首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Libraries for genomic SELEX.   总被引:9,自引:5,他引:4       下载免费PDF全文
An increasing number of proteins are being identified that regulate gene expression by binding specific nucleic acidsin vivo. A method termed genomic SELEX facilitates the rapid identification of networks of protein-nucleic acid interactions by identifying within the genomic sequences of an organism the highest affinity sites for any protein of the organism. As with its progenitor, SELEX of random-sequence nucleic acids, genomic SELEX involves iterative binding, partitioning, and amplification of nucleic acids. The two methods differ in that the variable region of the nucleic acid library for genomic SELEX is derived from the genome of an organism. We have used a quick and simple method to construct Escherichia coli, Saccharomyces cerevisiae, and human genomic DNA PCR libraries that can be transcribed with T7 RNA polymerase. We present evidence that the libraries contain overlapping inserts starting at most of the positions within the genome, making these libraries suitable for genomic SELEX.  相似文献   

4.
5.
The N-terminal domain of the Tn916 integrase protein (INT-DBD) is responsible for DNA binding in the process of strand cleavage and joining reactions required for transposition of the Tn916 conjugative transposon. Site-specific association is facilitated by numerous protein-DNA contacts from the face of a three-stranded beta-sheet inserted into the major groove. The protein undergoes a subtle conformational transition and is slightly unfolded in the protein-DNA complex. The conformation of many charged residues is poorly defined by NMR data but mutational studies have indicated that removal of polar side chains decreases binding affinity, while non-polar contacts are malleable. Based on analysis of the binding enthalpy and binding heat capacity, we have reasoned that dehydration of the protein-DNA interface is incomplete. This study presents results from a molecular dynamics investigation of the INT-DBD-DNA complex aimed at a more detailed understanding of the role of conformational dynamics and hydration in site-specific binding. Comparison of simulations (total of 13 ns) of the free protein and of the bound protein conformation (in isolation or DNA-bound) reveals intrinsic flexibility in certain parts of the molecule. Conformational adaptation linked to partial unfolding appears to be induced by protein-DNA contacts. The protein-DNA hydrogen-bonding network is highly dynamic. The simulation identifies protein-DNA interactions that are poorly resolved or only surmised from the NMR ensemble. Single water molecules and water clusters dynamically optimize the complementarity of polar interactions at the 'wet' protein-DNA interface. The simulation results are useful to establish a qualitative link between experimental data on individual residue's contribution to binding affinity and thermodynamic properties of INT-DBD alone and in complex with DNA.  相似文献   

6.
Functional protein microarray is an important tool for high-throughput and large-scale systems biology studies.Besides the progresses that have been made for protein microarray fabrication,significant ...  相似文献   

7.
8.
Combined applications of affinity purification procedures and mass-spectrometric analyses (affinity mass spectrometry or affinity-directed mass spectrometry) have gained broad interest in various fields of biological sciences. We have extended these techniques to the purification and analysis of closely related peptides from complex mixtures and to the characterization of binding motifs and relative affinities in protein-protein interactions. The posttranslational modifications in the carboxy-terminal region of porcine brain tubulin are used as an example for the applicability of affinity mass spectrometry in the characterization of complex patterns of related peptides. We also show that affinity mass spectrometry allows the mapping of sequential binding motifs of two interacting proteins. Using the ActA/Mena protein-protein complex as a model system, we show that we can selectively purify Mena-binding peptides from a tryptic digest of ActA. The results from this assay are compared to data sets obtained earlier by classical methods using synthetic peptides and molecular genetic experiments. As a further expansion of affinity mass spectrometry, we have established an internally standardized system that allows comparison of the affinities of related ligands for a given protein. Here the affinities of two peptide ligands for the monoclonal tubulin-specific antibody YL1/2 are determined in terms of half-maximal competition.  相似文献   

