首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The effects of feeding the peroxisome proliferators ciprofibrate (a hypolipidaemic analogue of clofibrate) or POCA (2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate) (an inhibitor of CPT I) to rats for 5 days on the distribution of carnitine and acylcarnitine esters between liver, plasma and muscle and on hepatic CoA concentrations (free and acylated) and activities of carnitine acetyltransferase and acyl-CoA hydrolases were determined. Ciprofibrate and POCA increased hepatic [total CoA] by 2 and 2.5 times respectively, and [total carnitine] by 4.4 and 1.9 times respectively, but decreased plasma [carnitine] by 36-46%. POCA had no effect on either urinary excretion of acylcarnitine esters or [acylcarnitine] in skeletal muscle. By contrast, ciprofibrate decreased [acylcarnitine] and [total carnitine] in muscle. In liver, ciprofibrate increased the [carnitine]/[CoA] ratio and caused a larger increase in [acylcarnitine] (7-fold) than in [carnitine] (4-fold), thereby increasing the [short-chain acylcarnitine]/[carnitine] ratio. POCA did not affect the [carnitine]/[CoA] and the [short-chain acylcarnitine]/[carnitine] ratios, but it decreased the [long-chain acylcarnitine]/[carnitine] ratio. Ciprofibrate and POCA increased the activities of acyl-CoA hydrolases, and carnitine acetyltransferase activity was increased 28-fold and 6-fold by ciprofibrate and POCA respectively. In cultures of hepatocytes, ciprofibrate caused similar changes in enzyme activity to those observed in vivo, although [carnitine] decreased with time. The results suggest that: (1) the reactions catalysed by the short-chain carnitine acyltransferases, but not by the carnitine palmitoyltransferases, are near equilibrium in liver both before and after modification of metabolism by administration of ciprofibrate or POCA; (2) the increase in hepatic [carnitine] after ciprofibrate or POCA feeding can be explained by redistribution of carnitine between tissues; (3) the activity of carnitine acetyltransferase and [total carnitine] in liver are closely related.  相似文献   

2.
The administration in vivo of the cobalamin analogue hydroxycobalamin[c-lactam] inhibits hepatic L-methylmalonyl-CoA mutase activity. The current studies characterize in vivo and in vitro the hydroxycobalamin[c-lactam]-treated rat as a model of disordered propionate and methylmalonic acid metabolism. Treatment of rats with hydroxycobalamin[c-lactam] (2 micrograms/h by osmotic minipump) increased urinary methylmalonic acid excretion from 0.55 mumol/day to 390 mumol/day after 2 weeks. Hydroxycobalamin[c-lactam] treatment was associated with increased urinary propionylcarnitine excretion and increased short-chain acylcarnitine concentrations in plasma and liver. Hepatocytes isolated from cobalamin-analogue-treated rats metabolized propionate (1.0 mM) to CO2 and glucose at rates which were only 18% and 1% respectively of those observed in hepatocytes from control (saline-treated) rats. In contrast, rates of pyruvate and palmitate oxidation were higher than control in hepatocytes from the hydroxycobalamin[c-lactam]-treated rats. In hepatocytes from hydroxycobalamin[c-lactam]-treated rats, propionylcarnitine was the dominant product generated from propionate when carnitine (10 mM) was present. The addition of carnitine thus resulted in a 4-fold increase in total propionate utilization under these conditions. Hepatocytes from hydroxycobalamin[c-lactam]-treated rats were more sensitive than control hepatocytes to inhibition of palmitate oxidation by propionate. This inhibition of palmitate oxidation was partially reversed by addition of carnitine. Thus hydroxycobalamin[c-lactam] treatment in vivo rapidly causes a severe defect in propionate metabolism. The consequences of this metabolic defect in vivo and in vitro are those predicted on the basis of propionyl-CoA and methylmalonyl-CoA accumulation. The cobalamin-analogue-treated rat provides a useful model for studying metabolism under conditions of a metabolic defect causing acyl-CoA accretion.  相似文献   

