首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteomalacia has been noted following in vivo aluminum (Al) loading in the rat by some investigators but not by others. To determine whether the response of bone to Al differs as a function of the skeletal site examined, quantitative histology of cortical and trabecular bone was done in the tibiae from control (C, n = 10), Al-treated (AL, n = 9), nephrectomized control (NX-C, n = 7), and nephrectomized Al-treated (NX-AL, n = 8) rats given 2 mg/day of Al for 4 weeks. Bone Al content was determined by histochemical methods. In cortical bone, osteoid seam width, osteoid volume, and percent osteoid area were similar for all groups. In contrast, for trabecular bone, both forming surface (means +/- SD) (5.2 +/- 3.4 vs 1.8 +/- 1.1%, P less than 0.05) and osteoid volume (1.7 +/- 0.7 vs 1.0 +/- 0.4%, P less than 0.05) increased from control values in AL, although osteoid seam width did not differ. In NX-AL, trabecular forming surface (20.2 +/- 6.7 vs 6.2 +/- 2.4%, P less than 0.01), osteoid area (13.2 +/- 5.7 vs 3.5 +/- 0.8%, P less than 0.01), and osteoid width (18.7 +/- 5.7 vs 9.7 +/- 2.3 micron, P less than 0.01) all were greater than in NX-C. Deposits of Al were undetectable in C and NX-C, were minimal in cortical bone in AL and NX-AL, but were present at 40.5 +/- 11.5 and 71.1 +/ 6.5% of trabecular surfaces in AL and NX-AL, respectively. Osteoid area and osteoid surface each correlated with trabecular bone Al. Thus, (a) osteoid accumulates in trabecular, but not in cortical, bone after 4 weeks of Al loading; (b) the extent of osteoid accumulation correlates with the bone Al content; and (c) the histologic response to Al in cortical and trabecular bone is related to local differences in the uptake of Al into bone.  相似文献   

2.
Whole body vibration (WBV) has been extensively studied as an anabolic stimulus for bone and muscle. Therapeutic WBV delivers low magnitude, high frequency vibrations to tissues, eliciting biological and structural responses. This study investigated the effect of 0.3G (Peak-to-Peak), 30Hz sinusoidal vibration on intact flexor carpi ulnaris tendons in rats. Experimental rats were subjected to twenty minutes of WBV daily for five days a week for a total of five weeks. The tendon cross-sectional area and the structural properties of the muscle-tendon-bone unit under tensile loading to failure were evaluated. Initial body weights were similar between the groups and the mean change in body weight of the animals of each group did not differ. The cross-sectional area of the tendons of the vibrated animals was found to be 32% greater (P<0.05) than the controls and the structural stiffness of the vibrated tendons was found to be 41% greater (P<0.05) than the controls. For specimens that failed in the midsubstance of the tendon, a trend (P=0.087) for increased ultimate load was observed in the vibrated tendons compared to the controls. No differences in material properties were observed except for the strain to ultimate load, which was reduced 22% in the vibrated group. These initial findings suggest that vibration may serve as an anabolic stimulus to tendon similar to its effects on bone and muscle. These findings are important as they open the potential that low magnitude, high frequency vibration might serve as a means to accelerate tendon healing.  相似文献   

3.
To gain insight into past human physical activity, anthropologists often infer functional loading history from the morphology of limb bone remains. It is assumed that, during life, loading had a positive, dose-dependent effect on bone structure that can be identified despite other effects. Here, we investigate the effects of genetic background and functional loading on limb bones using mice from an artificial selection experiment for high levels of voluntary wheel running. Growing males from four replicate high runner (HR) lines and four replicate nonselected control (C) lines were either allowed or denied wheel access for 2 months. Using μCT, femoral morphology was assessed at two cortical sites (mid-diaphysis, distal metaphysis) and one trabecular site (distal metaphysis). We found that genetic differences between the linetypes (HR vs. C), between the replicate lines within linetype, and between individuals with and without the so-called "mini-muscle" phenotype (caused by a Mendelian recessive gene that halves limb muscle mass) gave rise to significant variation in nearly all morphological indices examined. Wheel access also influenced femoral morphology, although the functional response did not generally result in enhanced structure. Exercise caused moderate periosteal enlargement, but relatively greater endocortical expansion, resulting in significantly thinner cortices and reduced bone area in the metaphysis. The magnitude of the response was independent of distance run. Mid-diaphyseal bone area and area moments, and trabecular morphology, were unaffected by exercise. These results underscore the strong influence of genetics on bone structure and the complexity by which mechanical stimuli may cause alterations in it.  相似文献   