9.
ABSTRACT: BACKGROUND: Protein-DNA interactions are important for many cellular processes, however structural knowledge for a large fraction of known and putative complexes is still lacking. Computational docking methods aim at the prediction of complex architecture given detailed structures of its constituents. They are becoming an increasingly important tool in the field of macromolecular assemblies, complementing particularly demanding protein-nucleic acids X ray crystallography and providing means for the refinement and integration of low resolution data coming from rapidly advancing methods such as cryoelectron microscopy. RESULTS: We present a new coarse-grained force field suitable for protein-DNA docking. The force field is an extension of previously developed parameter sets for protein-RNA and protein-protein interactions. The docking is based on potential energy minimization in translational and orientational degrees of freedom of the binding partners. It allows for fast and efficient systematic search for native-like complex geometry without any prior knowledge regarding binding site location. CONCLUSIONS: We find that the force field gives very good results for bound docking. The quality of predictions in the case of unbound docking varies, depending on the level of structural deviation from bound geometries. We analyze the role of specific protein-DNA interactions on force field performance, both with respect to complex structure prediction, and the reproduction of experimental binding affinities. We find that such direct, specific interactions only partially contribute to protein-DNA recognition, indicating an important role of shape complementarity and sequence-dependent DNA internal energy, in line with the concept of indirect protein-DNA readout mechanism.  相似文献   

10.
We have developed an artificial protein scaffold, herewith called a protein vector, which allows linking of an in-vitro synthesised protein to the nucleic acid which encodes it through the process of self-assembly. This protein vector enables the direct physical linkage between a functional protein and its genetic code. The principle is demonstrated using a streptavidin-based protein vector (SAPV) as both a nucleic acid binding pocket and a protein display system. We have shown that functional proteins or protein domains can be produced in vitro and physically linked to their DNA in a single enzymatic reaction. Such self-assembled protein-DNA complexes can be used for protein cloning, the cloning of protein affinity reagents or for the production of proteins which self-assemble on a variety of solid supports. Self-assembly can be utilised for making libraries of protein-DNA complexes or for labelling the protein part of such a complex to a high specific activity by labelling the nucleic acid associated with the protein. In summary, self-assembly offers an opportunity to quickly generate cheap protein affinity reagents, which can also be efficiently labelled, for use in traditional affinity assays or for protein arrays instead of conventional antibodies.  相似文献   

11.
A Moreno  J Knee  I Mukerji 《Biochemistry》2012,51(34):6847-6859
Incorporation of fluorescent nucleoside analogues into duplex DNA usually leads to a reduction in quantum yield, which significantly limits their potential use and application. We have identified two pentamer DNA sequences containing 6-methylisoxanthopterin (6-MI) (ATFAA and AAFTA, where F is 6-MI) that exhibit significant enhancement of fluorescence upon formation of duplex DNA with quantum yields close to that of monomeric 6-MI. The enhanced fluorescence dramatically increases the utility and sensitivity of the probe and is used to study protein-DNA interactions of nanomolar specificity in this work. The increased sensitivity of 6-MI allows anisotropy binding measurements to be performed at DNA concentrations of 1 nM and fluorescence intensity measurements at 50 pM DNA. The ATFAA sequence was incorporated into DNA constructs to measure the binding affinity of four different protein-DNA interactions that exhibit sequence-specific and non-sequence-specific recognition. In all cases, the K(d) values obtained were consistent with previously reported values measured by other methods. Time-resolved and steady-state fluorescence measurements demonstrate that 6-MI fluorescence is very sensitive to local distortion and reports on different degrees of protein-induced perturbations with single-base resolution, where the largest changes occur at the site of protein binding.  相似文献   

