首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Two of the three isoforms of the growth-related protein p25 of the Ehrlich ascites tumor have been purified to homogeneity by giant two-dimensional polyacrylamide gel electrophoresis. 2. Antibodies raised against the isoform p25/1 react also with isoforms p25/2 and p25/3. 3. Limited tryptic digestion of p25/1 and p25/2 resulted in similar oligopeptide patterns. Corresponding oligopeptides of both isoforms have identical amino acid sequences. 4. The isoforms p25/2 and p25/3 are phosphorylated derivatives of unphosphorylated p25/1. The phosphorus is bound to serine and a further unknown phosphorylation site.  相似文献   

2.
The small heat shock/alpha-crystallin protein p26 undergoes nuclear translocation in response to stress in encysted embryos of the brine shrimp Artemia franciscana. About 50% of total p26 translocates to nuclei in embryos treated with heat shock or anoxia, and in embryo homogenates incubated at low pH. Nuclear fractionation shows that the majority of nuclear p26 and a nuclear lamin are associated with the nuclear matrix fraction. To further explore the roles of p26 and other HSPs in stabilizing nuclear matrix proteins (NMPs), nuclear matrices from control, and heat-shocked embryos were disassembled in urea and evaluated by one and two-dimensional (2-D) gel electrophoresis and Western immunoblotting after reassembling. Nuclear lamins were present only in reassembled fractions and, in the case of heat shock, p26 and HSP70 were also present. HSP90 was not detected in any nuclear fraction. Confocal microscopy on isolated nuclei and nuclear matrix preparations from control and heat-shocked embryos showed that the majority of p26 and a nuclear lamin share similar nuclear distributions. The combination of microscopy and fractionation results suggests that p26 and HSP70 play a role in the protection of nuclear lamins within the nuclear matrix.  相似文献   

3.
A low molecular mass (18 kD) phosphoprotein (pp18) was characterized and purified from cultured sugarcane (Saccharum officinarum L.) cell line H50-7209. Autophosphorylation assays were used to detect pp18 after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Only pp18 was detected by a brief in situ phosphorylation method, whereas additional putative protein kinases were detected by an extended method. pp18 was present in both microsomal membrane and soluble fractions and exhibited anomalous turnover of 32P label during in vitro phosphorylation experiments with highest levels present at shorter incubation times. Two major isoforms of the protein were identified in two-dimensional isoelectric focusing/SDS-PAGE of crude extracts and microsomal fractions. The levels of pp18 were enhanced approximately 4-fold by heat shock at 36 degrees C and the elevated pp18 decayed after heat shock was discontinued. pp18 was purified to apparent homogeneity, could be phosphorylated on serine residues, and also exhibited kinase-like activity toward histone H1. The amino acid sequence obtained from a cyanogen bromide digest was greater than 80% identical to nucleoside diphosphate (NDP) kinases from a variety of organisms. Biochemical analysis of the purified protein confirmed the identity as NDP kinase. Thus, NDP kinase appears to be modulated by heat shock in plants.  相似文献   

4.
AM King  TH Macrae 《PloS one》2012,7(8):e43723
Artemia franciscana embryos enter diapause as encysted gastrulae, a physiological state of metabolic dormancy and enhanced stress resistance. The objective of this study was to use RNAi to investigate the function of p26, an abundant, diapause-specific small heat shock protein, in the development and behavior of encysted Artemia embryos (cysts). RNAi methodology was developed where injection of Artemia females with dsRNA specifically eliminated p26 from cysts. p26 mRNA and protein knock down were, respectively, confirmed by RT-PCR and immuno-probing of western blots. ArHsp21 and ArHsp22, diapause-related small heat shock proteins in Artemia cysts sharing a conserved α-crystallin domain with p26, were unaffected by injection of females with dsRNA for p26, demonstrating the specificity of protein knock down. Elimination of p26 delayed cyst release from females demonstrating that this molecular chaperone influences the development of diapause-destined embryos. Although development was slowed the metabolic activities of cysts either containing or lacking p26 were similar. p26 inhibited diapause termination after prolonged incubation of cysts in sea water perhaps by a direct effect on termination or indirectly because p26 is necessary for the preservation of diapause maintenance. Cyst diapause was however, terminated by desiccation and freezing, a procedure leading to high mortality within cyst populations lacking p26 and indicating the protein is required for stress tolerance. Cysts lacking p26 were also less resistant to heat shock. This is the first in vivo study to show that knock down of a small heat shock protein slows the development of diapause-destined embryos, suggesting a role for p26 in the developmental process. The same small heat shock protein prevents spontaneous termination of diapause and provides stress protection to encysted embryos.  相似文献   