3.
Carnitine has a potential effect on exercise capacity due to its role in the transport of long-chain fatty acids into the mitochondria for beta-oxidation, the export of acyl-coenzyme A compounds from mitochondria and the activation of branched-chain amino acid oxidation in the muscle. We studied the effect of carnitine supplementation on palmitate oxidation, maximal exercise capacity and nitrogen balance in rats. Daily carnitine supplementation (500 mg.kg-1 body mass for 6 weeks) was given to 30 rats, 15 of which were on an otherwise carnitine-free diet (group I) and 15 pair-fed with a conventional pellet diet (group II). A control group (group III, n = 6) was fed ad libitum the pellet diet. Palmitate oxidation was measured by collecting 14CO2 after an intraperitoneal injection of [1-14C]palmitate and exercise capacity by swimming to exhaustion. After carnitine supplementation carnitine concentrations in serum were supranormal [group I, total 150.8 (SD 48.5), free 78.9 (SD 18.4); group II, total 170.9 (SD 27.9), free 115.8 (SD 24.6) mumol.l-1] and liver carnitine concentrations were normal in both groups [group I, total 1.6 (SD 0.3), free 1.2 (SD 0.2); group II, total 1.3 (SD 0.3), free 0.9 (SD 0.2) mumol.g-1 dry mass]. In muscle carnitine concentrations were normal in group I [total 3.8 (SD 1.2), free 3.2 (SD 1.0) mumol.g-1 dry mass] and increased in group II [total 6.6 (SD 0.5), free 4.9 (SD 0.9) mumol.g-1 dry mass].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
L-Carnitine transport and free fatty acid oxidation have been studied in hearts of rats with 3-month-old aorto-caval fistula. For carnitine transport experiments, the hearts were perfused via the ascending aorta with a bicarbonate buffer containing 11 mM glucose and variable concentrations L-[14C]carnitine (10-200 microM). In some experiments, the active component of carnitine transport was suppressed by the adjunction of 0.05 mM mersalyl acid. The subtraction of passive from total transport allowed reconstruction of the saturation curves of the carrier-mediated transport of L-carnitine. Our data suggest that at a physiological carnitine concentration (50 microM), the rate of [14C]carnitine accumulation was significantly depressed in mechanically overloaded hearts. In addition, according to Lineweaver-Burk analysis, the affinity of the membrane carrier for L-carnitine was considerably diminished (Km carnitine 125 instead of 83 microM, Vmax unchanged). The above alterations of L-carnitine transport did not result from a decrease of the transmembrane gradient of sodium, since the intracellular Na+ content of the hypertrophied hearts was quite similar to that of control hearts. The ability of atrially perfused, working hearts to oxidize the exogenous free fatty acids was assessed from 14CO2 production obtained in the presence of [U-14C]palmitate or [1-14C]octanoate. The total 14CO2 production, expressed per min per g dry weight, was significantly diminished in hearts from rats with the aorto-caval fistula if 1.2 mM palmitate was used. On the other hand, in the presence of 2.4 mM octanoate, a substrate which circumvents the carnitine-acylcarnitine translocase, no such reduction of the 14CO2 production could be detected. Our results suggest that the decrease of L-carnitine transport, resulting in a significant depression of tissue carnitine, may impair long-chain fatty acid activation and/or translocation into mitochondria. In contrast, the oxidation of short-chain fatty acids, the activation of which takes place directly in mitochondrial matrix, is not limited in volume-overloaded hearts.  相似文献   

5.
When the carnitine pool of fed rats was labelled with tritium, in non-recirculating perfusate of their liver 44% of acid-soluble 3H activity was identified as free carnitine and 47% as short-chain acylcarnitine. Of the latter component acetylcarnitine accounted for 30% and propionylcarnitine for 10% of total acid-soluble. In plasma the contribution of short-chain acylcarnitines to total carnitine in fed, fasted and diabetic rats was 15.6%, 43.1% and 48.0%, respectively. Recirculating perfusion of livers from the same animals revealed that livers from fed rats released short-chain acylcarnitines as much as 56.2% of total and this proportion did not increase further in the other two groups. At the same time, ketone bodies in the perfusate increased gradually in the fed, fasted and diabetic group, paralleling the plasma ketone levels. Although liver supplies the organism with carnitine the increment of plasma short-chain acylcarnitines seen in ketosis is not a result of some extra output by the liver.  相似文献   

6.
The carnitine–acylcarnitine translocase (CACT) is one of the components of the carnitine cycle. The carnitine cycle is necessary to shuttle long-chain fatty acids from the cytosol into the intramitochondrial space where mitochondrial β-oxidation of fatty acids takes place. The oxidation of fatty acids yields acetyl-coenzyme A (CoA) units, which may either be degraded to CO2 and H2O in the citric acid cycle to produce ATP or converted into ketone bodies which occurs in liver and kidneys.