4.
Objective:This study aimed to explore optimal conditions of whole-body vibration (WBV) for improving bone properties in aged rats.Methods:Eighty-week-old rats were divided into baseline control (BC), age-matched control (CON) and experimental groups, which underwent WBV (0.5 g) at various frequencies (15, 30, 45, 60 or 90 Hz) or WBV (45 Hz) with various magnitudes (0.3, 0.5, 0.7 or 1.0 g) for 7 weeks. After interventions, femur bone size, bone mechanical strength and circulating bone formation/resorption markers were measured, and trabecular bone microstructure (TBMS) and cortical bone geometry (CBG) of femurs were analyzed by micro-CT.Results:Several TBMS parameters and trabecular bone mineral content were significantly lower in the 15 Hz WBV (0.5 g) group than in the CON group, suggesting damage to trabecular bone. On the other hand, although frequency/magnitude of WBV did not influence any CBG parameters, the 0.7 g and 1.0 g WBV (45 Hz) group showed an increase in tissue mineral density of cortical bone compared with the BC and CON groups, suggesting the possibility of improving cortical bone properties.Conclusion:Based on these findings, it should be noted that WBV conditions are carefully considered when applied to elderly people.  相似文献   

5.
Garman R  Rubin C  Judex S 《PloS one》2007,2(7):e653
A range of tissues have the capacity to adapt to mechanical challenges, an attribute presumed to be regulated through deformation of the cell and/or surrounding matrix. In contrast, it is shown here that extremely small oscillatory accelerations, applied as unconstrained motion and inducing negligible deformation, serve as an anabolic stimulus to osteoblasts in vivo. Habitual background loading was removed from the tibiae of 18 female adult mice by hindlimb-unloading. For 20 min/d, 5 d/wk, the left tibia of each mouse was subjected to oscillatory 0.6 g accelerations at 45 Hz while the right tibia served as control. Sham-loaded (n = 9) and normal age-matched control (n = 18) mice provided additional comparisons. Oscillatory accelerations, applied in the absence of weight bearing, resulted in 70% greater bone formation rates in the trabeculae of the metaphysis, but similar levels of bone resorption, when compared to contralateral controls. Quantity and quality of trabecular bone also improved as a result of the acceleration stimulus, as evidenced by a significantly greater bone volume fraction (17%) and connectivity density (33%), and significantly smaller trabecular spacing (-6%) and structural model index (-11%). These in vivo data indicate that mechanosensory elements of resident bone cell populations can perceive and respond to acceleratory signals, and point to an efficient means of introducing intense physical signals into a biologic system without putting the matrix at risk of overloading. In retrospect, acceleration, as opposed to direct mechanical distortion, represents a more generic and safe, and perhaps more fundamental means of transducing physical challenges to the cells and tissues of an organism.  相似文献   

6.
Suppressor of cytokine signalling-2 (SOCS2) negatively regulates the signal transduction of several cytokines. Socs2(-/-) mice show increased longitudinal skeletal growth associated with deregulated GH/IGF-1 signalling. The present study examined the role of SOCS2 in endochondral ossification and trabecular and cortical bone formation, and investigated whether pro-inflammatory cytokines associated with pediatric chronic inflammatory disorders mediate their effects through SOCS2. Seven-week-old Socs2(-/-) mice were heavier (27%; P < 0.001) and longer (6%; P < 0.001) than wild-type mice. Socs2(-/-) tibiae were longer (8%; P < 0.001) and broader (18%; P < 0.001) than that of wild-type mice, and the Socs2(-/-) mice had wider growth plates (24%; P < 0.001) with wider proliferative and hypertrophic zones (10% (P < 0.05) and 14% (P < 0.001) respectively). Socs2(-/-) mice showed increased total cross-sectional bone area (16%: P < 0.001), coupled to increased total tissue area (17%; P < 0.05) compared to tibia from wild-type mice. Socs2(-/-) mice showed increased percent bone volume (101%; P < 0.001), trabecular number (82%; P < 0.001) and trabecular thickness (11%; P < 0.001), with associated decreases in trabecular separation (19%; P < 0.001). TNFalpha exposure to growth plate chondrocytes for 48 h increased SOCS2 protein expression. Growth of metatarsals from 1-day-old Socs2(-/-) and Socs2(+/+) mice, as well as expression of Aggrecan, Collagen Type II and Collagen Type X, were inhibited by TNFalpha, with no effect of genotype. Our data indicate that physiological levels of SOCS2 negatively regulate bone formation and endochondral growth. Our results further suggest that pro-inflammatory cytokines mediate their inhibitory effects on longitudinal bone growth through a mechanism that is independent of SOCS2.  相似文献   

