首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A comparative study of the composition and degree of sulfation of glycosaminoglycans (GAG) in proteoglycans isolated from normal animal tissues and from actively proliferating embryonic, tumour and regenerating tissues was carried out. Significant differences in the ratios of various types of sulfated GAG were revealed. The relative content of chondroitin sulfate AC in actively proliferating tissues was considerably increased. It was found that all types of sulfated GAG in actively proliferating tissues, with the exception of regenerating tissue, are characterized by a lower degree of sulfation as compared to GAG from resting tissues. The experimental results are discussed in terms of the role of proteoglycans in the organization of extracellular matrix and in control of cell proliferation.  相似文献   

2.
At the cellular level the head activator from hydra acts as a mitogen or growth hormone. It shortens cell cycle times by stimulating cells arrested in the G2 period to go through mitosis. This is true for continuously proliferating cell types like epithelial cells, gland cells, and interstitial cells, and for differentiating interstitial cells including those undergoing a last mitosis before differentiating into nerves or nematocytes.  相似文献   

3.
Zinc has been postulated as an important nutritional factor involved in growth promotion; however, the cellular mechanisms involved in the effects of zinc on linear growth remain to be elucidated. This study was conducted to evaluate the effects of zinc on the proliferation rate of epiphyseal growth plate chondrocytes and on the structural characteristics of the proteoglycans synthesized by these cells. For these purposes, hypertrophic and proliferating chondrocytes were isolated from the tibiae of 1- and 5-week-old chickens, respectively. Chondrocytes were cultured under serum-free conditions and primary cultures were used. The results showed that zinc stimulated proliferation by 40-50% above the baseline in the case of proliferating chondrocytes, but it had no effect on hypertrophic chondrocytes. Zinc had neither any effects on mean charge density of proteoglycans synthesized by hypertrophic chondrocytes nor in their hydrodynamic size. In contrast, zinc induced an increase in mean charge density and a decrease of hydrodynamic size of proteoglycans synthesized by proliferating chondrocytes. In both cell types zinc had no effect on the composition and hydrodynamic size of the glycosaminoglycan chains. The increased ability of proliferating chondrocytes cultured in the presence of zinc to synthesize 3'-phosphoadenosine 5'-phosphosulfate (PAPS) could be explained by the induction of enzymes participating in the sulfation pathway of proteoglycans. Therefore, the increase in mean charge density of proteoglycans observed in this study may be explained by an increase of the degree of sulfation of proteoglycan molecules. We speculate that the effect of zinc on linear growth may be explained at a cellular level by: a) an increase in proliferation rates of proliferating chondrocytes, and b) increased synthesis of highly charged proteoglycan molecules which decreases mineralization.  相似文献   

4.
Injury of skeletal muscle is followed by muscle regeneration in which new muscle tissue is formed from the proliferating mononuclear myoblasts, and by systemic response to stress that exposes proliferating myoblasts to increased glucocorticoid (GC) concentration. Because of its various causes, hypoxia is a frequent condition affecting skeletal muscle, and therefore both processes, which importantly determine the outcome of the injury, often proceed under hypoxic conditions. It is therefore important to identify and characterize in proliferating human myoblasts: 1) response to hypoxia which is generally organized by hypoxia-inducible factor-1α (HIF-1α); 2) response to GCs which is mediated through the isoforms of glucocorticoid receptors (GRs) and 11β-hydroxysteroid dehydrogenases (11β-HSDs), and 3) the response to GCs under the hypoxic conditions and the influence of this combination on the factors controlling myoblast proliferation. Using real-time PCR, Western blotting, and HIF-1α small-interfering RNA silencing, we demonstrated that cultured human myoblasts possess both, the HIF-1α-based response to hypoxia, and the GC response system composed of GRα and types 1 and 2 11β-HSDs. However, using combined dexamethasone and hypoxia treatments, we demonstrated that these two systems operate practically without mutual interactions. A seemingly surprising separation of the two systems that both organize response to hypoxic stress can be explained on the evolutionary basis: the phylogenetically older HIF-1α response is a protection at the cellular level, whereas the GC stress response protects the organism as a whole. This necessitates actions, like downregulation of IL-6 secretion and vascular endothelial growth factor, that might not be of direct benefit for the affected myoblasts.  相似文献   