Metabolic consequences of a defective CACT are hypoketotic hypoglycaemia under fasting conditions, hyperammonemia, elevated creatine kinase and transaminases, dicarboxylic aciduria, very low free carnitine and an abnormal acylcarnitine profile with marked elevation of the long-chain acylcarnitines.

Clinical signs and symptoms in CACT deficient patients, are a combination of energy depletion and endogenous toxicity. The predominantly affected organs are brain, heart and skeletal muscle, and liver, leading to neurological abnormalities, cardiomyopathy and arrythmias, skeletal muscle damage and liver dysfunction. Most patients become symptomatic in the neonatal period with a rapidly progressive deterioration and a high mortality rate. However, presentations at a later age with a milder phenotype have also been reported.

The therapeutic approach is the same as in other long-chain fatty acid disorders and includes intravenous glucose (± insulin) administration to maximally inhibit lipolysis and subsequent fatty acid oxidation during the acute deterioration, along with other measures such as ammonia detoxification, depending on the clinical features. Long-term strategy consists of avoidance of fasting with frequent meals and a special diet with restriction of long-chain fatty acids. Due to the extremely low free carnitine concentrations, carnitine supplementation is often needed.

Acylcarnitine profiling in plasma is the assay of choice for the diagnosis at a metabolite level. However, since the acylcarnitine profile observed in CACT-deficient patients is identical to that in CPT2-deficient patients, definitive identification of CACT-deficiency in a certain patient requires determination of the activity of CACT. Subsequently, mutational analysis of the CACT gene can be performed. So far, 9 different mutations have been identified in the CACT gene.  相似文献   


7.
The steady state levels of mitochondrial acyl-CoAs produced during the oxidation of pyruvate, alpha-ketoisovalerate, alpha-ketoisocaproate, and octanoate during state 3 and state 4 respiration by rat heart and liver mitochondria were determined. Addition of carnitine lowered the amounts of individual short-chain acyl-CoAs and increased CoASH in a manner that was both tissue- and substrate-dependent. The largest effects were on acetyl-CoA derived from pyruvate in heart mitochondria using either state 3 or state 4 oxidative conditions. Carnitine greatly reduced the amounts of propionyl-CoA derived from alpha-ketoisovalerate, while smaller effects were obtained on the branched-chain acyl-CoA levels, consistent with the latter acyl moieties being poorer substrates for carnitine acetyltransferase and also poorer substrates for the carnitine/acylcarnitine translocase. The levels of acetyl-CoA in heart and liver mitochondria oxidizing octanoate during state 3 respiration were lower than those obtained with pyruvate. The rate of acetylcarnitine efflux from heart mitochondria during state 3 (with pyruvate or octanoate as substrate, in the presence or absence of malate with 0.2 mM carnitine) shows a linear response to the acetyl-CoA/CoASH ratio generated in the absence of carnitine. This relationship is different for liver mitochondria. These data demonstrate that carnitine can modulate the aliphatic short-chain acyl-CoA/CoA ratio in heart and liver mitochondria and indicate that the degree of modulation varies with the aliphatic acyl moiety.  相似文献   

8.
Isolated liver cells prepared from starved sheep converted palmitate into ketone bodies at twice the rate seen with cells from fed animals. Carnitine stimulated palmitate oxidation only in liver cells from fed sheep, and completely abolished the difference between fed and starved animals in palmitate oxidation. The rates of palmitate oxidation to CO2 and of octanoate oxidation to ketone bodies and CO2 were not affected by starvation or carnitine. Neither starvation nor carnitine altered the ratio of 3-hydroxybutyrate to acetoacetate or the rate of esterification of [1-14C]palmitate. Propionate, lactate, pyruvate and fructose inhibited ketogenesis from palmitate in cells from fed sheep. Starvation or the addition of carnitine decreased the antiketogenic effectiveness of gluconeogenic precursors. Propionate was the most potent inhibitor of ketogenesis, 0.8 mM producing 50% inhibition. Propionate, lactate, fructose and glycerol increased palmitate esterification under all conditions examined. Lactate, pyruvate and fructose stimulated oxidation of palmitate and octanoate to CO2. Starvation and the addition of gluconeogenic precursors stimulated apparent palmitate utilization by cells. Propionate, lactate and pyruvate decreased cellular long-chain acylcarnitine concentrations. Propionate decreased cell contents of CoA and acyl-CoA. It is suggested that propionate may control hepatic ketogenesis by acting at some point in the beta-oxidation sequence. The results are discussed in relation to the differences in the regulation of hepatic fatty acid metabolism between sheep and rats.  相似文献   