7.
β-thalassemia caused by the C→T mutation at nucleotide 654 of the intron 2 (βIVSII-654) results in aberrant splicing of β-globin RNA, leading to an almost absence of β-globin synthesis. Although trabecular and cortical bone loss was previously reported in β-thalassemic mice with deletion of β-globin gene, the microscopic changes in trabecular structure in βIVSII-654 thalassemic mice remained elusive. Here, we investigated the macroscopic and microscopic bone changes in 12-week-old βIVSII-654 knockin thalassemic mice by dual-energy X-ray absorptiometry (DXA) and histomorphometric analysis, respectively. DXA revealed a decrease in bone mineral density in the lumbar vertebrae and tibial metaphysis, but not in the femoral diaphysis, suggesting that βIVSII-654 thalassemia predominantly led to osteopenia at the trabecular site, but not the cortical site. Further histomorphometric analysis of the tibial secondary spongiosa showed that trabecular bone volume was significantly decreased with the expansion of marrow cavity. Decreases in osteoblast surface, osteoid surface, mineral apposition rate, mineralizing surface, and mineralized volume were also observed. Moreover, trabecular bone resorption was markedly enhanced as indicated by increases in the osteoclast surface and eroded surface. It could be concluded that βIVSII-654 thalassemia impaired bone formation and enhanced bone resorption, thereby leading to osteopenia especially at the trabecular sites, such as the tibial metaphysis.  相似文献   

8.
This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cancellous bone of the proximal tibia metaphysis (PTM) and femoral neck (FN). Sprague-Dawley rats (male, 6 mo old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or sedentary cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE during 5 wk of training. PTM cancellous volumetric bone mineral density (vBMD), assessed by in vivo peripheral quantitative computed tomography scans, significantly increased in both exercise groups (+9%; P < 0.001), resulting in part from 130% (HRE; P = 0.003) and 213% (LRE; P < 0.0001) greater bone formation (measured by standard histomorphometry) vs. CC. Additionally, mineralizing surface (%MS/BS) and mineral apposition rate were higher (50-90%) in HRE and LRE animals compared with controls. PTM bone microarchitecture was enhanced with LRE, resulting in greater trabecular thickness (P = 0.03) and bone volume fraction (BV/TV; P = 0.04) vs. CC. Resorption surface was reduced by nearly 50% in both exercise paradigms. Increased PTM bone mass in the LRE group translated into a 161% greater elastic modulus (P = 0.04) vs. CC. LRE and HRE increased FN vBMD (10%; P < 0.0001) and bone mineral content (~ 20%; P < 0.0001) and resulted in significantly greater FN strength vs. CC. For the vast majority of variables, there was no difference in the cancellous bone response between the two exercise groups, although LRE resulted in significantly greater body mass accrual and bone formation response. These results suggest that jumping at minimal resistance provides a similar anabolic stimulus to cancellous bone as jumping at loads exceeding body mass.  相似文献   