5.
Taking into consideration the common origin of lung carcinomas from the basal-intermediate cells of covering epithelia of bronchi and bronchioles (which have preserved their ability to divide and differentiate under different stimuli), and the development of tumors in at least two phases, the main histogenetic characteristics of lung carcinomas are discussed. There are pointed out the various and multiple promoting factors acting at the level of proliferating cell foci resulted from the initiating action of chemical carcinogens and the varied deepness of the cellular changes induced. Under these conditions, the malignantly transformed cells may remain poorly differentiated, like during the histogenesis of macrocellular carcinomas (which might be influenced in the course of proliferation, within some limits, by active factors), they may preserve the stereotype of cylindrocubic development, like during the formation of cylindrocubic carcinomas (bronchiolo-alveolar cell carcinomas included), or may suffer metaplastic changes and form subsequently epidermoid carcinomas; the inclusion of Kultschitzky-APUD cells within proliferating foci may lead to bronchial carcinoids or to microcellular carcinomas. The particular forms of lung carcinomas (giant celled, adenocystic, mucoepidermoid) histogenetically reflect the mixed or concomitant stereotypical evolutions of basal cells while preserving some secretory possibilities.  相似文献   

6.
Herlyn  D.  Somasundaram  R.  Zaloudik  J.  Jacob  L.  Harris  D.  Kieny  M. -P.  Sears  H.  Mastrangelo  M. 《Cell biochemistry and biophysics》1994,24(1-3):143-153
The CO17-1A/GA733 antigen (Ag), bound by monoclonal antibodies (MAb) CO17-1A and GA733 that define two different epitopes on the Ag, has proven a useful target in passive and active immunotherapy of colorectal carcinoma (CRC). Previous studies suggest that the antitumor effects demonstrated in MAb-treated patients may be mediated by idiotypic cascades. In approaches to active immunotherapy against the Ag, polyclonal goat and monoclonal rat anti-idiotypic antibodies (Ab2) directed against MAb CO17-1A or GA733 (Ab1) were administered as alum precipitates to 54 patients with CRC (stage Dukes' B, C, and D). The majority of the patients treated with the various Ab2 preparations developed anti-anti-idiotypic antibodies (Ab3) that specifically bound to the CO17-1A or GA733 epitope and shared idiotopes with the corresponding Ab1. Approximately 30% of the patients tested developed specific cellular immunity, i.e., Ag-specific T-cells mediating delayed-type hypersensitivity (DTH) reaction in vivo or proliferating on stimulation with the Ag in vitro. The humoral and cellular immune responses may underlie the clinical responses observed in some of the treated patients. Recently, the CO17-1A/GA733 Ag has been molecularly cloned and expressed in baculo-, adeno-, and vaccinia viruses. In preclinical studies, these recombinant Ag preparations elicited specific humoral immunity (cytotoxic antibodies) and cellular immunity (DTH-reactive and proliferative T-cells), similar to the native Ag. Antibody titers elicited in experimental animals by recombinant Ag were significantly higher than those elicited by Ab2, presumably because Ag expresses numerous epitopes, whereas Ab2 mimics a single epitope. Recombinant CO17-1A/GA733 Ag has potential as a vaccine for CRC patients.  相似文献   

7.
Cellular senescence and chromatin structure   总被引:1,自引:0,他引:1  
Funayama R  Ishikawa F 《Chromosoma》2007,116(5):431-440
Cellular senescence is characterized by stable cell cycle arrest that is triggered by various forms of stress stimuli. Senescent cells show a series of morphological and physiological alterations including a flat and enlarged morphology, an increase in acidic β-galactosidase activity, chromatin condensation, and changes in gene expression pattern. These features are not observed in proliferating cells or quiescent cells in vitro. Using these senescence markers, cellular senescence has been shown to occur in benign or premalignant lesions but not in malignant lesions and to act as a tumor-suppressing mechanism in vivo. The onset and maintenance of the senescent state are regulated by two tumor suppressor proteins, p53 and Rb, which mediate senescence signals through p38 mitogen-activated protein kinase and cyclin-dependent kinase inhibitors. Alterations of chromatin structure are believed to contribute to the irreversible nature of the senescent state. Senescent cells form characteristic heterochromatin structure called senescence-associated heterochromatic foci (SAHFs), which may repress the expression of proliferation-promoting genes, such as E2F target genes. Recent studies have provided molecular insights into the structure and the mechanism of SAHF formation. In this paper, we review the role of cellular senescence in tumor suppression in vivo and the molecular mechanism of stable growth arrest in senescent cells, focusing on the special form of heterochromatin, SAHFs.  相似文献   

