首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Botryodiplodia theobromae and Aspergillus aculeatus were inoculated on carboxymethylcellulose (CMC) medium and filter papers. The hydrolysis of the CMC medium and degradation of the filter papers were observed, indicating the production of the Cl and Cx cellulases by the two rot pathogens. The Cl and Cx enzymes were also detected in filtrates of rotted orange fruits incited by the two rot pathogens.The cellulases could not induce rot development on their own. However, when they were added to pectinases in an enzyme inoculum, the incubation period for inducing rot development was shorter; thus establishing a secondary role for the cellulases in the rot development. This secondary role of the cellulases produced by the two fungi was found to be at peak at pH 7 and a temperature range of 25°–30 °C in the two fungi.  相似文献   

2.
The ability of Aspergillus nidulans (EIDAM) WINT to grow and sporulate at various temperatures and to degrade soluble and insoluble forms of cellulose were studied. A. nidulans was found to grow and sporulate best at 37°C in continuous light and alternating light-darkness respectively. The fungus was able to cause losses in the dry weights of filter papers on incubation and made appreciable growth on CMC and hemicellulose. The culture filtrates contained cellulases which hydrolysed filter papers and CMC to reducing sugars, and were only able to produce these enzymes in the presence of cellulose or its derivatives in the growth medium. The CM-cellulases had peak activity at pH 5.2 and at 50°C while optimal FP-activity occurred at a pH of 5.5 and at 45°C. The participatory role of A. nidulans in composting is discussed.  相似文献   

3.
Three of four isolates, representing phylogenetically distinct groupings of low-temperature basidiomycetes (LTB), were capable of utilizing wheat straw, and to a lesser extent conifer wood at 15 degrees C. A cottony snow mould LTB (LRS 013) and a fruit rot LTB (LRS 241) grown on straw significantly degraded filter paper, carboxymethylcellulose (CMC), p-nitrophenyl beta-glucopyranoside (i.e., beta-glucosidases), and xylan. Enzymes produced by Coprinus psychromorbidus (LRS 067) were limited to xylanases from straw and wood and beta-glucosidases from wood. A sclerotia-forming LTB (LRS 131) exhibited poor growth on both substrates, and did not produce detectable quantities of extracellular enzymes. None of the LTB isolates tested degraded avicel. The temperature optima of CMCases and xylanases in the filtrates from the straw medium ranged from 25 degrees C to 55 degrees C, and with the exception of LRS 067, significant activity was observed at 5 degrees C. Two cellulases (25 and 31 kDa) and two xylanases (24 and 34 kDa) were observed on zymograms for LRS 013 and 241. Reduction of enzymes with 2-mercaptoethanol adversely affected their activity on zymograms, and an additional cellulase band was observed for non-reduced samples. This study indicates that LTB produce an array of cellulolytic and xylanolytic enzymes, and that some of these enzymes possess low-temperature optima which may facilitate degradation of plant fibre under low-temperature conditions.  相似文献   

4.
Cellulase and xylanase activities in higher basidiomycetes.   总被引:1,自引:0,他引:1  
Extracellular carboxymethylcellulase, xylanase, beta-glucosidase, and beta-xylosidase activities of four cultures of higher basidial fungi were studied in relation to the source of carbon in the nutrient medium. It was shown that beta-glucosidases and beta-xylosidases of all basidiomycetes and cellulases and xylanases of Pholiota aurivella IBR437 and Gloeophyllum saepiarium IBR155, the causal agents of wood brown rot, are constitutive enzymes; however, their activities depend on the source of carbon in the growth medium. Cellulases and xylanases of Coriolus pubescens IBR663 and Lentinus tigrinus IBR100 degrading wood through white rot are inducible enzymes. The synthesis of cellulases and xylanases was induced upon fungal growth on media containing crystalline cellulose and plant raw materials; carboxymethylcellulose and xylan were less effective. The induction of C. pubescens IBR663 cellulase and xylanase was observed when avicel was added to the culture growing on a mannitol-containing medium. Glucose at a concentration of 0.2-0.8% caused catabolite repression of C. pubescens IBR663 cellulase and xylanase. After utilization of glucose, leading to a decrease in its concentration below 0.1%, the synthesis of enzymes was resumed. These data indicate that the synthesis of cellulases and xylanases in the examined macromycetes is under common regulatory control.  相似文献   