9.
A single exposure to mechanical unloading can result in significant bone loss, but the consequences of multiple exposures are largely unknown. Within a 18-wk period, adult C57BL/6 male mice were exposed to 2 wk of hindlimb unloading (HLU) followed by 4 wk of reambulation (RA) once (1x-HLU), twice (2x-HLU), or three times (3x-HLU), or served as ambulatory age-matched controls. In vivo μCT longitudinally tracked changes in trabecular and cortical compartments of the femur. Normally ambulating control mice experienced significant age-related loss in trabecular bone volume fraction throughout the course of the experiment. This loss was compounded by HLU with 2x- and 3x-HLU mice experiencing a 27% and 24% greater reduction in trabecular bone and a 60% and 63% inhibition of age-related trabecular thickening. The recovery of cortical bone was also incomplete during each 4-wk RA period and, at completion of the experiment, cortical area in 3x-HLU mice was 5% smaller than in control and 1x-HLU. When eliminating age as a confounding variable, comparison between individual HLU/RA cycles showed that the magnitude of the response diminished during subsequent exposures. The extent of trabecular thinning in mice unloaded for the first time was 1.6-fold greater than the second time and nearly twofold greater than the third time. Similarly, the increase in trabecular thickness during the first RA cycle was twofold greater than during the second and third RA cycle. Together, our data demonstrate that even though multiple exposures to mechanical unloading are more detrimental than a single unloading period, bone's mechanosensitivity is reduced with consecutive unloading/reambulation cycles.  相似文献   

10.
The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26) and mdx mice (n = 22) were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk) groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P≥0.34). Vibration did not alter any measure of muscle contractile function (P≥0.12); however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03) and higher intramuscular triglyceride concentrations (P = 0.03). These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.  相似文献   

11.
The molecular and cellular mechanism of estrogen action in skeletal tissue remains unclear. The purpose of this study was to understand the role of estrogen receptor-beta, (ERbeta) on cortical and cancellous bone during growth and aging by comparing the bone phenotype of 6- and 13-month-old female mice with or without ERbeta. Groups of 11-14 wild-type (WT) controls and ERbeta knockout (BERKO) female mice were necropsied at 6 and 13 months of age. At both ages, BERKO mice did not differ significantly from WT controls in uterine weight and uterine epithelial thickness, indicating that ERbeta does not regulate the growth of uterine tissue. Femoral length increased significantly by 5.5% at 6 months of age in BERKO mice compared with WT controls. At 6 months of age, peripheral quantitative computerized tomography (pQCT) analysis of the distal femoral metaphysis (DFM) and femoral shafts showed that BERKO mice had significantly higher cortical bone content and periosteal circumference as compared with WT controls at both sites. In contrast to the findings in cortical bone, at 6 months of age, there was no difference between BERKO and WT mice in trabecular density, trabecular bone volume (TBV), or formation and resorption indices at the DFM. In 13-month-old WT mice, TBV (-41%), trabecular density (-27%) and cortical thickness decreased significantly. while marrow cavity and endocortical circumference increased significantly compared with 6-month-old WT mice. These age-related decreases in cancellous and endocortical bone did not occur in BERKO mice. At 13 months of age, BERKO mice had significantly higher total, trabecular and cortical bone, while having significantly lower bone resorption, bone formation and bone turnover in DFM compared with WT mice. These results indicate that deleting ERbeta protected against age-related bone loss in both the cancellous and endocortical compartments by decreasing bone resorption and bone turnover in aged female mice. These data demonstrate that in female mice, ERbeta plays a role in inhibiting periosteal bone formation, longitudinal and radial bone growth during the growth period, while it plays a role in stimulating bone resorption, bone turnover and bone loss on cancellous and endocortical bone surfaces during the aging process.  相似文献   

12.
目的:观察益坤精胶囊对骨质疏松模型小鼠骨形态计量学指标及血清白介素-6(IL-6)的影响。方法:取60只C57雌性小鼠随机分为:模型组(等体积生理盐水)、雌激素组(尼尔雌醇,0.25 mg/kg)、益坤精胶囊高剂量组(1.44 g/kg)、中剂量组(0.72 g/kg)、低剂量组(0.36 g/kg)及假手术组(等体积生理盐水),各组灌胃均70 d。采用酶联免疫吸附测定(ELISA)法检测血清中IL-6浓度,BI-2000医学图像分析系统进行骨形态计量学指标检测,使用CT测量分析各组小鼠股骨远侧干骺端血管数量。结果:与假手术组比较,模型组骨小梁平均宽度、骨皮质平均厚度、骨小梁面积、成骨细胞数以及骨密度、骨血管数量均明显减小,而破骨细胞数、血清中IL-6的浓度明显上升(P0.05)。与模型组比较,雌激素组、益坤精胶囊高、中、低剂量组上述指标均明显改善(P0.05),且益坤精胶囊高剂量组与雌激素组疗效相当(P0.05)。结论:益坤精胶囊可明显改善骨质疏松模型小鼠的骨形态计量学指标,降低血清中IL-6水平,增加骨血管数量,且以1.44 g/kg益坤精胶囊灌胃效果最佳。  相似文献   