9.
Interorgan cooperativity in carnitine metabolism in the trained state   总被引:1,自引:0,他引:1  
This study was designed to evaluate the effects of chronic exercise training on carnitine acetyl- and palmitoyltransferase activity and the distribution of carnitine forms and concentrations in various organs and tissues of female rats. Sprague-Dawley rats were swim trained 6 days/wk and progressed to 75-min swims twice daily (with 3% of their total body weight attached to the medial portion of the tail) at the end of 5 wk of training. Sedentary (S, n = 12) and trained (T, n = 13) animals were killed by decapitation, and the livers, kidneys, hearts, and several skeletal muscle types were removed and immediately frozen in liquid N2 and/or extracted for enzyme activity assays. Blood was collected and plasma was stored frozen. Samples were assayed for free, acid-soluble, and acid-insoluble carnitine. Free carnitine increased significantly (P less than 0.03) in T hearts. Free carnitine remained unchanged in liver, but short-chain acylcarnitines increased significantly (P less than 0.001). There was a significant (P less than 0.001) reduction in long-chain acylcarnitines in kidney in the trained rats, and plasma short-chain acylcarnitine levels also decreased (P less than 0.001). Several significant changes in carnitine distribution also occurred in the superficial and deep portions of the vastus lateralis and in the mixed gastrocnemius muscles. There was a significant reduction in carnitine acetyltransferase activity with training in both the soleus (P less than 0.02) and superficial gastrocnemius (P less than 0.002) muscles. The deep portion of the gastrocnemius muscle contained significantly higher activity than either the superficial portion or the soleus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The concentrations of malonyl-CoA, citrate, ketone bodies and long-chain acylcarnitine were measured in freeze-clamped liver samples from fed or starved normal, partially hepatectomized or sham-operated rats. These parameters were used in conjunction with measurements of the concentration of plasma non-esterified fatty acids and the rates of hepatic lipogenesis to obtain correlations between rates of fatty acid delivery to the liver, lipogenesis and fatty acid oxidation to ketone bodies and CO2. These correlations indicated that the development of fatty liver after partial hepatectomy is due to an increased partitioning of long-chain acyl-CoA towards acylglycerol synthesis and away from acylcarnitine formation. However, this did not appear to be due to an altered relationship between hepatic malonyl-CoA concentration and acylcarnitine formation. For any concentration of long-chain acylcarnitine, the concentrations of both hepatic and blood ketone bodies were significantly lower in partially hepatectomized rats than in normal or sham-operated animals. This indicated that a lower proportion of the product of beta-oxidation was used for ketone-body formation and more for citrate synthesis in the regenerating liver, especially during the first 24 h after resection. This inference was supported by the changes in hepatic citrate concentrations observed. The high rates of lipogenesis that occurred in the liver remnant were accompanied by an altered relationship between lipogenic rate and hepatic malonyl-CoA concentration, such that much lower concentrations of malonyl-CoA were associated with any given rate of lipogenesis. These adaptations are discussed in relation to the requirements by the remnant for high rates of energy formation through the tricarboxylic acid cycle during the first 24 h after resection, and the possibility that cycling between fatty acid oxidation and synthesis may occur to a greater degree in regenerating liver.  相似文献   

