostridium botulinum type A strain Kyoto. Such a region of extremely high sequence identity is strongly indicative of recombination in these strains synthesizing botulinum neurotoxins of different antigenic types. Received: 13 April 1998 / Accepted: 9 May 1998  相似文献   

3.
Neurotoxins produced by strains of Clostridium sp. are belonging to the most toxic biological substances. In the study phenotypes and genotypes of C. botulinum strains in animal studies in vivo and on the DNA level were evaluated, respectively. Additionally, the presence of genes encoding BoNT toxins of A, B, and E types among strains of Clostridium sp. were identified. In case of C. botulinum DNA was isolated from vegetative bacterial cells and from spores. Two different genes encoding two different neurotoxins harboured by three strains of Ae biotype/ae genotype, and by two strains of B biotype/be genotype were detected. Additionally, above E type C. botulinum strains, the presence of gene encoding E type neurotoxin, was found in genome of two C. baratii, two C. butyricum, and C. bifidobacterium, and C. oedematicum strains. C. bifidobacterium and C. oedematicum strains positive for presence of gene encoding E type neurotoxin, were found negative for E neurotoxin production in vivo in TN test. The study indicates that genes encoding BoNT/E neurotoxins are very common among Clostridium species. Phenotype and genotype analysis indicated co-presence of B phenotype together with be genotype and A phenotype together with ae genotype among C. botulinum strains.  相似文献   

4.
5.

Background

Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A–G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression.

Methodology/Principal Findings

Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid.

Conclusions/Significance

Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum.  相似文献   

6.
Recently, it has been shown that two Clostridium butyricum strains (ATCC 43181 and ATCC 43755), isolated from cases of infant botulism, produce a botulinal neurotoxin type E (BoNT/E). Here we have determined the nucleotide sequences of the BoNT/E genes of these two C. butyricum strains and from C. botulinum E strain Beluga. We show that the sequences of the BoNT/E genes from the two C. butyricum strains are identical and differ in only 64 positions resulting in 39 amino acid changes (97% identity at the amino acid level) from that derived from C. botulinum. Our data suggest a transfer of the BoNT/E gene from C. botulinum to the originally nontoxigenic C. butyricum strains.  相似文献   

7.
Kukreja RV  Singh BR 《Biochemistry》2007,46(49):14316-14324
Seven serotypes of botulinum neurotoxins, the most toxic substances known to mankind, are each produced by different strains of Clostridium botulinum along with a group of neurotoxin-associated proteins (NAPs). NAPs play a critical role in the toxicoinfection process of botulism in addition to their role in protecting the neurotoxin from proteolytic digestion in the GI tract as well as from adverse environmental conditions. In this study we have investigated the effect of temperature on the structural and functional stability of BoNT/A complex (BoNT/AC) and BoNT/E complex (BoNT/EC). Although the NAPs in the two complexes are quite different, both groups of NAPs activate the endopeptidase activities of their BoNTs without any need to reduce the disulfide bonds between light and heavy chains of respective BoNTs. BoNT/AC attains optimum enzyme activity at the physiological temperature of 37 degrees C whereas BoNT/EC is maximally active at 45 degrees C, and this is accompanied by conformational alterations in its polypeptide folding at this temperature, leading to favorable binding with its intracellular substrate, SNAP-25, and subsequent cleavage of the latter. BoNT/A in its complex form is found to be structurally more stable against temperature whereas BoNT/E in its complex form is functionally better protected against temperature. Based on the analysis of isolated NAPs we have observed that the structural stability of the BoNT/AC is contributed by the NAPs. In addition to the unique structural conditions in which the enzyme remains active, functional stability of botulinum neurotoxins against temperature plays a critical role in the survival of the agent in cooked food and in food-borne botulism.  相似文献   

8.
Clostridium botulinum, an important pathogen of humans and animals, produces botulinum neurotoxin (BoNT), the most poisonous toxin known. We have determined by pulsed-field gel electrophoresis (PFGE) and Southern hybridizations that the genes encoding BoNTs in strains Loch Maree (subtype A3) and 657Ba (type B and subtype A4) are located on large (approximately 280 kb) plasmids. This is the first demonstration of plasmid-borne neurotoxin genes in Clostridium botulinum serotypes A and B. The finding of BoNT type A and B genes on extrachromosomal elements has important implications for the evolution of neurotoxigenicity in clostridia including the origin, expression, and lateral transfer of botulinum neurotoxin genes.  相似文献   