5.
6.
p26, a small heat shock protein, is thought to protect Artemia embryos from stress during encystment and diapause. Full-length p26 cDNAs were compared and used to determine phylogenetic relationships between several Artemia species. The alpha-crystallin domain of p26 was the most conserved region of the protein and p26 from each Artemia species contained characteristic amino-terminal WD/EPF and carboxy-terminal VPI motifs. Sequence conservation suggested the importance of p26 to oviparously developing Artemia embryos and indicated common functions for the protein during development and stress resistance, although as shown by modeling some species-specific p26 amino acid substitutions may have adaptive significance. The p26 gene obtained from A. franciscana exhibited a unique sHSP intron arrangement with an intron in the 5'-untranslated region. Computer-assisted analysis revealed heat shock elements and other putative cis regulatory sequences but their role in gene regulation is unknown. In contrast to previous results for which Northern blots were analyzed, p26 gene expression was observed in ovoviviparous embryos by use of PCR-based methodology, but the p26 protein was not detected.  相似文献   

7.
Adipogenesis plays a critical role in energy metabolism and is a contributing factor to the obesity epidemic. This study examined the proteome of primary cultures of human adipose-derived adult stem (ADAS) cells as an in vitro model of adipogenesis. Protein lysates obtained from four individual donors were compared before and after adipocyte differentiation by two-dimensional gel electrophoresis and tandem mass spectroscopy. Over 170 individual protein features in the undifferentiated adipose-derived adult stem cells were identified. Following adipogenesis, over 40 proteins were up-regulated by > or = 2-fold, whereas 13 showed a > or = 3-fold reduction. The majority of the modulated proteins belonged to the following functional categories: cytoskeleton, metabolic, redox, protein degradation, and heat shock protein/chaperones. Additional immunoblot analysis documented the induction of four individual heat shock proteins and confirmed the presence of the heat shock protein 27 phosphoserine 82 isoform, as predicted by the proteomic analysis, as well as the crystallin alpha phosphorylated isoforms. These findings suggest that the heat shock protein family proteome warrants further investigation with respect to the etiology of obesity and type 2 diabetes.  相似文献   

8.
On the basis of the results of proteomic analysis and mass spectrometric identification of human myocardium proteins exhibiting pronounced quantitative changes in the dynamics of prenatal cardiogenesis, changes in the expression level of proteins of three families (mitochondrial, contractile, and heat shock) have been identified. The complex of human myocardium mitochondrial proteins (for example, α and β isoforms of ATP synthase, aconitase 2, creatine phosphokinase M-subunit, and 60-kDa heat shock protein) largely finishes its development according to the adult type by developmental week 24. The formation of the protein composition of human myocardium contractile structures (for example, desmin, myosin regulatory light chain 2, fetal ventricular essential isoform 1, canonical α-tropomyosin, and fetal isoform 6) reflects the initial stage of myofibril development until developmental week 8 (replacement of fetal isoforms of contractile proteins with adult ones with the involvement of the phosphorylated isoform of 27-kDa heat shock protein), the stage of their qualitative and quantitative structuring by developmental weeks 20–24, and the final formation of the adult phenotype of contractile structures by 2 years of life.  相似文献   