5.
The cellulase production by Trichoderma viride, cultivated on different substrates, namely steam-pretreated Lespedeza, filter paper, microcrystalline cellulose (MCC) or carboxymethyl cellulose (CMC), was studied. Different cellulase systems were secreted when cultivated on different substrates. The cellulolytic enzyme from steam-pretreated Lespedeza medium performed the highest filter paper activity, exoglucanase and endoglucanase activities, while the highest β-glucosidase activity was obtained from the enzyme produced on filter paper medium. The hydrolytic potential of the enzymes produced from different media was evaluated on steam-pretreated Lespedeza. The cellulase from steam-pretreated Lespedeza was found to have the most efficient hydrolysis capability to this specific substrate. The molecular weights of the cellulases produced on steam-pretreated Lespedeza, filter paper and MCC media were 33, 37 and 40 kDa, respectively, and the cellulase from CMC medium had molecular weights of 20 and 43 kDa. The degree of polymerization, crystallinity index and micro structure scanned by the scanning electron microscopy of degraded steam-pretreated Lespedeza residues were also studied.  相似文献   

6.
The production of extracellular cellulases by Chaetomium cellulolyticum could be induced by slow feeding of cellobiose to the cultures. Both the rate of production and the amount of activity were comparable to that obtained in batch cultivation on cellulose. The specific filter paper activity of 2.06 U per mg protein was almost two times higher than that obtained in cellulose medium. Cellulases were not induced when glucose was slowly fed to the cultures. Changing the feed stream from glucose to cellobiose resulted in a rapid accumulation of cellulases. Thus cellobiose has a similar role in cellulase induction in C. cellulolyticum, as earlier shown for Trichoderma reesei.  相似文献   

7.
Humicola insolens YH-8, a thermophilic fungus isolated from manure and compost heaps, produced a significant amount of thermostable cellulases in cultures on wheat bran medium (50°C, 4 days). The mold bran extract hydrolyzed Avicel, CMC and newsprint at 90%, 45% and 35%, respectively, to glucose. Then, Avicelase and CMCase were purified from the culture extract by adsorption onto Avicel, heat and acid treatment and consecutive column chromatographies to a homogeneous state on polyacrylamide gel disc electrophoresis. The purified cellulases, especially CMCase, was found highly thermostable. The optimal temperature of both enzymes was 50°C. Avicelase was stable after heating at 65°C for 5 mm and CMCase retained 45% of the original activity after heating at 95°C for 5 min.  相似文献   

8.
Saratale GD  Oh SE 《Biodegradation》2011,22(5):905-919
A novel cellulolytic bacterium was isolated from the forest soil of KNU University campus. Through 16S rRNA sequence matching and morphological observation it was identified as Nocardiopsis sp. KNU. This strain can utilize a broad range of cellulosic substrates including: carboxymethyl cellulose (CMC), avicel, xylan, cellobiose, filter paper and rice straw by producing a large amount of thermoalkalotolerant endoglucanase, exoglucanase, xylanase and glucoamylase. Optimal culture conditions (Dubos medium, 37°C, pH 6.5 and static condition) for the maximal production of the cellulolytic enzymes were determined. The activity of cellulolytic and hemicelluloytic enzymes produced by this strain was mainly present extracellularly and the enzyme production was dependent on the cellulosic substrates used for the growth. Effect of physicochemical conditions and metal additives on the cellulolytic enzymes production were systematically investigated. The cellulases produced by Nocardiopsis sp. KNU have an optimal temperature of 40°C and pH of 5.0. These cellulases also have high thermotolerance as evidenced by retaining 55–70% activity at 80°C and pH of 5.0 and alkalotolerance by retaining >55% of the activity at pH 10 and 40°C after 1 h. The efficiency of fermentative conversion of the hydrolyzed rice straw by Saccharomyces cerevisiae (KCTC-7296) resulted in 64% of theoretical ethanol yield.  相似文献   

