共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Many cells develop enhanced adenylate cyclase activity after prolonged exposure to drugs that acutely inhibit the enzyme and it has been suggested that this adaptation may be due to an increase in Gs alpha. We have treated wild-type and Gs alpha-deficient cyc- S49 mouse lymphoma cells with a stable analogue (SMS 201-995) of the inhibitory agonist somatostatin. After incubation with SMS for 24 h, the forskolin-stimulated cAMP synthetic rate in intact cyc- cells was increased by 76%, similar to the increase found in the wild-type cells. Forskolin-stimulated adenylate cyclase activity in the presence of Mn2+ was also increased in membranes prepared from SMS-treated cyc- cells; however, guanine nucleotide-mediated inhibition of adenylate cyclase activity was not changed despite a small decrease in inhibitory Gi alpha subunits detected by immunoblotting. Pretreatment of cyc- cells with pertussis toxin prevented SMS from inducing the enhancement of forskolin-stimulated cAMP accumulation in intact cells. After chronic incubation of cyc- cells with SMS, exposure to N-ethylmaleimide, which abolished receptor-mediated inhibition of cAMP accumulation, did not attenuate the enhanced rate of forskolin-stimulated cAMP synthesis compared to N-ethylmaleimide-treated controls. These results with cyc- cells demonstrate that an adaptive increase in adenylate cyclase activity induced by chronic treatment with an inhibitory drug can occur in the absence of expression of Gs alpha. 相似文献
3.
T Katada G M Bokoch M D Smigel M Ui A G Gilman 《The Journal of biological chemistry》1984,259(6):3586-3595
The inhibitory and stimulatory guanine nucleotide-binding regulatory components (Gi and Gs) of adenylate cyclase both have an alpha X beta subunit structure, and the beta subunits are functionally indistinguishable. GTP-dependent hormonal inhibition of adenylate cyclase and that caused by guanine nucleotide analogs seem to result from dissociation of the subunits of Gi. Such inhibition can be explained by reduction of the concentration of the free alpha subunit of Gs as a result of its interaction with the beta subunit of Gi in normal Gs-containing membranes. However, inhibition in S49 lymphoma cyc- cell membranes presumably cannot be explained by the Gi-Gs interaction, since the activity of the alpha subunit of Gs is not detectable in this variant. Several characteristics of Gi-mediated inhibition of adenylate cyclase have been studied in both S49 cyc- and wild type membranes. There are several similarities between inhibition of forskolin-stimulated adenylate cyclase by guanine nucleotides and somatostatin in cyc- and wild type membranes. 1) Somatostatin-induced inhibition of the enzyme is dependent on GTP; nonhydrolyzable GTP analogs are also effective inhibitors. 2) The effect of guanosine-5'-(3-O-thio)triphosphate (GTP gamma S) is essentially irreversible, and somatostatin accelerates GTP gamma S-induced inhibition. 3) Inhibition of adenylate cyclase by somatostatin or Gpp(NH)p is attenuated by treatment of cells with islet-activating protein (IAP). 4) Both cyc- and wild type membranes contain the substrate for IAP-catalyzed ADP-ribosylation (the alpha subunit of Gi). 5) beta Subunit activity in detergent extracts of membranes is liberated by exposure of the membranes to GTP gamma S. The alpha subunit of Gi in such extracts has a reduced ability to be ADP-ribosylated by IAP, which implies that this subunit is in the GTP gamma S-bound form. The resolved subunits of Gi have been tested as regulators of cyc- and wild type adenylate cyclase under a variety of conditions. The alpha subunit of Gi inhibits forskolin-stimulated adenylate cyclase activity in cyc-, while the beta subunit stimulates; these actions are opposite to those seen with wild type membranes. The inhibitory effects of GTP plus somatostatin (or GTP gamma S) and the alpha subunit of Gi are not additive in cyc- membranes. In wild type, the inhibitory effects of the hormone and GTP gamma S are not additive with those of the beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
4.