9.
Small heat shock/alpha-crystallin proteins function as molecular chaperones, protecting other proteins from irreversible denaturation by an energy-independent process. The brine shrimp, Artemia franciscana, produces a small heat shock/alpha-crystallin protein termed p26, found in embryos undergoing encystment, diapause, and metabolic arrest. These embryos withstand long-term anoxia and other stresses normally expected to cause death, a property likely dependent on molecular chaperone activity. The association of p26 with tubulin in unfractionated cell-free extracts of Artemia embryos was established by affinity chromatography, suggesting that p26 chaperones tubulin during encystment. To test this possibility, both proteins were purified by modifying published protocols, thereby simplifying the procedures, enhancing p26 yield about 2-fold, and recovering less tubulin than before. The denaturation of purified tubulin as it "aged" and exposed hydrophobic sites during incubation at 35 degrees C was greatly reduced when p26 was present; however, tubulin polymerization into microtubules was reduced. On incubation at 35 degrees C, centrifugation in sucrose density gradients demonstrated the association of purified p26 with tubulin. This is the first study where the relationship between a small heat shock/alpha-crystallin protein and tubulin from the same physiologically stressed organism was examined. The results support the proposal that p26 binds tubulin and prevents its denaturation, thereby increasing the resistance of encysted Artemia embryos to stress. Additional factors are apparently required for release of tubulin from p26 and restoration of efficient assembly, events that would occur as embryos resume development and the need for microtubules is established.  相似文献   

10.
Oviparously developing embryos of the brine shrimp, Artemia franciscana, synthesize abundant quantities of a small heat shock/alpha-crystallin protein, termed p26. Wild-type p26 functions as a molecular chaperone in vitro and is thought to help encysted Artemia embryos survive severe physiological stress encountered during diapause and anoxia. Full-length and truncated p26 cDNA derivatives were generated by PCR amplification of p26-3-6-3, then cloned in either pET21(+) or pRSETC and expressed in Escherichia coli BL21(DE3). All constructs gave a polypeptide detectable on Western blots with either p26 specific antibody, or with antibody to the His(6) epitope tag encoded by pRSETC. Full-length p26 in cell-free extracts of E. coli was about equal in mass to that found in Artemia embryos, but p26 lacking N- and C-terminal residues remained either as monomers or small multimers. All p26 constructs conferred thermotolerance on transformed E. coli, although not all formed oligomers, and cells expressing N-terminal truncated derivatives of p26 were more heat resistant than bacteria expressing p26 with C-terminal deletions. The C-terminal extension of p26 is seemingly more important for thermotolerance than is the N-terminus, and p26 protects E. coli against heat shock when oligomer size and protein concentration are low. The findings have important implications for understanding the functional mechanisms of small heat shock/alpha-crystallin proteins.  相似文献   

11.
Qiu Z  MacRae TH 《The FEBS journal》2008,275(14):3556-3566
Diapause embryos of the crustacean Artemia franciscana exhibit extreme stress tolerance, a property thought to involve molecular chaperones known as small heat shock proteins. To further explore this idea, the structure, function and synthesis of ArHsp22, an Artemia small heat shock protein, were characterized. ArHsp22 contains amino-terminal WXDPF motifs, an alpha-crystallin domain with a highly conserved arginine, and a carboxy-terminal I/VXI/V motif, all typical of small heat shock proteins. ArHsp22 formed large oligomers and exhibited molecular chaperone activity in vitro, protecting citrate synthase and insulin from denaturation. Quantitative PCR and immunoprobing of western blots revealed that ArHsp22 synthesis is restricted to diapause-destined Artemia embryos and that the protein is degraded during post-diapause development. ArHsp22 was observed in cyst nuclei, a location shared by p26 but not ArHsp21, which are two other diapause-specific Artemia small heat shock proteins. ArHsp22 production was enhanced by thermal stress, but only in adults, thus representing the first crustacean small heat shock protein whose synthesis is known to be both developmentally regulated and stress inducible. The results demonstrate that expression of the gene for ArHsp22 is modulated by multiple cues that vary with life history stage. Such findings are of importance in understanding diapause maintenance in Artemia embryos and the survival of adult animals experiencing environmental insult.  相似文献   

