首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiplet-filtered and gradient-selected heteronuclear zero-quantum coherence (gsHZQC) TROSY experiments are described for measuring (1)H-(13)C correlations for (13)CH(3) methyl groups in proteins. These experiments provide improved suppression of undesirable, broad outer components of the heteronuclear zero-quantum multiplet in medium-sized proteins, or in flexible sites of larger proteins, compared to previously described HZQC sequences (Tugarinov et al. in J Am Chem Soc 126:4921-4925, 2004; Ollerenshaw et al. in J Biomol NMR 33:25-41, 2005). Hahn-echo versions of the gsHZQC experiment also are described for measuring zero- and double-quantum transverse relaxation rate constants for identification of chemical exchange broadening. Application of the proposed pulse sequences to Escherichia coli ribonuclease HI, with a molecular mass of 18 kD, indicates that improved multiplet suppression is obtained without substantial loss of sensitivity.  相似文献   

2.
The complete 1H- and 13C-NMR assignments of the major Cannabis constituents, delta9-tetrahydrocannabinol, tetrahydrocannabinolic acid, delta8-tetrahydrocannabinol, cannabigerol, cannabinol, cannabidiol, cannabidiolic acid, cannflavin A and cannflavin B have been determined on the basis of one- and two-dimensional NMR spectra including 1H- and 13C-NMR, 1H-1H-COSY, HMQC and HMBC. The substitution of carboxylic acid on the cannabinoid nucleus (as in tetrahydrocannabinolic acid and cannabidiolic acid) has a large effect on the chemical shift of H-1" of the C5 side chain and 2'-OH. It was also observed that carboxylic acid substitution reduces intermolecular hydrogen bonding resulting in a sharpening of the H-5' signal in cannabinolic acid in deuterated chloroform. The additional aromaticity of cannabinol causes the two angular methyl groups (H-8 and H-9) to show identical 1H-NMR shifts, which indicates that the two aromatic rings are in one plane in contrast to the other cannabinoids. For the cannabiflavonoids, the unambiguous assignments of C-3' and C-4' of cannflavin A and B were determined by HMBC spectra.  相似文献   

3.
The HMCM [CG]CBCA experiment (Tugarinov and Kay in J Am Chem Soc 125:13868–13878, 2003) correlates methyl carbon and proton shifts to Cγ, Cβ, and Cα resonances for the purpose of resonance assignments. The relative sensitivity of the HMCM[CG]CBCA sequence experiment is compared to a divide-and-conquer approach to assess whether it is best to collect all of the methyl correlations at once, or to perform separate experiments for each correlation. A straightforward analysis shows that the divide-and-conquer approach is intrinsically more sensitive, and should always be used to obtain methyl-Cγ, Cβ, and Cα correlations. The improvement in signal-to-noise associated with separate experiments is illustrated by the detection of methyl-aliphatic correlations in a 65 kDa protein-DNA complex.  相似文献   

4.
The discovery of the TROSY effect (Pervushin et al. in Proc Natl Acad Sci USA 94:12366–12371, 1997) for reducing transverse relaxation and line sharpening through selecting pathways in which dipole–dipole and CSA Hamiltonians partially cancel each other had a tremendous impact on solution NMR studies of macromolecules. Together with the methyl TROSY (Tugarinov and Kay in J Biomol NMR 28:165–172, 2004) it enabled structural and functional studies of significantly larger systems. The optimal field strengths for TROSY have been estimated to be on spectrometers operating around 900 MHz (21.14 T) for the 1HN TROSY (Pervushin et al. in Proc Natl Acad Sci USA 94:12366–12371, 1997) while the aromatic 13C (13Caro) TROSY is posited to be optimal at around 600 MHz (14.09 T) (Pervushin et al. in J Am Chem Soc 120:6394–6400, 1998b; Pervushin in Q Rev Biophys 33:161–197, 2000). The initial rational was based on the consideration of where the quadratic B0 field dependences of the TROSY relaxation rates reach a minimum. For sensitivity consideration, however, it is interesting to estimate which field strengths yield the tallest peaks. Recent studies of 15N-detected TROSYs suggested that maximal peak heights are expected at 1.15 GHz (27.01 T) although the slowest relaxation rates or longest transverse relaxation times T2 are indeed expected around 900 MHz (21.14 T) (Takeuchi in J Biomol NMR 63:323–331, 2015; Takeuchi et al. in J Biomol NMR 64:143–151, 2016). This was based on the fact that the heights of Lorentzian lines are proportional to B o 3/2 * T2 (Bo). Thus, multiplying the parabolic T2(Bo) dependence with the increasing function of B o 3/2 shifts the maxima of peak-height field dependence from the T2 maximum at 900 MHz to higher fields. Moreover, besides shifting the peak height maximum for 15N TROSY, this analysis yields estimates for optimal peak heights for 1HN detected TROSY to 1.5 GHz, and to 900 MHz for 13C-detected 13CaroTROSY as is detailed below. To our knowledge, this aspect of field dependence of TROSY sensitivity has not been in the attention of the NMR community but may affect perspectives of NMR at ultra-high fields.  相似文献   