12.
13.
14.
核酸适配体是一类具有特异性分子识别能力的单链DNA或者RNA分子,通过指数富集的配体系统进化技术(SELEX)筛选得到。核酸适配体相比抗体具有热稳定性高、便于化学合成与修饰、免疫原性低等优点,在生物分析、生物医学、生物技术等众多领域引起广泛关注。高质量的核酸适配体是应用的基础,然而目前能够满足实际应用的核酸适配体数量还非常有限。如何获得高亲和力、高特异性、高体内稳定性的核酸适配体是核酸适配体领域的技术瓶颈。本文首先简单介绍了SELEX技术的基本原理和核酸库的设计、筛选过程监控、次级文库制备、测序和候选适配体筛选等关键步骤。接着归纳总结了30多年来核酸适配体筛选技术的6个主要研究方向、研究进展和局限性。这6个主要研究方向分别是提高适配体特异性的筛选方法、提高适配体稳定性(抗核酸酶降解能力)的筛选方法、快速筛选方法、复杂靶标适配体筛选方法、小分子靶标适配体筛选方法、提高适配体亲和力的筛选方法。其中快速筛选技术是长期以来持续关注的研究方向,几乎所有物理分离手段都已用于提高SELEX的筛选效率。最近,高效化学反应与SELEX技术的结合为核酸适配体的快速筛选提供了新的策略。本文随后对适合小分子靶标核酸适配体筛选的3类方法进展和存在的问题进行了重点评述。这3类方法分别是基于靶标固定的筛选技术、基于文库固定的筛选技术(捕获-SELEX,Capture-SELEX)和均相筛选技术(氧化石墨烯-SELEX,GO-SELEX)。基于靶标固定的筛选技术尽管存在空间位阻等众多问题,由于其操作的简单性,目前依然应用广泛。近年来Capture-SELEX应用广泛。结合36种靶标适配体的筛选实验条件(文库设计、正筛靶标浓度、负筛靶标的选择和浓度)和所获得的适配体的亲和力(KD,解离常数,dissociation constant)和特异性,对Capture-SELEX的实验条件与适配体性能的关系进行了讨论。统计数据表明,降低正筛靶标浓度有利于提高适配体的亲和力,但不是必要条件。负筛选是目前提高适配体特异性的主要技术手段,但适配体的特异性还不能满足实际需求。负筛选靶标及其浓度的选择差异很大,而且36种靶标中有20种靶标的适配体筛选没有进行负筛选。如何提高核酸适配体的特异性是目前小分子靶标核酸适配体所面临的难题,急需寻找新的策略。本文还列表归纳了近三年利用GO-SELEX进行的13种小分子靶标的实验条件和所获得的适配体的KD和特异性。统计数据表明,GO-SELEX比Capture-SELEX所需要的筛选轮数少,两种方法所获得的适配体的亲和力多在纳摩尔每升水平。Capture-SELEX相对较低的筛选效率应该主要由于文库的自解离问题。核酸适配体的亲和力评价是候选核酸适配体结构与性能评价的重要组成部分。常用的核酸适配体亲和力评价技术包括基于分离、基于固定、均相体系三大类十多种方法。假阳性和假阴性是各种评价技术都有可能存在的问题。本文以纳米金比色法和等温热滴定技术为例评述技术进展,讨论导致不同亲和力评价技术结果不一致性问题的根本原因。本文最后对核酸适配体筛选技术、亲和力评价技术和技术的标准化的未来发展趋势进行了展望。  相似文献   

15.
We describe a rapid analytical assay for identification of proteins binding to specific DNA sequences. The DAPSTER assay (DNA affinity preincubation specificity test of recognition assay) is a DNA affinity chromatography-based microassay that can discriminate between specific and nonspecific protein-DNA interactions. The assay is sensitive and can detect protein-DNA interactions and larger multicomponent complexes that can be missed by other analytical methods. Here we describe in detail the optimization and utilization of the DAPSTER assay to isolate AP-1 complexes and associated proteins in multimeric complexes bound to the AP-1 DNA element.  相似文献   

16.
17.
Hudson ME  Snyder M 《BioTechniques》2006,41(6):673, 675, 677 passim
With the number of organisms whose genomes have been sequenced, a vast amount of information concerning the genetic structure of an organism's genome has been collected. However, effective experiment means to study how this information is accessed have only recently been developed. In this review, three basic methods for identifying regions of protein-DNA interaction will be introduced. The first two, chromatin immunoprecipitation (ChIP)-chip and ChIP-PET (for paired-end ditag), rely on the enrichment provided by chromosomal immunoprecipitation to interrogate the genomic sequence for the interaction sites of a protein of interest. In contrast, protein microarrays allow the identification of DNA binding protein that interacts with a DNA sequence of interest. These complementary methods of exploring protein-DNA interactions will increase our fundamental knowledge of how the information contained within the genome sequence is accessed and processed.  相似文献   