9.
Avicel enrichment cultures from 47 thermal-pool sites in the New Zealand Rotorua-Taupo region were screened for growth and carboxymethyl cellulase activity at 75°C. Eight anaerobic cellulolytic cultures were obtained. The effect of temperature on carboxymethyl cellulase activity was measured, and bacteria were isolated from the five best cultures. Bacteria from two sources designated TP8 and TP10 grew at 75°C, accumulated reducing sugar in the growth medium and gave free cellulases with avicelase activity. Bacteria from sources designated Tok4, Tok8, and Wai21 grew at 75°C, accumulated no free sugars in the medium, and gave free carboxymethyl cellulases with virtually no avicelase activity. All were obligate anaerobic nonsporeforming rods which stained gram negative, grew on pentoses as well as hexoses, and gave ethanol and acetate as major fermentation end products. The isolated strain which produced the most active and stable cellulases (trivially designated TP8.T) had lower rates of free endocellulase accumulation at 75°C than did Clostridium thermocellum at 60°C, but its cellulase activity against avicel and filter paper in culture supernatants was comparable. Tested at 85°C, TP8.T carboxymethyl cellulases included components which were very stable, whereas C. thermocellum carboxymethyl cellulases were all rapidly inactivated. The TP8.T avicelase activity was relatively unaffected by Triton X-100, EDTA, and dithiothreitol. Evidence was obtained for the existence of unisolated, cellulolytic extreme thermophiles producing cellulases which were more stable and active than those from TP8.T.  相似文献   

10.
A potentially novel aerobic, thermophilic, and cellulolytic bacterium designated as Brevibacillus sp. strain JXL was isolated from swine waste. Strain JXL can utilize a broad range of carbohydrates including: cellulose, carboxymethylcellulose (CMC), xylan, cellobiose, glucose, and xylose. In two different media supplemented with crystalline cellulose and CMC at 57°C under aeration, strain JXL produced a basal level of cellulases as FPU of 0.02 IU/ml in the crude culture supernatant. When glucose or cellobiose was used besides cellulose, cellulase activities were enhanced ten times during the first 24 h, but with no significant difference between these two simple sugars. After that time, however, culture with glucose demonstrated higher cellulase activities compared with that from cellobiose. Similar trend and effect on cellulase activities were also obtained when glucose or cellobiose served as a single substrate. The optimal doses of cellobiose and glucose for cellulase induction were 0.5 and 1%. These inducing effects were further confirmed by scanning electron microscopy (SEM) images, which indicated the presence of extracellular protuberant structures. These cellulosome-resembling structures were most abundant in culture with glucose, followed by cellobiose and without sugar addition. With respect to cellulase activity assay, crude cellulases had an optimal temperature of 50°C and a broad optimal pH range of 6–8. These cellulases also had high thermotolerance as evidenced by retaining more than 50% activity at 100°C after 1 h. In summary, this is the first study to show that the genus Brevibacillus may have strains that can degrade cellulose.  相似文献   

11.
Summary The effect of physico-chemical parameters on the cellulolytic activity of Cellulomonas sp. IIbc grown on sugarcane bagasse pith was investigated, and the optimum ranges for enzyme activity were established. The cellulases were more stable when incubated at the optimum growth temperature (32°C) than under optimum activity conditions (45°C for -glucosidases and 50°C for CMC- and FP-cellulases). The -glucosidases were the thermostability-limiting enzymes of the complex. Two types of endoglucanases could be recognized according to their adsorption properties on bagasse: one weakly-bound and one tightly-bound type, the latter constituting approximately 73% of the extracellular endoglucanases at exponential growth phase. Four forms active on filter paper and three active on CMC were obtained by HPLC separation of the extracellular fraction of the culture at stationary phase.Abbreviations CMC carboxymethylcellulose - FP filter paper  相似文献   