8.
Keratinocytes electroporated with human papillomavirus (HPV) DNA (HPV-6, 11, 16 and 18) exhibited an increased cellular proliferation which was quantitated as microcolony and macrocolony formation. However, only macrocolonies induced by HPV-16 or HPV-18 DNA (the two viral types most commonly found in human cervical carcinomas) gave rise to proliferating, poorly-stratified colonies when grown in the presence of serum and calcium. Hydrocortisone increased the frequency of these differentiation-resistant colonies, and studies showed that they were immortalized, contained one copy of viral DNA per cell, expressed three discrete species of viral RNA and synthesized the viral E7 protein. HPV-induced cellular proliferation and altered differentiation are therefore separable events and may represent the activity of different viral genes.  相似文献   

9.
The human papillomavirus type 18 E7 protein subverts the pRb/E2F pathway to promote S-phase reentry by postmitotic, differentiated primary human keratinocytes in support of viral DNA amplification. We prepared a panel of HPV-18 E7 mutations in pRb binding or in casein kinase II (CKII) phosphorylation. Our results showed that the ability of E7 binding to pRb correlated with the activation of DNA polymerase alpha or cyclin E to various extents in differentiated keratinocytes of organotypic cultures but was insufficient to induce the proliferating cell nuclear antigen. Proteins mutated in the CKII recognition sequence or in one or both serine substrates (S32 and S34) bound pRb in vitro, but only those with negative charges at these two residues induced proliferating cell nuclear antigen effectively. Nevertheless, unscheduled cellular DNA synthesis occurred very inefficiently relative to the wild-type E7, if at all. Thus, both pRb binding and CKII phosphorylation of E7 are critical for activating cellular genes essential for S-phase entry.  相似文献   

10.
Primary human fibroblasts in tissue culture undergo a limited number of cell divisions before entering a non-replicative "senescent" state. At early population doublings (PD), fibroblasts are proliferation-competent displaying exponential growth. During further cell passaging, an increasing number of cells become cell cycle arrested and finally senescent. This transition from proliferating to senescent cells is driven by a number of endogenous and exogenous stress factors. Here, we have developed a new quantitative model for the stepwise transition from proliferating human fibroblasts (P) via reversibly cell cycle arrested (C) to irreversibly arrested senescent cells (S). In this model, the transition from P to C and to S is driven by a stress function γ and a cellular stress response function F which describes the time-delayed cellular response to experimentally induced irradiation stress. The application of this model based on senescence marker quantification at the single-cell level allowed to discriminate between the cellular states P, C, and S and delivers the transition rates between the P, C and S states for different human fibroblast cell types. Model-derived quantification unexpectedly revealed significant differences in the stress response of different fibroblast cell lines. Evaluating marker specificity, we found that SA-β-Gal is a good quantitative marker for cellular senescence in WI-38 and BJ cells, however much less so in MRC-5 cells. Furthermore we found that WI-38 cells are more sensitive to stress than BJ and MRC-5 cells. Thus, the explicit separation of stress induction from the cellular stress response, and the differentiation between three cellular states P, C and S allows for the first time to quantitatively assess the response of primary human fibroblasts towards endogenous and exogenous stress during cellular ageing.  相似文献   

11.
Previously we demonstrated that proliferation of peripheral blood mononuclear cells (PBMC) causes a five-fold increase in cellular uptake of biotin; this increase is mediated by an increased number of biotin transporters on the PBMC surface. In the present study, we investigated the specificity of this phenomenon by determining whether the cellular uptake of riboflavin also increases in proliferating PBMC and whether the increase is also mediated by an increased number of transporters per cell. We characterized [3H]riboflavin uptake in both quiescent and proliferating PBMC. In quiescent PBMC, [3H]riboflavin uptake exhibited saturation kinetics and was reduced by addition of unlabeled riboflavin (P < 0.05) or lumichrome (P < 0.01). These observations are consistent with transporter-mediated uptake. [3H]Riboflavin uptake was reduced at 4 degrees C compared with 37 degrees C (P < 0.01) and by 2, 4-dinitrophenol (P < 0.05) but not by ouabain or incubation in sodium-free medium. These data provide evidence for an energy-dependent but sodium-independent transporter. Proliferating PBMC accumulated approximately four times more [3H]riboflavin than quiescent PBMC (P < 0.05). Because both transporter affinity and transporter number per cell (as judged by maximal transport rate) were similar in quiescent and proliferating PBMC, we hypothesize that the increased riboflavin uptake by proliferating PBMC reflects only increased cellular volume. To test this hypothesis, PBMC volume was reduced using hyperosmolar medium; [3H]riboflavin uptake decreased to about 50% of isotonic controls (P < 0.01). Thus we conclude that proliferating PBMC increase cellular content of riboflavin and biotin by two different mechanisms.  相似文献   