9.
Neurotoxin cluster gene sequences and arrangements were elucidated for strains of Clostridium botulinum encoding botulinum neurotoxin (BoNT) subtypes A3, A4, and a unique A1-producing strain (HA(-) Orfx(+) A1). These sequences were compared to the known neurotoxin cluster sequences of C. botulinum strains that produce BoNT/A1 and BoNT/A2 and possess either a hemagglutinin (HA) or an Orfx cluster, respectively. The A3 and HA(-) Orfx(+) A1 strains demonstrated a neurotoxin cluster arrangement similar to that found in A2. The A4 strain analyzed possessed two sets of neurotoxin clusters that were similar to what has been found in the A(B) strains: an HA cluster associated with the BoNT/B gene and an Orfx cluster associated with the BoNT/A4 gene. The nucleotide and amino acid sequences of the neurotoxin cluster-specific genes were determined for each neurotoxin cluster and compared among strains. Additionally, the ntnh gene of each strain was compared on both the nucleotide and amino acid levels. The degree of similarity of the sequences of the ntnh genes and corresponding amino acid sequences correlated with the neurotoxin cluster type to which the ntnh gene was assigned.  相似文献   

10.
The organization of the clusters of genes encoding proteins of the botulinum neurotoxin (BoNT) progenitor complex was elucidated in a strain of Clostridium botulinum producing type B and F neurotoxins. With PCR and sequencing strategies, the type B BoNT-gene cluster was found to be composed of genes encoding BoNT/B, nontoxic nonhemagglutinin component (NTNH), P-21, and the hemagglutinins HA-33, HA-17, and HA-70, whereas the type F BoNT-gene cluster has genes encoding BoNT/F, NTNH, P-47, and P-21. Comparative sequence analysis showed that BoNT/F in type BF strain 3281 shares highest homology with BoNT/F of non-proteolytic (group II) C. botulinum whereas NTNH and P-21 in the type F cluster of strain 3281 are more similar to the corresponding proteins in proteolytic (group I) type F C. botulinum. These findings indicate diverse evolutionary origins for genes encoding BoNT/F and its associated non-toxic proteins, although the genes are contiguous. By contrast, sequence comparisons indicate that genes encoding BoNT/B and associated non-toxic proteins in strain 3281 possess a similar evolutionary origin. It was demonstrated that the genes present in the BoNT/B gene cluster of this type BF strain show exceptionally high homology with the equivalent genes in the silent BoNT/B gene cluster of C. botulinum type A(B), possibly indicating their common ancestry. Received: 30 March 1998 / Accepted: 21 May 1998  相似文献   

11.
Botulinum neurotoxin serotype B is a zinc protease that disrupts neurotransmitter release by cleaving synaptobrevin-II (Sb2), one of three SNARE proteins involved in neuronal synaptic vesicle fusion. The three-dimensional crystal structure of the apo botulinum neurotoxin serotype B catalytic domain (BoNT/B-LC) has been determined to 2.2 A resolution, and the complex of cleaved Sb2 with the catalytic domain (Sb2-BoNT/B-LC) has been determined to 2.0 A resolution. A comparison of the holotoxin catalytic domain and the isolated BoNT/B-LC structure shows a rearrangement of three active site loops. This rearrangement exposes the BoNT/B active site. The Sb2-BoNT/B-LC structure illustrates two distinct binding regions, which explains the specificity of each botulinum neurotoxin for its synaptic vesicle protein. This observation provides an explanation for the proposed cooperativity between binding of full-length substrate and catalysis and suggest a mechanism of synaptobrevin proteolysis employed by the clostridial neurotoxins.  相似文献   

12.
Isolates (259) of psychrotrophic Clostridium spp. associated with either blown pack spoilage (five isolates) or slaughter stock (254 isolates) were screened for the presence of botulinum neurotoxin (BoNT) genes using degenerate PCR primers capable of amplifying A, B, E, F and G BoNT genes. No BoNT gene amplification products were detected using DNA templates from the 259 psychrotrophic isolates, including 249 isolates that showed the same 16S rRNA gene Restriction Fragment Length Polymorphism (RFLP) patterns as authentic Cl. botulinum type B. It is concluded that although the growth of such microorganisms in vacuum-packed chilled meat leads to product spoilage, it does not prejudice product safety.  相似文献   

13.
14.
15.
The clostridial neurotoxins (CNTs) are the most toxic proteins for humans and include botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT). CNT neurotropism is based upon the preferred binding and entry into neurons and specific cleavage of neuronal SNARE proteins. While chemically inactive TeNT toxoid remains an effect vaccine, the current pentavalent vaccine against botulism is in limited supply. Recent advances have facilitated the development of the next generation of BoNT vaccines, utilizing non-catalytic full-length BoNT or a subunit vaccine composed of the receptor binding domain of BoNT as immunogens. This review describes the issues and progress towards the production of a vaccine against botulism that will be effective against natural BoNT variants.  相似文献   