11.
The method used here to assess the contribution of liver to plasma acylcarnitine is based on the idea that in rat, shortly after administration of [3H]butyrobetaine the [3H]carnitine appearing in the plasma derives from the liver and so does the acyl moiety of [acyl-3H] carnitine. In the perchloric acid extracts of plasma and liver, the ester fraction of total carnitine was determined by enzymatic analysis and that of [3H]carnitines was determined by high performance liquid chromatography. The ester fraction of total carnitine in the plasma of fed rats was 32.6% while that of [3H]carnitines was 67.9%, 1 h following injection of [3H]butyrobetaine. For 48 h starved rats the equivalent values were 54.2 and 84.0%, respectively. 24 h after the administration of [3H]butyrobetaine, the ester content became the same in the total and [3H]carnitines. That the newly synthesized carnitine was more acylated (67.9 versus 32.6%, fed) indicates that liver exports acyl groups with carnitine as carrier. The observation that the ester fraction in the newly synthesized plasma carnitine increased with fasting (84.0 versus 67.9%) indicates that the surplus plasma acylcarnitine in fasting ketosis derives from the liver. Perfused livers, however, released carnitine with the same ester content (60-61%) whether they were from fed or fasted animals. Probably, the increased plasma [acylcarnitine] in fasting develops not by an increased ester output from the liver but by an altered handling in extrahepatic tissues.  相似文献   

12.
The work defined the relationship between [long-chain acylcarnitine] and PDHa activities in hearts, kidneys and livers of rats sampled after cervical dislocation or pentobarbital anaesthesia. Although tissue [long-chain acylcarnitine] correlated with fatty acid availability or its mitochondrial oxidation in anaesthetized rats, this was not the case for hearts or kidneys of rats sampled after cervical dislocation. Cardiac [long-chain acylcarnitine] and PDHa activities were higher in rats killed by cervical dislocation. Metabolite changes within the hearts were consistent with tissue hypoxia and the effects of cervical dislocation were mimicked in hearts of pentobarbital-anaesthetized rats by 20s ischaemia. Renal and hepatic PDHa activities were unaffected by this short period of ischaemia. The susceptibility of cardiac PDHa to hypoxia or ischaemia may explain the variability in activities often observed within or between laboratories.  相似文献   

13.
1. CoA, acetyl-CoA, long-chain acyl-CoA, carnitine, acetylcarnitine and long-chain acylcarnitine were measured in rat liver under various conditions. 2. Starvation caused an increase in the contents of these intermediates, except that of carnitine. 3. A single dose of ethanol had no effect on CoA content, whereas those of acetyl-CoA, acetylcarnitine and carnitine were increased and those of long-chain acyl-CoA and acylcarnitine were decreased. 4. Four weeks' adaptation to ethanol consumption did not change the effect of ethanol administration on these metabolites. 5. It is suggested that ethanol directly increases hepatic fatty acid synthesis and esterification. It is also suggested that this change is reversible and limited to the period of ethanol oxidation. 6. It is demonstrated that ethanol-induced triglyceride accumulation is not related to carnitine deficiency.  相似文献   

14.
Carnitine and derivatives in rat tissues   总被引:22,自引:22,他引:0       下载免费PDF全文
1. Free carnitine, acetylcarnitine, short-chain acylcarnitine and acid-insoluble carnitine (probably long-chain acylcarnitine) have been measured in rat tissues. 2. Starvation caused an increase in the proportion of carnitine that was acetylated in liver and kidney; at least in liver fat-feeding had the same effect, whereas a carbohydrate diet caused a very low acetylcarnitine content. 3. In heart, on the other hand, starvation did not cause an increase in the acetylcarnitine/carnitine ratio, whereas fat-feeding caused a decrease. The acetylcarnitine content of heart was diminished by alloxan-diabetes or a fatty diet, but not by re-feeding with carbohydrate. 4. Under conditions of increased fatty acid supply the acid-insoluble carnitine content was increased in heart, liver and kidney. 5. The acylation state of carnitine was capable of very rapid change. Concentrations of carnitine derivatives varied with different methods of obtaining tissue samples, and very little acid-insoluble carnitine was found in tissues of rats anaesthetized with Nembutal. In liver the acetylcarnitine (and acetyl-CoA) content decreased if freezing of tissue samples was delayed; in heart this caused an increase in acetylcarnitine. 6. Incubation of diaphragms with acetate or dl-β-hydroxybutyrate caused the acetylcarnitine content to become elevated. 7. Perfusion of hearts with fatty acids containing an even number of carbon atoms, dl-β-hydroxybutyrate or pyruvate resulted in increased contents of acetylcarnitine and acetyl-CoA. Accumulation of these acetyl compounds was prevented by the additional presence of propionate or pentanoate in the perfusion medium; this prevention was not due to extensive propionylation of CoA or carnitine. 8. Perfusion of hearts with palmitate caused a severalfold increase in the content of acid-insoluble carnitine; this increase did not occur when propionate was also present. 9. Comparison of the acetylation states of carnitine and CoA in perfused hearts suggests that the carnitine acetyltransferase reactants may remain near equilibrium despite wide variations in their steady-state concentrations. This is not the case with the citrate synthase reaction. It is suggested that the carnitine acetyltransferase system buffers the tissue content of acetyl-CoA against rapid changes.  相似文献   