12.
Embryos of the brine shrimp, Artemia franciscana, either develop directly into swimming larvae or are released from females as encysted gastrulae (cysts) which enter diapause, a reversible state of dormancy. Metabolic activity in diapause cysts is very low and these embryos are remarkably resistant to physiological stresses. Encysting embryos, but not those undergoing uninterrupted development, synthesize large amounts of two proteins, namely p26 and artemin. Cloning and sequencing demonstrated p26 is a small heat shock/alpha-crystallin protein while artemin has structural similarity to ferritin. p26 exhibits molecular chaperone activity in vitro, moves reversibly into nuclei during stress and confers thermotolerance on transformed organisms, suggesting critical roles in cyst development. The function of artemin is unknown. Encysted Artemia also contain an abundance of trehalose, a disaccharide capable of protecting embryos. Artemia represent a novel experimental system where the developmental functions of small heat shock/alpha-crystallin proteins and other stress response elements can be explored.  相似文献   

13.
We have observed that the approximately 90-kDa non-steroid-binding component of nonactivated glucocorticoid receptors purified from WEHI-7 mouse thymoma cells (which has been identified as the approximately 90-kDa heat shock protein) consistently migrates as a doublet during polyacrylamide gel electrophoresis under denaturing and reducing conditions. It has recently been reported that murine Meth A cells contain a tumor-specific transplantation antigen (TSTA) which is related or identical to the approximately 90-kDa heat shock protein (Ullrich, S.J., Robinson, E.A., Law, L.W., Willingham, M., and Appella, E. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 3121-3125). The observation that TSTA and the approximately 90-kDa heat shock protein isolated from these cells exists as two isoforms of similar molecular mass and charge has suggested to us that the doublet we observed is also due to the existence of two isoforms. However, unlike TSTA, which appears to contain the two isoforms in similar relative abundance, nonactivated glucocorticoid-receptor complexes seem to contain predominantly the lower molecular mass isoform. We have therefore conducted this study to determine whether TSTA and the approximately 90-kDa component of glucocorticoid receptors are indeed related, to establish whether the receptor preferentially binds one isoform of the approximately 90-kDa heat shock protein, and to investigate the stoichiometry of the nonactivated receptor complex. By comparing Meth A TSTA and the approximately 90-kDa component of the receptor in their reactions with the AC88 monoclonal antibody (specific for the approximately 90-kDa heat shock protein) and a polyclonal antibody directed against Meth A TSTA, we found that these two proteins are indistinguishable and probably identical. We then used the BuGR1 (directed against the steroid-binding subunit of glucocorticoid receptors) and AC88 monoclonal antibodies to purify, respectively, receptor-associated and free approximately 90-kDa heat shock protein from WEHI-7 cells grown for 48 h with [35S]methionine to metabolically label proteins to steady state. Following analysis of the proteins by polyacrylamide gel electrophoresis under denaturing and reducing conditions, the relative amounts of the two isoforms in each sample were determined from the 35S counts and the known methionine content of each isoform. We found that approximately three-quarters of both the receptor-associated and the free approximately 90-kDa heat shock protein is present as the lower molecular weight isoform, indicating no preferential binding of either isoform in the receptor. The long-term metabolic labeling approach has also enabled us to direc  相似文献   

14.
Small heat shock proteins (sHsps) show a very rapid stress- and mitogen-dependent phosphorylation by MAPKAP kinase 2. Based on this observation, phosphorylation of sHsps was thought to play a key role in mediating thermoresistance immediately after heat shock, before the increased synthesis of heat shock proteins becomes relevant. We have analysed the phosphorylation dependence of the chaperone and thermoresistance-mediating properties of the small heat shock protein Hsp25. Surprisingly, overexpression of Hsp25 mutants, which are not phosphorylated in the transfected cells, confers the same thermoresistant phenotype as overexpression of wild type Hsp25, which is either mono- or bis-phosphorylated at serine residues 15 and 86 within the cells. Furthermore, in vitro phosphorylated Hsp25 shows the same oligomerization properties and the same chaperone activity as the nonphosphorylated protein. No differences between phosphorylated and nonphosphorylated Hsp25 are detected in preventing thermal aggregation of unfolding proteins and assisting refolding of denatured proteins. The results suggest that chaperone properties of the small heat shock proteins contribute to the increased cellular thermoresistance in a phosphorylation-independent manner.  相似文献   