16.
Clostridium botulinum synthesizes a potent neurotoxin (BoNT) which associates with non-toxic proteins (ANTPs) to form complexes of various sizes. The bont and antp genes are clustered in two operons. In C. botulinum type A, bont/A and antp genes are expressed during the end of the exponential growth phase and the beginning of the stationary phase under the control of an alternative sigma factor encoded by botR/A, which is located between the two operons. In the genome of C. botulinum type A strain Hall, 30 gene pairs predicted to encode two-component systems (TCSs) and 9 orphan regulatory genes have been identified. Therefore, 34 Hall isogenic antisense strains on predicted regulatory genes (29 TCSs and 5 orphan regulatory genes) have been obtained by a mRNA antisense procedure. Two TCS isogenic antisense strains showed more rapid growth kinetics and reduced BoNT/A production than the control strain, as well as increased bacterial lysis and impairment of the bacterial cell wall structure. Three other TCS isogenic antisense strains induced a low level of BoNT/A and ANTP production. Interestingly, reduced expression of bont/A and antp genes was shown to be independent of botR/A. These results indicate that BoNT/A synthesis is under the control of a complex network of regulation including directly at least three TCSs.  相似文献   

17.
18.
The cluster of genes encoding components of the progenitor botulinum neurotoxin complex has been mapped and cloned in Clostridium botulinum type G strain ATCC 27322. Determination of the nucleotide sequence of the region has revealed open reading frames encoding nontoxic components of the complex, upstream of the gene encoding BoNT/G (botG). The arrangement of these genes differs from that in strains of other antigenic toxin types. Immediately upstream of botG lies a gene encoding a protein of 1198 amino acids, which shows homology with the nontoxic-nonhemagglutinin (NTNH) component of the progenitor complex. Further upstream there are genes encoding proteins with homology to hemagglutinin components (HA-17, HA-70) and a putative positive regulator of gene expression (P-21). Sequence comparison has shown that BoNT/G has highest homology with BoNT/B. The sequence of the BoNT-cluster of genes in non-proteolytic C. botulinum type B strain Eklund 17B has been extended to include the complete NTNH and HA-17, and partial HA-70 gene sequences. Comparison of NTNH/G with other NTNHs reveals that it shows highest homology with NTNH/B consistent with the genealogical affinity shown between BoNT/G and BoNT/B genes. Received: 28 January 1997 / Accepted: 24 March 1997  相似文献   

19.
S Cai  H K Sarkar  B R Singh 《Biochemistry》1999,38(21):6903-6910
Botulinum neurotoxins type A (BoNT/A), the most toxic substance known to man, is produced by Clostridium botulinum type A as a complex with a group of neurotoxin-associated proteins (NAPs), possibly through a polycistronic expression of a clustered group of genes. The botulinum neurotoxin complex is the only known example of a protein complex where a group of proteins (NAPs) protect another protein (BoNT) against acidity and proteases of the GI tract. We now report that NAPs also potentiate the Zn2+ endopeptidase activity of BoNT/A in both in vitro and in vivo assays against its known intracellular target protein, 25 kDa synaptosomal associated protein (SNAP-25). While BoNT/A exhibited no protease activity prior to reduction with dithiothreitol (DTT), the BoNT/A complex exhibited a high protease activity even in its nonreduced form. Our results suggest that the bacterial production of NAPs along with BoNT is designed for the NAPs to play an accessory role in the neurotoxin function, in contrast to their previously known limited role in protecting the neurotoxin in the GI tract and in the external environment. Structural features of BoNT/A change considerably upon disulfide reduction, as revealed by near-UV circular dichroism spectroscopy. BoNT/A in the reduced form adopts a more flexible structure than in the unreduced form, as also indicated by large differences in DeltaH values (155 vs 248 kJ mol-1) of temperature-induced unfolding of BoNT/A.  相似文献   

20.
An amplified enzyme-linked immunosorbent assay (ELISA) for the detection of Clostridium botulinum complex neurotoxins was evaluated for its ability to detect these toxins in food. The assay was found to be suitable for detecting type A, B, E, and F botulinum neurotoxins in a variety of food matrices representing liquids, solid, and semisolid food. Specific foods included broccoli, orange juice, bottled water, cola soft drinks, vanilla extract, oregano, potato salad, apple juice, meat products, and dairy foods. The detection sensitivity of the test for these botulinum complex serotypes was found to be 60 pg/ml (1.9 50% lethal dose [LD50]) for botulinum neurotoxin type A (BoNT/A), 176 pg/ml (1.58 LD50) for BoNT/B, 163 pg/ml for BoNT/E (4.5 LD50), and 117 pg/ml for BoNT/F (less than 1 LD50) in casein buffer. The test could also readily detect 2 ng/ml of neurotoxins type A, B, E, and F in a variety of food samples. For specificity studies, the assay was also used to test a large panel of type A C. botulinum, a smaller panel of proteolytic and nonproteolytic type B, E, and F neurotoxin-producing Clostridia, and nontoxigenic organisms using an overnight incubation of toxin production medium. The assay appears to be an effective tool for large-scale screening of the food supply in the event of a botulinum neurotoxin contamination event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号