13.
There is growing evidence that extremely small mechanical signals, if applied at a sufficiently high frequency, can serve as anabolic signals to bone tissue. To determine if the responsiveness of bone to low-magnitude, high-frequency parameters is modulated by endocrine imbalance, ovariectomized (OVX) Sprague-Dawley rats were subjected to whole body vibrations (WBV, 0.15 g) at 45 Hz (n=6) or 90 Hz (n=6) for 10 min/day, and compared to OVX age-matched controls (n=6). Five additional rats were used, in vivo, to establish the induced bone surface strain magnitudes (and strain rates). Following a 28 d protocol, bone formation rates in the metaphysis of the proximal tibia were 159% greater in 90 Hz rats when compared to age-matched controls, but 45 Hz rats were not significantly different from controls. Bone morphology of 90 Hz rats indicated significantly greater trabecular bone volume (22% and 25%) and thicker trabeculae (11% and 12%) over either controls or 45 Hz rats in the epiphysis of the distal femur, respectively. Despite the enhanced sensitivity of the skeleton towards the 90 Hz signal, the strain magnitudes and strain rates induced by this frequency were significantly lower than during 45 Hz vibration, suggesting that factors other than matrix strain are driving the anabolic response. Ideally, such mechanical signals represent a non-pharmacologic means of controlling bone mass and morphology in spite of systemic pressures for bone resorption.  相似文献   

14.

Background

The effect of age on the bone mineral density and microarchitecture of the equine radius and tibia was investigated. Fifty-six bones from 15 horses aged four to 21 years were used. There were nine geldings and six mares, and none of the horses had any disease influencing bone properties. Xtreme computed tomography was used to evaluate a 9-mm segment of the diaphysis and metaphysis of each bone. The following variables were determined: length of the bone, circumference and diameter in the frontal and sagittal planes in the middle of the bone.Diaphysis: total volume, bone volume, bone volume ratio, slice area, bone area, marrow area, cortical and marrow thickness, bone mineral density, polar moment of inertia of the cortex.Metaphysis: total area, bone area, cortical bone area, cortical thickness, bone mineral density, bone mineral density in the cortex, bone mineral density in the trabecular region, trabecular number, trabecular thickness, trabecular separation, polar moment of inertia of the metaphysis, polar moment of inertia of the cortex of the metaphysis.

Results

Bone density and microarchitecture were not affected by breed or gender. However, the microarchitecture varied with the age of the horse; the number of trabeculae decreased significantly and the distance between trabeculae increased significantly with increasing age. There were no significant differences between bones of the left and right limbs or between the radius and tibia.

Conclusion

The variables investigated did not differ between geldings and mares. However, there were age-related changes in the microstructure of the bones. Further experimental studies are necessary to determine whether these changes reduce bone strength. Age-related changes in the bones were seen and may explain the higher incidence of fractures and fissures in older horses.
  相似文献   

15.
A mutation in LRP5 (low-density lipoprotein receptor-related protein 5) has been shown to increase bone mass and density in humans and animals. Transgenic mice expressing the LRP5 mutation (G171V) demonstrate an increase in bone mass as compared to non-transgenic (NTG) littermates. This study evaluated LRP5 gene and gender-related influences on the structural and biomechanical strength properties of trabecular and cortical bone in femurs and vertebrae (L5) of 17-week-old mice. Micro-computed tomography was used to evaluate the trabecular bone structure of distal femurs and vertebrae ex vivo. Mechanical testing of the trabecular bone in the distal femur was done to determine biomechanical strength. Differences due to genotype and gender were tested using two-way ANOVA at a significance level of p<0.05. Trabecular bone structural parameters (BV/TV, trabecular thickness, number, etc.) at the distal femur, femoral neck, and vertebral body sites were greater in the transgenic as compared to the NTG mice. In addition, vertebral cortical thickness and trabecular strength parameters (ultimate and yield loads, stiffness, ultimate and yield stresses) in the distal femur were greater in the transgenic mice as compared to NTG. The increasing trends of cortical thickness were also noted in the transgenic mice as compared to NTG. Within LRP5 (G171V) mutant mice, there were significant gender-related differences in some of the trabecular bone structural parameters at all the sites (distal femur, femoral neck, and vertebral body). However, unlike trabecular structural parameters, the gender-specific differences were not found in the trabecular strength of LRP5 transgenic mice. In summary, these findings suggest that the LRP5 (G171V) mutation results in greater trabecular bone structure and strength at both the distal femurs and vertebral bodies as compared to NTG. In addition, only the trabecular structure parameters were affected by gender within the LRP5 (G171V) mutation.  相似文献   