18.
Structural and biochemical studies of Cys(2)His(2) zinc finger proteins initially led several groups to propose a "recognition code" involving a simple set of rules relating key amino acid residues in the zinc finger protein to bases in its DNA site. One recent study from our group, involving geometric analysis of protein-DNA interactions, has discussed limitations of this idea and has shown how the spatial relationship between the polypeptide backbone and the DNA helps to determine what contacts are possible at any given position in a protein-DNA complex. Here we report a study of a zinc finger variant that highlights yet another source of complexity inherent in protein-DNA recognition. In particular, we find that mutations can cause key side-chains to rearrange at the protein-DNA interface without fundamental changes in the spatial relationship between the polypeptide backbone and the DNA. This is clear from a simple analysis of the binding site preferences and co-crystal structures for the Asp20-->Ala point mutant of Zif268. This point mutation in finger one changes the specificity of the protein from GCG TGG GCG to GCG TGG GC(G/T), and we have solved crystal structures of the D20A mutant bound to both types of sites. The structure of the D20A mutant bound to the GCG site reveals that contacts from key residues in the recognition helix are coupled in complex ways. The structure of the complex with the GCT site also shows an important new water molecule at the protein-DNA interface. These side-chain/side-chain interactions, and resultant changes in hydration at the interface, affect binding specificity in ways that cannot be predicted either from a simple recognition code or from analysis of spatial relationships at the protein-DNA interface. Accurate computer modeling of protein-DNA interfaces remains a challenging problem and will require systematic strategies for modeling side-chain rearrangements and change in hydration.  相似文献   

19.
It is demonstrated that isothermal titration calorimetry can be used to determine cooperative interaction energetics even for extremely tight binding processes in which the binding affinity constants are beyond the limits of experimental determination. The approach is based on the capability of calorimetry to measure the apparent binding enthalpy at any degree of ligand saturation. When calorimetric measurements are performed under conditions of total association at partial saturation, the dependence of the apparent binding enthalpy on the degree of saturation is a function only of the cooperative binding interactions. The method developed in this paper allows an independent estimation of cooperative energetic parameters without the need to simultaneously estimate or precisely know the value of the association constants. Since total ligand association at partial saturation is achieved only at macromolecular concentrations much larger than the dissociation constants, the method is especially suited for high and very high affinity processes. Biological associations in this category include fundamental cellular processes like cell surface receptor binding or protein-DNA interactions.  相似文献   

20.
Determination of the physical parameters underlying protein-DNA interactions is crucial for understanding the regulation of gene expression. In particular, knowledge of the stoichiometry of the complexes is a prerequisite to determining their energetics and functional molecular mechanisms. However, the experimental determination of protein-DNA complex stoichiometries remains challenging. We used fluorescence cross-correlation spectroscopy (FCCS) to investigate the interactions of the control catabolite protein of gluconeogenic genes, a key metabolic regulator in Gram-positive bacteria, with two oligonucleotides derived from its target operator sequences, gapB and pckA. According to our FCCS experiments, the stoichiometry of binding is twofold larger for the pckA target than for gapB. Correcting the FCCS data for protein self-association indicated that control catabolite protein of gluconeogenic genes forms dimeric complexes on the gapB target and tetrameric complexes on the pckA target. Analytical ultracentrifugation coupled with fluorescence anisotropy and hydrodynamic modeling allowed unambiguous confirmation of this result. The use of multiple complementary techniques to characterize these complexes should be employed wherever possible. However, there are cases in which analytical ultracentrifugation is precluded, due to protein stability, solubility, or availability, or, more obviously, when the studies are carried out in live cells. If information concerning the self-association of the protein is available, FCCS can be used for the direct and simultaneous determination of the affinity, cooperativity, and stoichiometry of protein-DNA complexes in a concentration range and conditions relevant to the regulation of these interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号