15.
Sun Y  MacRae TH 《The FEBS journal》2005,272(20):5230-5243
The small heat shock proteins function as molecular chaperones, an activity often requiring reversible oligomerization and which protects against irreversible protein denaturation. An abundantly produced small heat shock protein termed p26 is thought to contribute to the remarkable stress resistance exhibited by encysted embryos of the crustacean, Artemia franciscana. Three novel sequence motifs termed G, R and TS were individually deleted from p26 by site-directed mutagenesis. G encompasses residues G8-G29, a glycine-enriched region, and R includes residues R36-R45, an arginine-enhanced sequence, both in the amino terminus. TS, composed of residues T169-T186, resides in the carboxy-extension and is augmented in threonine and serine. Deletion of R had more influence than removal of G on p26 oligomerization and chaperoning, the latter determined by thermotolerance induction in Escherichia coli, protection of insulin and citrate synthase from dithiothreitol- and heat-induced aggregation, respectively, and preservation of citrate synthase activity upon heating. Oligomerization of the TS and R variants was similar, but the TS deletion was slightly more effective than R as a chaperone. The extent of p26 structural perturbation introduced by internal deletions, including modification of intrinsic fluorescence, 1-anilino-8-naphthalene-sulphonate binding and secondary structure, paralleled reductions in oligomerization and chaperoning. Three-dimensional modeling of p26 based on wheat Hsp16.9 crystal structure indicated many similarities between the two proteins, including peptide loops associated with secondary structure elements. Loop 1 of p26 was deleted in the G variant with minimal effect on oligomerization and chaperoning, whereas loop 3, containing beta-strand 6 was smaller than the corresponding loop in Hsp16.9, which may influence p26 function.  相似文献   

16.
MAP kinase-activated protein kinase-2 (MAPKAP kinase-2) phosphorylates the serine residues in murine heat shock protein 25 (hsp25) and human heat shock protein 27 (hsp27) which are phosphorylated in vivo in response to growth factors and heat shock, namely Ser15 and Ser86 (hsp25) and Ser15, Ser78 and Ser82 (hsp27). Ser86 of hsp25 and the equivalent residue in hsp27 (Ser82) are phosphorylated preferentially in vitro. The small heat shock protein is present in rabbit skeletal muscle and hsp25 kinase activity in skeletal muscle extracts co-purifies with MAPKAP kinase-2 activity throughout the purification of the latter enzyme. These results suggest that MAPKAP kinase-2 is the enzyme responsible for the phosphorylation of these small heat shock proteins in mammalian cells.  相似文献   

17.
Oviparous development in the extremophile crustacean, Artemia franciscana, generates encysted embryos which enter a profound state of dormancy, termed diapause. Encystment is marked by the synthesis of p26, a polydisperse small heat shock protein thought to protect embryos from stress. In order to elucidate structural/functional relationships within p26 and other polydisperse small heat shock proteins, and to better define the protein's role during diapause, amino acid substitutions R110G, F112R, R114A and Y116D were generated within the p26 alpha-crystallin domain by site-directed mutagenesis. These residues were chosen because they are highly conserved across species boundaries, and molecular modelling indicates that they are part of a key structural interface between dimers. The F112R mutation, which had the greatest impact on oligomerization, placed two charged residues at the p26 dimer-dimer interface, demonstrating the importance of beta-strand 7 in tetramer formation. All mutated versions of p26 were less able than wild-type p26 to confer thermotolerance on transformed bacteria and they exhibited diminished chaperone action in three in vitro assays; however, all variants retained protective activity. This apparent stability of p26 may, by prolonging effective chaperone life in vivo, enhance embryo stress resistance. All substitutions modified p26 intrinsic fluorescence, surface hydrophobicity and secondary structure, and the pronounced changes in variant R114A, as indicated by these physical measurements, correlated with the greatest loss of function. Although mutation R114A had the greatest effect on p26 chaperoning, it had the least on oligomerization. These results demonstrate that in contrast to many other small heat shock proteins, p26 effectiveness as a chaperone is independent of oligomerization. The results also reinforce the idea, occasioned by modelling, that R114 is removed slightly from dimer-dimer interfaces. Moreover, beta-strand 7 is shown to have an important role in oligomerization of p26, a function first proposed for this structural element upon crystallization of wheat Hsp16.9, a small heat shock protein with different quaternary structure.  相似文献   