12.
Reactive astrogliosis is the universal response to any brain insult. It is characterized by cellular hypertrophy, up-regulation of the astrocyte marker glial fibrillary acidic protein (GFAP), and proliferation. The source of these proliferating cells is under intense debate. Progenitor cells derived from the subventricular zone (SVZ), cells positive for chondroitin sulfate proteoglycan (NG2(+)), and de-differentiated astrocytes have been proposed as the origin of proliferating cells following injury. We have analyzed the effect of intraventricular-applied 6-hydroxydopamine (6-OHDA) on the proliferation and morphology of astrocytes in rat cortex and striatum by means of immunohistochemistry and confocal laser microscopy. At 4 days post-lesion, GFAP expression increased markedly. A subpopulation of the GFAP(+) cells co-expressed Ki-67, indicating that these cells were proliferating. To investigate whether these cells (1) arose from migrating SVZ progenitor cells, (2) derived from NG2(+) progenitor cells, or (3) de-differentiated from resident astrocytes, we studied the expression of the migration marker doublecortin (Dcx), the oligodendrocyte progenitor marker NG2, and the progenitor markers Nestin and Pax6. The proliferating Ki-67(+) cells co-expressed Nestin and Pax6, whereas no co-expression of Ki-67 with NG2 or the migration marker Dcx was observed. Thus, resident astrocytes de-differentiate, in response to the intraventricular application of 6-OHDA, to a phenotype resembling radial glia cells, which represent transient astrocyte precursors during development. An understanding of the mechanisms of the de-differentiation of mature astrocytes might be useful for designing new approaches to cell therapy in neurodegenerative diseases such as Parkinson's disease.  相似文献   

13.
The thin section fracture-label technique has been recently used to analyze the distribution and compartmentalization of fully glycosylated components on intracellular membranes. Labelling with the lectin wheat germ agglutinin over the freeze-fractured membranes of Golgi apparatus in various secretory and non-secretory cells as well as in human peripheral lymphocytes was always very weak or absent even over the trans-most cisternae. In order to investigate if the labelling density may reflect the cellular activity in membrane biogenesis, we used in this study wheat germ agglutinin fracture-label of rapidly proliferating cells and mitogen-activated lymphocytes. Labelling over the fractured cisternae of the medial and trans portions of the Golgi apparatus was intense. Treatment with cycloheximide of proliferating cells induced a drastic reduction of the labelling over the Golgi cisternae.  相似文献   

14.
15.
Determination of the transient increase in plasma homocysteine following administration of excess methionine is an established procedure for the diagnosis of defects in homocysteine metabolism in patients. This so-called methionine loading test has been used for 25 years, but the knowledge of the response of various cell types to excess methionine is limited. In the present paper we investigated homocysteine export from various cell types cultured in the presence of increasing concentrations (15-1,000 microM) of methionine. For comparison of homocysteine export, the export rates per million cells were plotted versus cell density for proliferating cells, and versus time for quiescent cells. The homocysteine export from growing cells was greatest during early to mid-exponential growth phase, and then decreased as a function of cell density. The export rate was higher from phytohemagglutinin-stimulated than non-stimulated lymphocytes, and higher from proliferating than from quiescent fibroblasts. The hepatocytes showed highest export rate among the cell types investigated. The enhancement of homocysteine export by excess methionine ranged from no stimulation to marked enhancement, depending on cell type investigated, and three different response patterns could be distinguished: 1) quiescent fibroblasts and growing murine lymphoma cell showed no significant increase in homocysteine export following methionine loading; export from human lymphocytes was only slightly enhanced in the presence of excess methionine; 2) the homocysteine export from proliferating hepatoma cells and benign and transformed fibroblasts was stimulated three to eightfold by increasing the methionine concentration in the medium from 15 to 1,000 microM; and 3) the response to methionine loading was particularly increased (about 15-fold) in non-transformed primary hepatocytes in stationary culture. The results outline a potentially useful procedure for the comparison of homocysteine export during cell growth in the presence of various concentrations of methionine. The results are discussed in relation to the special feature of homocysteine metabolism in various cell types and tissues including liver, and to the possible source of plasma homocysteine following methionine loading in vivo.  相似文献   