The effect of forskolin on adenylate cyclase in S49 wild type and cyc- cells was tested. Forskolin stimulated adenylate cyclase activity in cyc- membranes, particularly with Mn++ as cofactor. Forskolin stimulation of adenylate cyclase in wild type membranes was greater than in cyc- membranes, and the ability of forskolin to stimulate cyc- membranes was enhanced by Lubrol PX extracts of human erythrocyte membranes. Compared to its potent effect on intact wild type cells, forskolin was a poor stimulator of cAMP accumulation in cyc- cells. Cyc- cells proliferated in medium containing forskolin, while the growth of wild type cells in such medium was inhibited and the wild type cells ultimately died. Clones selected from a suspension of wild type cells on the basis of forskolin resistance showed the characteristics of cyc- cells. Thus, forskolin does not substantially activate adenylate cyclase activity in intact cyc- cells. Our data indicate that the guanine nucleotide regulatory protein (G/F) enhances forskolin activation of adenylate cyclase. 相似文献
5.
cyc- S49 cell membranes contain an adenylyl cyclase activity which is stimulated by forskolin and inhibited by guanine nucleotides and NaF. These inhibitory effects are mediated by an inhibitory guanine nucleotide-binding regulatory component (Ni) affecting the adenylyl cyclase catalytic unit (Hildebrandt, J. D., Sekura, R. D., Codina, J., Iyengar, R., Manclark, C. R., and Birnbaumer, L. (1983) Nature (Lond.) 302, 706-709). Since cyc- S49 cells do not contain a stimulatory guanine nucleotide-binding regulatory component (Ns), these membranes were used to study the requirements and kinetics of activation of Ni in the absence of Ns. Activation of Ni by guanyl-5'-yl imidodiphosphate was time-dependent (i.e. hysteretic) and pseudo-irreversible. Although GTP and guanosine 5'-(beta-thio)diphosphate could prevent the inhibition caused by guanyl-5'-yl imidodiphosphate if added simultaneously with it, they could not reverse the inhibited state induced by previous exposure to guanyl-5'-yl imidodiphosphate. Activation of Ni had an absolute requirement for Mg2+. Unlike the activation of Ns, however, which requires millimolar concentrations of Mg2+ in the absence of hormonal stimulation, activation of Ni requires only micromolar concentrations of the divalent cation. These results support the contention that hormones which activate Ni or Ns do so by altering different parameters of a similar activation mechanism. 相似文献
6.
Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters. Withdrawal of GTP-dependent inhibition 总被引:8,自引:0,他引:8
12-O-Tetradecanoylphorbol-13-acetate (TPA) enhances the apparent maximal velocity of adenylate cyclase in S49 lymphoma cells, an effect that seems not to result from an increased rate of activation of the catalytic subunit by the stimulatory GTP-binding protein (Gs) (Bell, J. D., Buxton, I. L. O., and Brunton, L. L. (1985) J. Biol. Chem. 260, 2625-2628). In membranes from wild type S49 cells, this enhancing effect of TPA is largely GTP-dependent; TPA enhances forskolin-stimulated adenylate cyclase activity by 35% in the presence of guanine nucleotide but only slightly (approximately 10%) in its absence. TPA causes comparable results in membranes from the cyc- variant that lacks the GTP-binding subunit of Gs. Blockade of the activity of the inhibitory GTP-binding protein (Gi) by high concentrations of Mg2+ (100 mM) or Mn2+ (3 mM) abolishes the effect of TPA to enhance adenylate cyclase activity in wild type membranes. The potentiation by TPA of cAMP accumulation in intact cells is greater than and not additive with the similar effect of pertussis toxin (an agent known to abolish hormonal inhibition of adenylate cyclase). Kinetic experiments indicate that TPA decreases the rate of activation of Gi by guanine nucleotide. We conclude that the resultant withdrawal of tonic inhibition of adenylate cyclase is one mechanism by which phorbol esters enhance guanine nucleotide-dependent cAMP synthesis. 相似文献
7.