5.
Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743–1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent spin-systems as long as their transverse magnetization components relax with substantially different rates. The rate of this build-up is a reporter of the methyl-bearing side-chain mobility. Although the build-up of multiple-quantum 1H coherences is monitored in these experiments, the decay of the methyl signal during relaxation delays occurs when methyl proton magnetization is in a single-quantum state. We describe a relaxation violated coherence transfer approach where the relaxation of multiple-quantum 1H–13C methyl coherences during the relaxation delay period is quantified. The NMR experiment and the associated fitting procedure that models the time-dependence of the signal build-up, are applicable to the characterization of side-chain order in [13CH3]-methyl-labeled, highly deuterated protein systems up to ~100 kDa in molecular weight. The feasibility of extracting reliable measures of side-chain order is experimentally verified on methyl-protonated, perdeuterated samples of an 8.5-kDa ubiquitin at 10°C and an 82-kDa Malate Synthase G at 37°C.  相似文献   

6.
A two-dimensional TROSY-based SIM-(13)C(m)-(1)H(m)/(1)H-(15)N NMR experiment for simultaneous measurements of methyl (1) D (CH) and backbone amide (1) D (NH) residual dipolar couplings (RDC) in {U-[(15)N,(2)H]; Ileδ1-[(13)CH(3)]; Leu,Val-[(13)CH(3)/(12)CD(3)]}-labeled samples of large proteins is described. Significant variation in the alignment tensor of the 82-kDa enzyme Malate synthase G is observed as a function of only slight changes in experimental conditions. The SIM-(13)C(m)-(1)H(m)/(1)H-(15)N data sets provide convenient means of establishing the alignment tensor characteristics via the measurement of (1) D (NH) RDCs in the same protein sample.  相似文献   

7.
A simple modification of the TROSY pulse transfer scheme, suggested by Yang and Kay [J. Biomol. NMR 13 (1999) 3–10], is proposed which results in the suppression of unwanted anti-TROSY lines without any extra loss in sensitivity. The higher sensitivity of this TROSY transfer scheme therefore becomes available for 2D [15N, 1H] TROSY correlation and 3D/4D 15N separated NOESY type experiments where complete suppression of the broad anti-TROSY lines is essential.  相似文献   

8.
Nearly complete assignment of the aliphatic 1H and 13C resonances of the IIAglc domain of Bacillus subtilis has been achieved using a combination of double- and triple-resonance three-dimensional (3D) NMR experiments. A constant-time 3D triple-resonance HCA(CO)N experiment, which correlates the 1H alpha and 13C alpha chemical shifts of one residue with the amide 15N chemical shift of the following residue, was used to obtain sequence-specific assignments of the 13C alpha resonances. The 1H alpha and amide 15N chemical shifts had been sequentially assigned previously using principally 3D 1H-15N NOESY-HMQC and TOCSY-HMQC experiments [Fairbrother, W. J., Cavanagh, J., Dyson, H. J., Palmer, A. G., III, Sutrina, S. L., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1991) Biochemistry 30, 6896-6907]. The side-chain spin systems were identified using 3D HCCH-COSY and HCCH-TOCSY spectra and were assigned sequentially on the basis of their 1H alpha and 13C alpha chemical shifts. The 3D HCCH and HCA(CO)N experiments rely on large heteronuclear one-bond J couplings for coherence transfers and therefore offer a considerable advantage over conventional 1H-1H correlation experiments that rely on 1H-1H 3J couplings, which, for proteins the size of IIAglc (17.4 kDa), may be significantly smaller than the 1H line widths. The assignments reported herein are essential for the determination of the high-resolution solution structure of the IIAglc domain of B. subtilis using 3D and 4D heteronuclear edited NOESY experiments; these assignments have been used to analyze 3D 1H-15N NOESY-HMQC and 1H-13C NOESY-HSQC spectra and calculate a low-resolution structure [Fairbrother, W. J., Gippert, G. P., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1992) FEBS Lett. 296, 148-152].  相似文献   