12.
The activities of six purified Thermomonospora fusca cellulases and Trichoderma reesei CBHI and CBHII were determined on filter paper, swollen cellulose, and CMC. A simple method to measure the soluble and insoluble reducing sugar products from the hydrolysis of filter paper was found to effectively distinguish between exocellulases and endocellulases. Endocellulases produced 34% to 50% insoluble reducing sugar and exocellulases produced less than 8% insoluble reducing sugar. The ability of a wide variety of mixtures of these cellulases to digest 5.2% of a filter paper disc in 16 h was measured quantitatively. The specific activities of the mixtures varied from 0.41 to 16.31 mumol cellobiose per minute per micromole enzyme. The degree of synergism ranged from 0.4 to 7.8. T. reesei CBHII and T. fusca E3 were found to be functionally equivalent in mixtures. The catalytic domains (cd) of T. fusca endocellulases E2 and E5 were purified and found to retain 93% and 100% of their CMC activity, respectively, but neither cd protein could digest filter paper to 5.2%. When E2cd and E5cd were substituted in synergistic mixtures for the native proteins, the mixtures containing E2cd retained 60%, and those containing E5cd retained 94% of the original activity. Addition of a beta-glucosidase was found to double the activity of the best synergistic mixture. Addition of CBHI to T. fusca crude cellulase increased its activity on filter paper 1.7-fold. (c) 1993 John Wiley & Sons, Inc.  相似文献   

13.
Summary Production and release of cellulolytic enzymes by Trichoderma reesei QM 9414 were studied under induced and non-induced conditions. For that purpose, a method was developmed to produce cellulases by Trichoderma reesei QM 9414 using the soluble inducer, cellobiose, as the only carbon source. The production was based on continuous feeding of cellobiose to a batch culture. For optimum production, the cellobiose supply had to be adjusted according to the consumption so that cellobiose was not accumulated in the culture. With a proper feeding program the repression and/or inactivation by cellobiose could be avoided and the cellulase production by Trichoderma reesei QM 9414 was at least equally as high as with cellulose as the carbon source.During the cultivation, specific activities against filter paper, carboxymethyl cellulose (CMC) and p-nitrophenyl glucoside were analyzed from the culture medium as well as from the cytosol and the cell debris fractions. There was a base level of cell debris bound hydrolytic activity against filter paper and p-nitrophenyl glucoside even in T. reesei grown non-induced on glycerol. T. reesei grown on cellobiose was induced to produce large amounts of extracellular filter paper and CMC hydrolyzing enzymes, which were actively released into the medium even in the early stages of cultivation. -Glucosidase was mainly detected in the cell debris and was not released unless the cells were autolyzing.  相似文献   

14.
This study demonstrated that the brown rot basidiomycete Fomitopsis palustris was able to degrade crystalline cellulose (Avicel). This fungus could also produce the three major cellulases (exoglucanases, endoglucanases, and beta-glucosidase) when the cells were grown on 2.0% Avicel. Avicel degraded by F. palustris showed a decrease in relative crystallinity from 83% to 78.5% after 14 days of incubation. The characterization study indicated that optimum pH was 4.5 and optimum temperature was 70 degrees C for exoglucanase (cellobiohydrolase) activity. Hydrolysis of Avicel by the crude enzyme from F. palustris yielded 1.6 mg/ml of glucose after 43 h, which corresponded to a cellulose conversion degree of 3.2%. Therefore, this study revealed for the first time that the brown rot basidiomycete F. palustris produces cellulases capable of yielding soluble sugars from crystalline cellulose.  相似文献   

15.
The wide variety of bacteria in the environment permits screening for more efficient cellulases to help overcome current challenges in biofuel production. This study focuses on the isolation of efficient cellulase producing bacteria found in organic fertilizers and paper mill sludges which can be considered for use in large scale biorefining. Pure isolate cultures were screened for cellulase activity. Six isolates: S1, S2, S3, S4, E2, and E4, produced halos greater in diameter than the positive control (Cellulomonas xylanilytica), suggesting high cellulase activities. A portion of the 16S rDNA genes of cellulase positive isolates were amplified and sequenced, then BLASTed to determine likely genera. Phylogenetic analysis revealed genera belonging to two major Phyla of Gram positive bacteria: Firmicutes and Actinobacteria. All isolates were tested for the visible degradation of filter paper; only isolates E2 and E4 (Paenibacillus species) were observed to completely break down filter paper within 72 and 96 h incubation, respectively, under limited oxygen condition. Thus E2 and E4 were selected for the FP assay for quantification of total cellulase activities. It was shown that 1% (w/v) CMC could induce total cellulase activities of 1652.2±61.5 and 1456.5±30.7 μM of glucose equivalents for E2 and E4, respectively. CMC could induce cellulase activities 8 and 5.6X greater than FP, therefore CMC represented a good inducing substrate for cellulase production. The genus Paenibacillus are known to contain some excellent cellulase producing strains, E2 and E4 displayed superior cellulase activities and represent excellent candidates for further cellulase analysis and characterization.  相似文献   