18.
The 105-kDa heat shock protein alpha (HSP105alpha) and HSP105beta are mammalian heat shock proteins that belong to the HSP105/HSP110 family. Both HSP105alpha and HSP105beta consist of acidic and basic isoforms. Here we report that the acidic isoforms are serine phosphorylated HSP105alpha or HSP105beta. Furthermore, using an in-gel kinase assay with HSP105alpha or HSP105beta as the substrate, the protein kinase that phosphorylates HSP105alpha and HSP105beta was identified as casein kinase II. Since phosphorylated HSP105alpha is especially prominent in the brain compared to other tissues of mice and rats, the phosphorylation of HSP105alpha by casein kinase II may be biologically significant.  相似文献   

19.
1. 1. We examined rodent cells transfected with an expression plasmid encoding a human small heat shock protein for possible compensatory expression of endogenous heat shock genes. For these investigations, human hsp27 was transfected into CHO cells which express endogenous HSP25.
2. 2. Both endogenous HSP25 and transfected HSP27 were expressed and multiple phosphorylated isoforms were detected upon exposure to thermal stress.
3. 3. Levels of endogenous HSP70 and HSP25 did not appear to be altered by expression of the heterologous heat shock protein.
4. 4. These results suggest that compensatory interactions are not exhibited in the expression of the heat shock genes examined, and that independent regulation may exist not only between the large and small heat shock proteins, but also between individual small heat shock proteins as well.
  相似文献   

20.
Heat shock protein 27, one of the low molecular weight stress proteins, is recognized as a molecular chaperone; however, other functions have not yet been well established. Phosphorylated heat shock protein 27 levels inversely correlate with the progression of human hepatocellular carcinoma. This study shows that phosphorylated heat shock protein 27 interferes with cell growth of the hepatocellular carcinoma-derived HuH7 cells in the presence of the proinflammatory cytokine, tumor necrosis factor-alpha, via inhibition of the sustained activation of the extracellular signal-regulated kinase signal pathway. The activities of Raf/extracellular signal-regulated kinase and subsequent activator protein-1 transactivation and the induction levels of cyclin D1 were lower in HuH7 cells transfected with phosphorylated heat shock protein 27 than those with unphosphorylated heat shock protein 27. Moreover, phosphorylated heat shock protein 27 up-regulated the levels of p38 mitogen-activated protein kinase and mitogen-activated protein kinase phosphatase-1, an inhibitory protein of extracellular signal-regulated kinase. These results indicate that phosphorylated heat shock protein 27 might suppress the extracellular signal-regulated kinase activity in the hepatocellular carcinoma cells via two separate pathways in an inflammatory state. The extracellular signal-regulated kinase activity is inversely correlated with phosphorylated heat shock protein 27 at serine 15 and also in human hepatocellular carcinoma tissues in vivo. Because the extracellular signal-regulated kinase signal pathway is a major proliferation signal of hepatocellular carcinoma, activator protein-1 activation is an early event in hepatocarcinogenesis. These findings strongly suggest that the control of the phosphorylated heat shock protein 27 levels could be a new therapeutic strategy especially to counter the recurrence of hepatocellular carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号