16.
Prenatal transplantation of stem cells is an exciting frontier for the treatment of many congenital diseases. The fetus may be an ideal recipient for stem cells, as it is immunologically immature and has rapidly proliferating cellular compartments that may support the engraftment of transplanted cells. Mesenchymal stem cells (MSC), given their ability to differentiate among multiple lineages, could potentially be used to treat diseases such as osteogenesis imperfecta, muscular dystrophy, and a variety of others that can be diagnosed in utero. We have shown, using a human-sheep in utero xenotransplantation model, that human MSC have the ability to engraft, differentiate into many tissue types, and survive for over 1 year in fetal lamb recipients. This observation warrants further studies of the behavior of MSC following systemic or site-directed transplantation.  相似文献   

17.
18.
The expression of different types of Ca(2+)-channels was studied using the whole-cell patch-clamp technique in cultured rat aortic smooth-muscle myocytes. Ca(2+)-currents were identified as either low- or high voltage-activated (ICa,LVA or ICa,HVA, respectively) based on their distinct voltage-dependences of activation and inactivation, decay kinetics using Ba2+ as the charge carrier and sensitivity to dihydropyridines. The heterogeneity in the functional expression of the two types of Ca(2+)-channels in the cultured myocytes delineated four distinct phenotypes; (i), cells exhibiting only LVA currents; (ii), cells exhibiting only HVA currents; (iii), cells exhibiting both LVA and HVA currents and (iv), cells exhibiting no current. The myocytes exclusively expressed HVA currents both during the first five days in primary culture and after the cells had reached confluence (> 15 days). In contrast, LVA currents were expressed transiently between 5 and 15 days, during which time the cells were proliferating and had transient loss of contractility. Thus, both LVA and HVA Ca(2+)-current types contribute to Ca(2+)-signalling in cultured rat aortic myocytes. However, the differential expression of the two Ca2+ current types associated with differences in contractile and proliferative phenotypes suggest that they serve distinct cellular functions. Our results are consistent with the idea that LVA current expression is important for cell proliferation.  相似文献   

19.
Characterization of cells with proliferative activity after a brain injury   总被引:5,自引:0,他引:5  
The cellular responses to a brain injury are important steps in restoring the integrity and function of the brain. Proliferating cells, such as reactive astrocytes, oligodendrocyte precursor cells and microglia remodel the injured tissue. To spatially and temporally characterize the initial cellular responses in vivo, proliferating cells were pulse-labeled with BrdU soon after (the 2nd day) a cortical cryo-injury, and their fate was investigated by double labeling with an anti-BrdU antibody and antibodies to various cellular markers. Three days after the cryo-injury, a significant proportion of BrdU-positive cells were positive for NG2-proteoglycan, suggesting that oligodendrocyte progenitors (OPCs) were induced in response to injury. One-two weeks after the cryo-injury, the number of OPC was reduced and GFAP/BrdU double-positive cells, in turn, became dominant, while cells with mature oligodendrocyte markers did not increase significantly. Neuronal markers were rarely co-localized with BrdU immunoreactivity throughout the period studied. These findings imply that OPCs are prone to differentiate to astrocytes in the lesioned site. In this cryo-injury model, treatment with thyroid hormone (T4) altered cell fate; the increase in the number of GFAP/BrdU-positive cells was significantly diminished, and there was an increased number of mature oligodendrocytes (CNPase, PLP-positive) exhibiting BrdU immunoreactivity. These findings suggest that modification of proliferating progenitors in injured brain by hormonal or chemical treatment might benefit functional regeneration.  相似文献   

20.
The incorporation of radioactive precursors into purine and pyrimidine nucleotides via 'de novo' and 'salvage' pathways was measured in normal lymphocytes, resting as well as proliferating, and lymphoblastic cell-line cells (MOLT-3). Lymphocytes stimulated with anti-CD3 were taken as actively proliferating lymphocytes (35% in the S-phase, 40 h after stimulation). The incorporation of the precursors in the purine and pyrimidine ribonucleotides was measured by a combination of anion-exchange high-performance liquid chromatography (HPLC) and on-line radioactivity measurement. The actively proliferating normal lymphocytes and MOLT-3 cells incorporated 30-500 times more of the various precursors in the ribonucleotides compared to normal resting lymphocytes. The imbalance in the nucleotide pool found in proliferating normal and lymphoblastic cells was reflected in the incorporation pattern of the various precursors. The activities of the branch-point enzymes IMP dehydrogenase and CTP synthetase most likely determine the differences in the composition of the nucleotide pools between resting and proliferating cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号