9.
Relaxation in methyl groups is strongly influenced by cross-correlated interactions involving the methyl dipoles. One of the major interference effects results from intra-methyl (1)H-(13)C, (1)H-(1)H dipolar interactions, leading to significant differences in the relaxation of certain multiplet components that contribute to double- and zero-quantum (1)H-(13)C spectra. NMR experiments are presented for the measurement of this differential relaxation effect. It is shown that this difference in relaxation between double- and zero-quantum multiplet components can be used as a sensitive reporter of side chain dynamics and that accurate methyl axis order parameters can be measured in proteins that tumble with correlation times greater than approximately 5 ns.  相似文献   

10.
B H Oh  E S Mooberry  J L Markley 《Biochemistry》1990,29(16):4004-4011
Multinuclear two-dimensional NMR techniques were used to assign nearly all diamagnetic 13C and 15N resonances of the plant-type 2Fe.2S* ferredoxin from Anabaena sp. strain PCC 7120. Since a 13C spin system directed strategy had been used to identify the 1H spin systems [Oh, B.-H., Westler, W. M., & Markley, J. L. (1989) J. Am. Chem. Soc. 111, 3083-3085], the sequence-specific 1H assignments [Oh, B.-H., & Markley, J. L. (1990) Biochemistry (first paper of three in this issue)] also provided sequence-specific 13C assignments. Several resonances from 1H-13C groups were assigned independently of the 1H assignments by considering the distances between these nuclei and the paramagnetic 2Fe.2S* center. A 13C-15N correlation data set was used to assign additional carbonyl carbons and to analyze overlapping regions of the 13C-13C correlation spectrum. Sequence-specific assignments of backbone and side-chain nitrogens were based on 1H-15N and 13C-15N correlations obtained from various two-dimensional NMR experiments.  相似文献   

11.
T A Holak  J H Prestegard 《Biochemistry》1986,25(19):5766-5774
Sequence-specific assignments of 1H NMR resonances were obtained for the backbone protons in acyl carrier protein (ACP) from Escherichia coli, a protein of 77 residues. The observations, in the NOESY spectra, of 1H-1H sequential and medium-range connectivities indicate the presence of three or four alpha-helical segments joined by short sequences of mixed conformations. The observations are used to refine a secondary structure model previously proposed on the basis of a Chou-Fasman algorithm [Rock, C. O., & Cronan, J. E., Jr. (1979) J. Biol. Chem. 254, 9778-9785].  相似文献   

12.
Three new iridoid glucosides, 10-O-[(E)-cinnamoyl]-geniposidic acid, 10-O-[(E)-p-coumaroyl]-geniposidic acid, 10-O-[(E)-caffeoyl]-geniposidic acid and the known iridoid glucoside, 2'-O-[(E)-cinnamoyl]-mussaenosidic acid have been isolated from Avicennia marina. The structures were determined primarily by NMR spectroscopy. The assignment of NMR signals was performed by means of 1H-1H COSY, HMQC and HMBC experiments.  相似文献   

13.
Summary Monodeuterated methylene positions exhibit substantially superior spectral characteristics in 1H–13C correlation experiments as compared to diprotio signals. A combination of 2H decoupling and multiplet editing of HMQC and HSQC experiments provides resolution enhancement for both stereoselective and random fractionally deuterated samples. For HMQC experiments with [2-2Hr, 2-13C]glycine-labeled E. coli thioredoxin (11.7 kDa), 3-fold increases in both 1H and 13C resolution result in a complementary 9-fold enhancement in sensitivity. Owing to a smaller improvement in 13C resolution, the corresponding enhancements for the HSQC experiment are 2-fold less.  相似文献   

14.
Protein conformational changes play crucial roles in enabling function. The Carr–Purcell–Meiboom–Gill (CPMG) experiment forms the basis for studying such dynamics when they involve the interconversion between highly populated and sparsely formed states, the latter having lifetimes ranging from ~?0.5 to ~?5 ms. Among the suite of experiments that have been developed are those that exploit methyl group probes by recording methyl 1H single quantum (Tugarinov and Kay in J Am Chem Soc 129:9514–9521, 2007) and triple quantum (Yuwen et al. in Angew Chem Int Ed Engl 55:11490–11494, 2016) relaxation dispersion profiles. Here we build upon these by developing a third experiment in which methyl 1H double quantum coherences evolve during a CPMG relaxation element. By fitting single, double, and triple quantum datasets, akin to recording the single quantum dataset at static magnetic fields of Bo, 2Bo and 3Bo, we show that accurate exchange values can be obtained even in cases where exchange rates exceed 10,000 s?1. The utility of the double quantum experiment is demonstrated with a pair of cavity mutants of T4 lysozyme (T4L) with ground and excited states interchanged and with exchange rates differing by fourfold (~?900 s?1 and ~?3600 s?1), as well as with a fast-folding domain where the unfolded state lifetime is ~?80 µs.  相似文献   