15.
Adult rat heart mitochondria were isolated and incubated with [U-14C]hexadecanoyl-CoA or unlabelled hexadecanoyl-CoA. The accumulating CoA and carnitine esters and [NAD+]/[NADH] ratio were measured by HPLC or tandem mass spectrometry. Despite minimal changes in the intramitochondrial [NAD+]/[NADH] ratio, 2, 3-unsaturated and 3-hydroxyacyl esters were observed as well as saturated acyl-CoA and acylcarnitine esters. In addition to acetylcarnitine, significant amounts of butyryl-, hexanoyl-, octanoyl- and decanoylcarnitines were detected and measured. Rat myocardial beta-oxidation is subject to control at the level of 3-hydroxyacyl-CoA dehydrogenase but this control is not due to a simple lack of oxidised NAD. We hypothesise a pool of NAD in contact between the trifunctional protein of beta-oxidation and complex I of the respiratory chain, the turnover of which is responsible for some of the control of beta-oxidation flux. In addition, short- and medium-chain acylcarnitine esters were detected whereas only small amounts of long-chain acylcarnitines were present. This may imply the presence of a mitochondrial carnitine octanoyl transferase or may reflect channelling of long-chain CoA esters so that they are not available for carnitine palmitoyl transferase II activity.  相似文献   

16.
The efflux of individual short-chain and medium-chain acylcarnitines from rat liver, heart, and brain mitochondria metabolizing several substrates has been measured. The acylcarnitine efflux profiles depend on the substrate, the source of mitochondria, and the incubation conditions. The largest amount of any acylcarnitine effluxing per mg of protein was acetylcarnitine produced by heart mitochondria from pyruvate. This efflux of acetylcarnitine from heart mitochondria is almost 5 times greater with 1 mM than 0.2 mM carnitine. Apparently the acetyl-CoA generated from pyruvate by pyruvate dehydrogenase is very accessible to carnitine acetyltransferase. Very little acetylcarnitine effluxes from heart mitochondria when octanoate is the substrate except in the presence of malonate. Acetylcarnitine production from some substrates peaks and then declines, indicating uptake and utilization. The unequivocal demonstration that considerable amounts of propionylcarnitine or isobutyrylcarnitine efflux from heart mitochondria metabolizing alpha-ketoisovalerate and alpha-keto-beta-methylvalerate provides evidence for a role (via removal of non-metabolizable propionyl-CoA or slowly metabolizable acyl-CoAs) for carnitine in tissues which have limited capacity to metabolize propionyl-CoA. These results also show propionyl-CoA must be formed during the metabolism of alpha-ketoisovalerate and that extra-mitochondrial free carnitine rapidly interacts with matrix short-chain aliphatic acyl-CoA generated from alpha-keto acids of branched-chain amino acids and pyruvate in the presence and absence of malate.  相似文献   

17.
Fatty acid β-oxidation may occur in both mitochondria and peroxisomes. While peroxisomes oxidize specific carboxylic acids such as very long-chain fatty acids, branched-chain fatty acids, bile acids, and fatty dicarboxylic acids, mitochondria oxidize long-, medium-, and short-chain fatty acids. Oxidation of long-chain substrates requires the carnitine shuttle for mitochondrial access but medium-chain fatty acid oxidation is generally considered carnitine-independent. Using control and carnitine palmitoyltransferase 2 (CPT2)- and carnitine/acylcarnitine translocase (CACT)-deficient human fibroblasts, we investigated the oxidation of lauric acid (C12:0). Measurement of the acylcarnitine profile in the extracellular medium revealed significantly elevated levels of extracellular C10- and C12-carnitine in CPT2- and CACT-deficient fibroblasts. The accumulation of C12-carnitine indicates that lauric acid also uses the carnitine shuttle to access mitochondria. Moreover, the accumulation of extracellular C10-carnitine in CPT2- and CACT-deficient cells suggests an extramitochondrial pathway for the oxidation of lauric acid. Indeed, in the absence of peroxisomes C10-carnitine is not produced, proving that this intermediate is a product of peroxisomal β-oxidation. In conclusion, when the carnitine shuttle is impaired lauric acid is partly oxidized in peroxisomes. This peroxisomal oxidation could be a compensatory mechanism to metabolize straight medium- and long-chain fatty acids, especially in cases of mitochondrial fatty acid β-oxidation deficiency or overload.  相似文献   