16.
Pulsed electromagnetic field (PEMF) and whole body vibration (WBV) interventions are expected to be important strategies for management of osteoarthritis (OA). The aim of the study was to investigate the comparative effectiveness of PEMF versus WBV on cartilage and subchondral trabecular bone in mice with knee OA (KOA) induced by surgical destabilization of the medial meniscus (DMM). Forty 12-week-old male C57/BL mice were randomly divided into four groups (n = 10): Control, OA, PEMF, and WBV. OA was induced (OA, PEMF, and WBV groups) by surgical DMM of right knee joint. Mice in PEMF group received 1 h/day PEMF exposure with 75 Hz, 1.6 mT for 4 weeks, and the WBV group was exposed to WBV for 20 min/day with 5 Hz, 4 mm, 0.3 g peak acceleration for 4 weeks. Micro-computed tomography (micro-CT), histology, and immunohistochemistry analyses were performed to evaluate the changes in cartilage and microstructure of trabecular bone. The bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) increased, and bone surface/bone volume (BS/BV) decreased by micro-CT analysis in PEMF and WBV groups. The Osteoarthritis Research Society International (OARSI) scores in PEMF and WBV groups were significantly lower than in the OA group. Immunohistochemical results showed that PEMF and WBV promoted expressions of Aggrecan, and inhibited expressions of IL-1β, ADAMTS4, and MMP13. Superior results are seen in PEMF group compared with WBV group. Both PEMF and WBV were effective, could delay cartilage degeneration and preserve subchondral trabecular bone microarchitecture, and PEMF was found to be superior to WBV. Bioelectromagnetics. 2020;41:298–307 © 2020 Bioelectromagnetics Society  相似文献   

17.
Extremely low-level oscillatory accelerations, applied without constraint, can increase bone formation. Here, we tested the hypothesis that high-frequency oscillations, applied in the absence of functional weight bearing, can be sensed by trabecular bone to produce a structure that is more efficient in sustaining applied loads. The left leg of anesthetized adult female mice (n=18) was subjected to high-frequency oscillations at 45 Hz, 0.6g for 20 min/day, 5 days/week for 3 weeks, while the contralateral leg served as an internal control. To remove the potential interference of the habitual strain environment with the imposed physical signal, the hindlimbs of these mice were chronically unloaded. In vivo microCT scans of the proximal metaphyseal region of the tibia were transformed into finite element meshes to evaluate trabecular and cortical mechanical properties. Simulated longitudinal compression tests showed that the short applications of high-frequency oscillations were sensed primarily by trabecular bone. At the end of the experimental period, apparent trabecular stiffness of the oscillated bones was 38% (p<0.001) greater than that of non-weight bearing controls. Simulated uniaxial loads applied to trabecular bone induced 21%, 52%, and 131% greater (p<0.05) median, peak compressive, and peak tensile longitudinal stresses in control than in stimulated bones. Non-weight bearing control bones were also characterized by greater transverse normal and shear stresses (77% and 54%, respectively, p<0.001) as well as 35% greater (p=0.03) longitudinal shear stresses. Compared to normal age-matched controls (n=18), oscillations were able to attenuate, but not fully prevent, the decline in trabecular mechanical properties associated with the removal of weight bearing. These data indicate not only that bone cells can sense low-level, high-frequency oscillatory accelerations, but also that they can orchestrate a structural response that produces a stiffer trabecular structure that may be less prone to fracture.  相似文献   