Direct stimulation of adenylate cyclase by mechanical forces in S49 mouse lymphoma cells during hyposmotic swelling. 总被引:6,自引:0,他引:6
P A Watson 《The Journal of biological chemistry》1990,265(12):6569-6575
S49 mouse lymphoma cells respond to swelling deformation with rapid increases in intracellular calcium and cAMP. Experiments demonstrate that these increases in calcium and cAMP concentrations are not coupled in a regulatory manner. Direct inhibition of adenylate cyclase in wild type cells with miconazole prevented swelling-induced accumulation of cAMP. No effect of swelling was observed on the activity of cAMP phosphodiesterase. Additionally, complete inhibition of cAMP phosphodiesterase did not prevent swelling-induced cAMP accumulation. Experiments involving cyc- mutants (lacking the Gs-alpha protein) and 2',5'-dideoxyadenosine indicate that increased adenylate cyclase activity with swelling is not mediated by Gs. No evidence was found for attenuation of Gi-mediated inhibition of adenylate cyclase activity following swelling. In addition, exposure to pertussis toxin or phorbol ester, which disrupts Gi inhibition of adenylate cyclase did not prevent cAMP accumulation following swelling. Disruption of the actin membrane skeleton resulted in a significant accumulation of cAMP which was not further increased by swelling. Disruption of the microtubular cytoskeleton also increased cAMP content in S49 cells which could be further increased by swelling. It is concluded that S49 cell-adenylate cyclase responds directly to mechanical forces transmitted through the actin membrane skeleton. 相似文献
8.
We have examined the cell-free heterologous desensitization of adenylyl cyclase in plasma membrane preparations from S49 wild-type (WT) and kin- cells (which lack cAMP-dependent protein kinase) incubated with purified catalytic subunit of cAMP-dependent protein kinase (cA.PKc). cA.PKc caused a rapid (t1/2 = 40 s) decrease in the hormone responsiveness of adenylyl cyclase in the WT membrane preparations that mimicked the intact cell heterologous desensitization; that is, there was an increase in the Kact for both epinephrine and prostaglandin E1 (PGE1) stimulations of adenylyl cyclase induced at the receptor level because neither forskolin- nor NaF-stimulated activity was affected. The desensitization was independent of agonist occupancy of the receptor, and the effects were blocked both by the active fragment (amino acids 5-22) of the specific inhibitor of cA.PK and by p[NH]ppA. cA.PKc treatment of kin- membranes resulted in a heterologous desensitization that resembled the effects of WT adenylyl cyclase, with the exception that forskolin-stimulated activity was also reproducibly decreased by 24%. cA.PKc had no effect on WT membranes isolated from cells that had previously undergone maximal heterologous desensitization during treatment with 10 microM forskolin. In contrast, cA.PKc-induced heterologous desensitization of kin- membranes was additive with the epinephrine-induced homologous desensitization of intact cells. Cell-free desensitizations were reversed by incubation of membranes with cA.PKc and ADP, conditions that drive the kinase reaction backward. The similarities of our cell-free cA.PKc-mediated heterologous desensitization of adenylyl cyclase with the intact cell desensitization support our hypothesis that heterologous desensitization of the WT lymphoma cells is mediated by cA.PK via a mechanism independent of homologous desensitization. 相似文献
9.
10.
P van Bogaert Y Soukias J P Dehaye M Lambert P Poloczek J Winand R Mayer J Christophe 《Regulatory peptides》1987,17(6):339-348
Adenylate cyclase activity was stimulated by vasoactive intestinal peptide (VIP) in rat parotid membranes, in the presence of 100 microM guanosine triphosphate (GTP). The threshold concentration of VIP was 300 nM and the activity doubled at the maximal VIP concentration tested (30 microM). The relative potency of peptides of the VIP family was: VIP greater than peptide histidine isoleucinamide (PHI) greater than secretin. The beta-adrenergic agent isoproterenol was a more efficient activator of rat parotid adenylate cyclase and its stimulatory effect, like that of VIP, depended on the presence of GTP. The effects of VIP and isoproterenol were both potentiated by 10 microM forskolin. By comparison with rat parotid preparations, membranes from a human parotid gland responded similarly to the VIP family of peptides (VIP greater than PHI greater than secretin). In both rat and human parotid membranes, two proteins (Mr 44 kDa and 53 kDa) of the alpha-subunit of Ns (the guanyl nucleotide-binding stimulatory protein) were labelled by ADP-ribosylation, in the presence of cholera toxin. Taken together, these results indicate that VIP receptors, when coupled to Ns, were able to activate the adenylate cyclase system in rat and human parotid membranes. 相似文献
11.