16.
秸秆纤维素分解菌的酶活力测定   总被引:8,自引:0,他引:8  
目的:测定秸秆纤维素分解菌的酶活力。方法:从土壤中分离出具有分解纤维素能力的菌株,采用刚果红染色法进行粗选,得到7株透明圈较大的菌株。将这7株菌株液体发酵培养6d,再分别用滤纸分解度观察、羧甲基纤维素酶活法(CMC)、滤纸酶活法(FPA)和天然纤维素酶活法测定其酶活力。结果:在7株菌株中,F-1、F-2、F-3、F-5的酶活力测定结果与其溶解圈的测定结果、滤纸分解结果基本相同。且天然纤维素酶活力高的菌株,其CMC酶活、FPA酶活也高,滤纸分解效果也比较明显。结论:CMC法、FPA法和天然纤维素酶活法适于测定秸秆纤维素分解菌的酶活力。  相似文献   

17.
Cellobiohydrolase Cel48C from Paenibacillus sp. BP-23, an enzyme displaying limited activity on most cellulosic substrates, was assayed for activity in the presence of other bacterial endo- or exocellulases. Significant enhanced activity was observed when Cel48C was incubated in the presence of Paenibacillus sp. BP-23 endoglucanase Cel9B or Thermobifida fusca cellulases Cel6A and Cel6B, indicating that Cel48C acts synergistically with them. Maximum synergism rates on bacterial microcrystalline cellulose or filter paper were obtained with a mixture of Paenibacillus cellulases Cel9B and Cel48C, accompanied by T. fusca exocellulase Cel6B. Synergism was also observed in cell extracts from recombinant clone E. coli pUCel9-Cel48 expressing the two contiguous Paenibacillus cellulases Cel9B and Cel48C. The enhanced cellulolytic activity displayed by the cellulase mixtures assayed could be used as an efficient tool for biotechnological applications like pulp and paper manufacturing.  相似文献   

18.
About 70 strains of white and brown rot fungi were cultivated on media, containing filter paper cellulose as the main carbon source. The cellulolytic activity of the culture filtrates was measured after different periods of growth by means of the turbidimetric method. The results obtained indicate a difference between the two types of wood decay fungi as to the capacity of attacking the cellulose used in the medium and in the cellulase test. No significant C1activity was found in any of the brown rot cultures whereas all white rot fungi tested exerted a measurable activity on the test substrate. The effect of various carbohydrates and some proteins as inducers of cellulase activity was studied. Especially cellobiose and lactose were active on white rot fungi in this respect, particularly in the presence of yeast extract. Also some brown rot fungi exerted C1-activity after incubation on glucose or cellobiose.  相似文献   

19.
The cellulases of Streptomyces thermodiastaticus (strain 2Sts) and thermomonospora fusca (strain 190Th) were produced with carboxymethyl-cellulose (CMC) serving as the carbon source during growth. Both cellulases act by random internal hydrolysis of the CMC chain, producing cellobiose, glucose, and intermediate length oligosaccharides. Cellobiase was not detected in culture filtrates produced under these conditions.  相似文献   

20.
[背景]根腐病在青稞生产中的危害日趋严重,阻碍了青稞根腐病的有效防控及青海省青稞产业的发展。然而人们对青稞根腐病的研究甚少且病原菌不详。[目的]明确青稞根腐病发生的危害、病原及致病性,为青稞根腐病的防控提供理论依据。[方法]采用常规的组织分离法分离青稞根腐病病原,通过形态鉴定与分子鉴定结合的方法对病原进行鉴定,并采用烧杯水琼脂法测定其致病性。[结果]共分离得到4株青稞根腐病病原菌,鉴定为Clonostachys rosea,有较强的致病性且致病性差异显著,经柯赫氏法则验证为青稞根腐病病原菌,并且是一种新的青稞根腐病病原,该类根腐病也是一种新的根腐类病害,在国内外属首次发现。[结论]Clonostachys rosea可引起青稞根腐病且致病性强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号