18.
The interaction of exogenous carnitine with whole body carnitine homeostasis was characterized in the rat. Carnitine was administered in pharmacologic doses (0-33.3 mumols/100 g body weight) by bolus, intravenous injection, and plasma, urine, liver, skeletal muscle and heart content of carnitine and acylcarnitines quantitated over a 48 h period. Pre-injection urinary carnitine excretion was circadian as excretion rates were increased 2-fold during the lights-off cycle as compared with the lights-on cycle. Following carnitine administration, there was an increase in urinary total carnitine excretion which accounted for approx. 60% of the administered carnitine at doses above 8.3 mumols/100 g body weight. Urinary acylcarnitine excretion was increased following carnitine administration in a dose-dependent fashion. During the 24 h following administration of 16.7 mumols [14C]carnitine/100 g body weight, urinary carnitine specific activity averaged only 72 +/- 4% of the injection solution specific activity. This dilution of the [14C]carnitine specific activity suggests that endogenous carnitine contributed to the increased net urinary carnitine excretion following carnitine administration. 5 min after administration of 16.7 mumol carnitine/100 g body weight approx. 80% of the injected carnitine was in the extracellular fluid compartment and 5% in the liver. Plasma, liver and soleus total carnitine contents were increased 6 h after administration of 16.7 mumols carnitine/100 g body weight. 6 h post-administration, 37% of the dose was recovered in the urine, 12% remained in the extracellular compartment, 9% was in the liver and 22% was distributed in the skeletal muscle. In liver and plasma, short chain acylcarnitine content was increased 5 min and 6 h post injection as compared with controls. Plasma, liver, skeletal muscle and heart carnitine contents were not different from control levels 48 h after carnitine administration. The results demonstrate that single, bolus administration of carnitine is effective in increasing urinary acylcarnitine elimination. While liver carnitine content is doubled for at least 6 h following carnitine administration, skeletal muscle and heart carnitine pools are only modestly perturbed following a single intravenous carnitine dose. The dilution of [14C]carnitine specific activity in the urine of treated animals suggests that tissue-blood carnitine or acylcarnitine exchange systems contribute to overall carnitine homeostasis following carnitine administration.  相似文献   

19.
Rats subjected to laparotomy and handling of the liver were starved for 48 h, starting either immediately after surgery or 48 h later. Surgery enhanced the rise in plasma non-esterified fatty acid concentrations after starvation without affecting the responses of blood or liver ketone bodies. Thus in surgically stressed rats, blood and liver ketone body concentrations were inappropriately low for the blood fatty acid concentrations. In the control rats, starvation increased hepatic carnitine concentrations, mainly through increases in short-chain acylcarnitine. Surgical stress decreased or abolished these increases. This may possibly contribute to the blunted ketonaemic response observed after surgery.  相似文献   

20.
The administration of glucose to 48 h-starved euthyroid or hyperthyroid rats led to decreased blood concentrations of fatty acids and ketone bodies in both groups, but fatty acid concentrations were higher and ketone-body concentrations lower in the latter group. Decreased ketonaemia was not due to increased ketone-body clearance. Flux through carnitine palmitoyltransferase 1 was increased, consistent with the effects of hyperthyroidism on enzyme activity demonstrated in vitro. Correlations between the concentrations of ketone bodies and long-chain acylcarnitine measured in freeze-clamped liver samples indicated that a lower proportion of the product of beta-oxidation was used for ketone-body synthesis. Citrate concentrations were unaffected by hyperthyroidism, but lipogenesis was increased. The results are discussed in relation to the factors controlling hepatic carbon flux and energy requirements after re-feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号