S49 mouse lymphoma cells were found to be extremely sensitive to the antiproliferative activity of interferon. These characteristics were studied to select for IFN-resistant cell variants. Some 0.6% of the parental S49 cell population were resistant to the antiproliferative and cytotoxic activities of IFN. The resistant cells were cloned and analyzed for their responses to several of the activities of IFN, namely, inhibition of encephalomyocarditis (EMC) virus, murine leukemia virus (MuLV) replications, and the induction of (2'-5') oligoadenylate synthetase. Among the clones selected some were highly resistant while others demonstrated only partial responsiveness to IFN. S49 cells demonstrate tubular structures in the cytoplasm. These structures were previously reported to be antigenically related to mouse mammary tumor virus (MMTV). We report here that IFN treatment decreases the expression of these cytoplasmic viral structures as revealed by electron microscopy. To correlate this novel antiviral activity to the more established functions of IFN we utilized the above mentioned S49 IFN-resistant variants. The anti-MMTV activity of IFN correlated with the other effects of IFN in both the highly resistant and partially responsive S49 clones. Our findings indicate that a relatively high proportion of S49 cells vary in their response to IFN. The defect in the resistant cells appears to affect a primary response to IFN which is common to its diverse activities. Furthermore, the effect of IFN on MMTV-related structures involves the usual pathway of IFN action. 相似文献
12.
S49 mouse lymphoma cells are deficient in hypoxanthine transport 总被引:1,自引:0,他引:1
The rate of uptake of hypoxanthine in S49 cells was only about 2-5% of the rate of hypoxanthine transport observed in many other types of mammalian cells, and of the rate of uridine transport in this and other cell types. Part of the slow entry of hypoxanthine seems to be due to non-mediated permeation, but the remainder is saturable, strongly inhibited by uridine, nitrobenzylthioinosine and dipyridamole and not detectable in a nucleoside-transport-deficient mutant of S49 cells (AE1). The inhibition of hypoxanthine transport in S49 cells by nitrobenzylthioinosine resembles the inhibition of nucleoside transport in these and other mammalian cells, whereas it contrasts with the resistance of hypoxanthine transport to nitrobenzylthioinosine in all types of mammalian cells that have been investigated. We conclude that S49 cells lack the hypoxanthine transport system common to other types of cells and that hypoxanthine entry into these cells is mediated, although very inefficiently, by the nucleoside transporter. In contrast, adenine transport in S49 and AE1 cells was comparable to that in other types of cells. 相似文献
13.
Modulation by islet-activating protein of adenylate cyclase activity in C6 glioma cells 总被引:21,自引:0,他引:21
The cAMP content of intact cells as well as adenylate cyclase of the membrane-rich particulate fractions was studied with C6 glioma cells that had been exposed to the culture medium supplemented with islet-activating protein (IAP), one of the pertussis toxins. Both the increase in the cellular cAMP content in response to a beta-adrenergic agonist and the stimulation of membrane adenylate cyclase by the beta-agonist and/or GTP were markedly enhanced by the IAP treatment of C6 cells, but no change was induced in affinities of the agonist (or an antagonist) or GTP for their respective sites of action (or binding). The concentration of IAP required for the half-maximal enhancement was as low as 1 pg/ml, when the time of cell exposure to the toxin was prolonged to 18 h. No enhancement was observed for the basal cAMP content or basal enzyme activity, nor was activation of adenylate cyclase by Gpp(NH)p (or NaF) affected by IAP treatment. The Vmax value of a specific and low Km GTPase was significantly smaller in the membranes of IAP-treated cells than in those of control cells. Cholera toxin treatment of cells activated adenylate cyclase without exerting any influence on these IAP actions. Thus, IAP would appear to enhance beta-receptor-coupled stimulation of adenylate cyclase, in a manner distinct from cholera toxin, by rendering more GTP available to the GTP sites on the regulatory subunit of the receptor-enzyme system. 相似文献
14.