15.
A comparison of three labeling strategies for studies involving side chain methyl groups in high molecular weight proteins, using 13CH3,13CH2D, and 13CHD2 methyl isotopomers, is presented. For each labeling scheme, 1H–13C pulse sequences that give optimal resolution and sensitivity are identified. Three highly deuterated samples of a 723 residue enzyme, malate synthase G, with 13CH3,13CH2D, and 13CHD2 labeling in Ile δ1 positions, are used to test the pulse sequences experimentally, and a rationalization of each sequence’s performance based on a product operator formalism that focuses on individual transitions is presented. The HMQC pulse sequence has previously been identified as a transverse relaxation optimized experiment for 13CH3-labeled methyl groups attached to macromolecules, and a zero-quantum correlation pulse scheme (13CH3 HZQC) has been developed to further improve resolution in the indirectly detected dimension. We present a modified version of the 13CH3 HZQC sequence that provides improved sensitivity by using the steady-state magnetization of both 13C and 1H spins. The HSQC and HMQC spectra of 13CH2D-labeled methyl groups in malate synthase G are very poorly resolved, but we present a new pulse sequence, 13CH2D TROSY, that exploits cross-correlation effects to record 1H–13C correlation maps with dramatically reduced linewidths in both dimensions. Well-resolved spectra of 13CHD2-labeled methyl groups can be recorded with HSQC or HMQC; a new 13CHD2 HZQC sequence is described that provides improved resolution with no loss in sensitivity in the applications considered here. When spectra recorded on samples prepared with the three isotopomers are compared, it is clear that the 13CH3 labeling strategy is the most beneficial from the perspective of sensitivity (gains ≥2.4 relative to either 13CH2D or 13CHD2 labeling), although excellent resolution can be obtained with any of the isotopomers using the pulse sequences presented here.  相似文献   

16.
Using (13)C-NMR, we demonstrate that [(13)C]methanol readily entered sycamore (Acer pseudoplatanus L.) cells to be slowly metabolized to [3-(13)C]serine, [(13)CH(3)]methionine, and [(13)CH(3)]phosphatidylcholine. We conclude that the assimilation of [(13)C]methanol occurs through the formation of (13)CH(3)H(4)Pte-glutamate (Glu)(n) and S-adenosyl-methionine, because feeding plant cells with [3-(13)CH(3)]serine, the direct precursor of (13)CH(2)H(4)Pte-Glu(n), can perfectly mimic [(13)CH(3)]methanol for folate-mediated single-carbon metabolism. On the other hand, the metabolism of [(13)C]methanol in plant cells revealed assimilation of label into a new cellular product that was identified as [(13)CH(3)]methyl-beta-D-glucopyranoside. The de novo synthesis of methyl-beta-D-glucopyranoside induced by methanol did not require the formation of (13)CH(3)H(4)Pte-Glu(n) and was very likely catalyzed by a "transglycosylation" process.  相似文献   

17.
Proton (1H) NMR at 360 MHz has been used to characterize calcium-induced spectral changes in bovine cardiac troponin C in more detail than hitherto reported (Hincke, M. T., Sykes, B. D., and Kay, C. M. (1981) Biochemistry 20, 3286-3294). The observed changes are consistent with two equivalents of calcium occupying high affinity sites, with subsequent binding of a single equivalent to a lower affinity site. Two-dimensional J-correlated and nuclear Overhauser effect NOE-correlated and conventional one-dimensional NOE experiments, combined with a consideration of the titration behavior, have allowed all the aromatic signals, and several prominently shifted alpha-CH and methyl group signals, as well as some methionine methyl signals of the calcium-saturated protein, to be assigned. This exercise was facilitated by the construction of a model of the calcium-bound protein based on crystal structure data of the homologous calmodulin and skeletal troponin C, using mutations, energy minimizations, and molecular dynamics simulations, combined with the ring-current shift and NOE prediction program PARSNIP (Reid, D. G., and Saunders, M. R. (1989) J. Biol. Chem. 264, 2003-2012).  相似文献   

18.
An activity-guided separation for inhibitors of rat platelet 12-lipoxygenase led to the isolation of two compounds, 4-O-feruloyl-5-O-caffeoylquinic acid (IC50; 5.5 microM) and methyl 4-O-feruloyl-5-O-caffeoylquinate (IC50; 1.9 microM) from the peel of Ponkan fruit (Citrus reticulata). The complete structure of each phenolic ester was determined by NMR spectroscopy [1H and 13C NMR spectra, 1H-1H correlation spectroscopy (COSY), 1H-detected heteronuclear multiple quantum coherence (HMQC), and heteronuclear multiple bond connectivity (HMBC) spectroscopies] and other spectral methods.  相似文献   