18.
Three-dimensional trabecular architecture was investigated in the femora of tail-suspended young growing rats, and the effects of jump exercise during remobilization were examined. Five-week-old male Wistar rats (n = 35) were randomly assigned to five body weight-matched groups: tail-suspended group (SUS; n = 7); sedentary control group for SUS (S(CON); n = 7); spontaneous recovery group after tail suspension (S+R(CON), n = 7); jump exercise group after tail suspension (S+R(JUM); n = 7); and age-matched control group for S+R(CON) and S+R(JUM) without tail suspension and exercise (S(CON)+R(CON); n = 7). Rats in SUS and S(CON) were killed immediately after tail suspension for 14 days. The jump exercise protocol consisted of 10 jumps/day, 5 days/wk, and jump height was 40 cm. Bone mineral density (BMD) of the femur and three-dimensional trabecular bone architecture at the distal femoral metaphysis were measured. Tail suspension induced a 13.6% decrease in total femoral BMD (P < 0.001) and marked deterioration of trabecular architecture. After 5 wk of free remobilization, femoral BMD, calf muscle weight, and body weight returned to age-matched control levels, but trabeculae remained thinner and less connected. On the other hand, S+R(JUM) rats showed significant increases in trabecular thickness, number, and connectivity compared with S+R(CON) rats (62.8, 31.6, and 24.7%, respectively; P < 0.05), and these parameters of trabecular architecture returned to the levels of S(CON)+R(CON). These results indicate that suspension-induced trabecular deterioration persists after remobilization, but jump exercise during remobilization can restore the integrity of trabecular architecture and bone mass in the femur in young growing rats.  相似文献   

19.
Hormone replacement therapy (HRT) produces a small increase in bone mineral density (BMD) when measured by dual energy X-ray absorptiometry (DXA). The corresponding decrease in fracture risk is more impressive, implying that other factors that contribute to bone strength are favourably modified by HRT. We investigated, using peripheral quantitated computed tomography (pQCT), the changes produced by HRT in both the distribution of mineral between cortical and trabecular bone and the changes produced by HRT in the apparent structure of trabecular bone, expressed as average hole area and apparent connectivity. Twenty-one postmenopausal women starting HRT and 32 control women were followed for 2 years, with distal radius pQCT measurements every 6 months. HRT prevented the loss of total bone mass seen in controls (p < 0.02). HRT also produced an apparent rapid loss of trabecular bone mass within the first 6 months of the study (p < 0.02), with an associated rapid loss in the apparent connectivity (p = 0.034). Average hole area also increased but not to a statistically significant extent. Exogenous estrogen apparently fills small marrow pores close to the endocortical surface, such that the pQCT-defined boundary between trabecular and cortical bone is shifted in favour of cortical bone. Trabecular bone structure indices are adversely affected, as the central, poorly interconnected trabecular bone with greater than average marrow spaces constitutes a greater fraction of the remaining trabecular bone. This study suggests that the improvements in fracture risk resulting from HRT are explained by a reversal of net endocortical resorption of bone.  相似文献   

20.
Untreated BERKO mice demonstrate few abnormalities in bone phenotype and recent ovariectomy has few effects on various bone characteristics in these mice. Long-term studies on the bone phenotype of intact and ovariectomized mice are unavailable. Using quantitative computed tomography (qCT), we determined various parameters of the metaphysis of the tibia in sham-ovariectomized (intact) and ovariectomized BERKO and wildtype mice. Body weight and estrogen-regulated fat were also measured. Mice underwent surgery (ovariectomy or sham) at 3 mo of age, and qCT analysis was performed every 2 to 4 mo until mice were 12 mo old. Ovariectomized wildtype mice gained body weight and their fat depot increased in size within 2 mo after ovariectomy. Obesity developed later in ovariectomized BERKO mice, which became significantly heavier than their wildtype counterparts. Ovariectomized wildtype mice lost trabecular density more rapidly than did ovariectomized BERKO mice, which did not show similar loss in trabecular density until at least 7 mo after ovariectomy. At the latest studied time point (9 mo after surgery), cortical area was significantly larger in ovariectomized BERKO mice than ovariectomized wildtype mice. The absence of ERβ in ovariectomized BERKO mice during the first 3 to 5 mo after ovariectomy had protective effects against obesity and trabecular rarification; this protective effect disappeared at later time points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号