Kamanova J Kofronova O Masin J Genth H Vojtova J Linhartova I Benada O Just I Sebo P 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(8):5587-5597
Adenylate cyclase toxin (CyaA or ACT) is a key virulence factor of pathogenic Bordetellae. It penetrates phagocytes expressing the alpha(M)beta(2) integrin (CD11b/CD18, Mac-1 or CR3) and paralyzes their bactericidal capacities by uncontrolled conversion of ATP into a key signaling molecule, cAMP. Using pull-down activity assays and transfections with mutant Rho family GTPases, we show that cAMP signaling of CyaA causes transient and selective inactivation of RhoA in mouse macrophages in the absence of detectable activation of Rac1, Rac2, or RhoG. This CyaA/cAMP-induced drop of RhoA activity yielded dephosphorylation of the actin filament severing protein cofilin and massive actin cytoskeleton rearrangements, which were paralleled by rapidly manifested macrophage ruffling and a rapid and unexpected loss of macropinocytic fluid phase uptake. As shown in this study for the first time, CyaA/cAMP signaling further caused a rapid and near-complete block of complement-mediated phagocytosis. Induction of unproductive membrane ruffling, hence, represents a novel sophisticated mechanism of down-modulation of bactericidal activities of macrophages and a new paradigm for action of bacterial toxins that hijack host cell signaling by manipulating cellular cAMP levels. 相似文献
15.
16.
Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased 45Ca2+ uptake into the cell monolayer, and (f) increased 86Rb+ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca2+ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca2+-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca2+ gating. 相似文献
17.
The purpose of this study was to examine activity of adenylate cyclase (AC) and its cAMP-dependent phosphorylation by cAMP-dependent protein kinase (PKA) in the membrane of rabbit myometrium. Isoproterenol (IP) significantly increased AC activity of nonpregnant rabbits myometrium plasma membranes. However, during pregnancy AC of myometrium plasma membranes did not respond to IP. Phosphorylation of the myometrium membrane by PKA was followed by significantly decreased response of AC to IP. 相似文献
18.
19.
Reconstitution of cyc- S49 membranes by in vitro translated Gs alpha. Membrane anchorage and functional implications 总被引:3,自引:0,他引:3
After ADP-ribosylation by cholera toxin which promotes dissociation of the subunits, the alpha-subunit of Gs (Gs alpha) remained strongly associated with plasma membranes of wild-type S49 cells, since its interaction with the membrane was insensitive to 1 M KCl. Its association with the membrane was partially disrupted by 6 M urea and totally abolished by treatment with alkali at pH greater than or equal to 11.5. In vitro translated Gs alpha could interact with plasma membranes from the cyc- mutant of S49 cells as revealed by its cosedimentation with the membrane fraction and incubation of reconstituted membranes with GTP gamma S did not alter anchorage of Gs alpha. The characteristics of the association of in vitro translated Gs alpha with cyc- membranes after GTP gamma S treatment, i.e. sensitivity to 1 M KCl, 6 M urea and alkali treatment, were very similar to those described for the ADP-ribosylated form in wild-type membranes. Restoration of the coupling between the adrenergic receptor and adenylate cyclase further confirmed the vectorial reconstitution of cyc- membranes by in vitro translated alpha-subunit of Gs. 相似文献
20.
Guanine nucleotide regulation of membrane adenylate cyclase activity was uniquely modified after exposure of 3T3 mouse fibroblasts to low concentrations of islet-activating protein (IAP), pertussis toxin. The action of IAP, which occurred after a lag time, was durable and irreversible, and was associated with ADP-ribosylation of a membrane Mr = 41,000 protein. GTP, but not Gpp(NH)p, was more efficient and persistent in activating adenylate cyclase in membranes from IAP-treated cells than membranes from control cells. GTP and Gpp(NH)p caused marked inhibition of adenylate cyclase when the enzyme system was converted to its highly activated state by cholera toxin treatment or fluoride addition, presumably as a result of their interaction with the specific binding protein which is responsible for inhibition of adenylate cyclase. This inhibition was totally abolished by IAP treatment of cells, making it very likely that IAP preferentially modulates GTP inhibitory responses, thereby increasing GTP-dependent activation and negating GTP-mediated inhibition of adenylate cyclase. 相似文献