19.
Wilkens S  Borchardt D  Weber J  Senior AE 《Biochemistry》2005,44(35):11786-11794
A critical point of interaction between F(1) and F(0) in the bacterial F(1)F(0)-ATP synthase is formed by the alpha and delta subunits. Previous work has shown that the N-terminal domain (residues 3-105) of the delta subunit forms a 6 alpha-helix bundle [Wilkens, S., Dunn, S. D., Chandler, J., Dahlquist, F. W., and Capaldi, R. A. (1997) Nat. Struct. Biol. 4, 198-201] and that the majority of the binding energy between delta and F(1) is provided by the interaction between the N-terminal 22 residues of the alpha- and N-terminal domain of the delta subunit [Weber, J., Muharemagic, A., Wilke-Mounts, S., and Senior, A. E. (2003) J. Biol. Chem. 278, 13623-13626]. We have now analyzed a 1:1 complex of the delta-subunit N-terminal domain and a peptide comprising the N-terminal 22 residues of the alpha subunit by heteronuclear protein NMR spectroscopy. A comparison of the chemical-shift values of delta-subunit residues with and without alpha N-terminal peptide bound indicates that the binding interface on the N-terminal domain of the delta subunit is formed by alpha helices I and V. NOE cross-peak patterns in 2D (12)C/(12)C-filtered NOESY spectra of the (13)C-labeled delta-subunit N-terminal domain in complex with unlabeled peptide verify that residues 8-18 in the alpha-subunit N-terminal peptide are folded as an alpha helix when bound to delta N-terminal domain. On the basis of intermolecular contacts observed in (12)C/(13)C-filtered NOESY experiments, we describe structural details of the interaction of the delta-subunit N-terminal domain with the alpha-subunit N-terminal alpha helix.  相似文献   

20.
Rhodopsin is the G-protein coupled photoreceptor that initiates the rod phototransduction cascade in the vertebrate retina. Using specific isotope enrichment and magic angle spinning (MAS) NMR, we examine the spatial structure of the C10-C11=C12-C13-C20 motif in the native retinylidene chromophore, its 10-methyl analogue, and the predischarge photoproduct metarhodopsin-I. For the rhodopsin study 11-Z-[10,20-(13)C(2)]- and 11-Z-[11,20-(13)C(2)]-retinal were synthesized and incorporated into bovine opsin while maintaining a natural lipid environment. The ligand is covalently bound to Lys(296) in the photoreceptor. The C10-C20 and C11-C20 distances were measured using a novel 1-D CP/MAS NMR rotational resonance experimental procedure that was specifically developed for the purpose of these measurements [Verdegem, P. J. E., Helmle, M., Lugtenburg, J., and de Groot, H. J. M. (1997) J. Am. Chem. Soc. 119, 169]. We obtain r(10,20) = 0.304 +/- 0.015 nm and r(11,20) = 0.293 +/- 0.015 nm, which confirms that the retinylidene is 11-Z and shows that the C10-C13 unit is conformationally twisted. The corresponding torsional angle is about 44 degrees as indicated by Car-Parrinello modeling studies. To increase the nonplanarity in the chromophore, 11-Z-[10,20-(13)C(2)]-10-methylretinal and 11-Z-[(10-CH(3)), 13-(13)C(2)]-10-methylretinal were prepared and incorporated in opsin. For the resulting analogue pigment r(10,20) = 0.347 +/- 0.015 nm and r((10)(-)(CH)()3())(,)(13) = 0.314 +/- 0.015 nm were obtained, consistent with a more distorted chromophore. The analogue data are in agreement with the induced fit principle for the interaction of opsin with modified retinal chromophores. Finally, we determined the intraligand distances r(10,20) and r(11,20) also for the photoproduct metarhodopsin-I, which has a relaxed all-E structure. The results (r(10,20) >/= 0.435 nm and r(11,20) = 0.283 +/- 0.015 nm) fully agree with such a relaxed all-E structure, which further validates the 1-D rotational resonance technique for measuring intraligand distances and probing ligand structure. As far as we are aware, these results represent the first highly precise distance determinations in a ligand at the active site of a membrane protein. Overall, the MAS NMR data indicate a tight binding pocket, well defined to bind specifically only one enantiomer out of four possibilities and providing a steric complement to the chromophore in an ultrafast ( approximately 200 fs) isomerization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号