首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Incorporation of [ methyl -3H]thymidine into bacterial DNA was determined for a range of axenic anaerobic bacterial cultures: fermentative heterotrophs, sulphate-reducing bacteria, purple sulphur bacteria, acetogens and methanogens. Anaerobically growing Bacillus sp. and the obligate aerobe Thiobacillus ferrooxidans were also investigated. Actively growing cultures of sulphate-reducing bacteria belonging to the genera Desulfovibrio, Desulfotomaculum, Desulfobacter, Desulfobotulus and Desulfobulbus , purple sulphur bacteria ( Chromatium vinosum OP2 and Thiocapsa roseopersicina OP1), methanogens ( Methanococcus GS16 and Methanosarcina barkeri ) and an acetogen ( Acetobacterium woodii ) did not incorporate [ methyl -3H]thymidine into DNA. The only obligate anaerobes in which thymidine incorporation into DNA could be unequivocally demonstrated were members of the genus Clostridium . Anaerobically growing Bacillus sp. also incorporated thymidine. These data demonstrate that pure culture representatives of major groups of anaerobic bacteria involved in the terminal oxidation of organic carbon and anoxygenic phototrophs within sediments are unable to incorporate [ methyl -3H]thymidine into DNA, although some obligate and facultative anaerobes can. Variability in thymidine incorporation amongst pure culture isolates indicates that unless existing techniques can be calibrated to take this into consideration then productivity estimates in both aerobic and anaerobic environments may be greatly underestimated using the [ methyl -3H]thymidine technique.  相似文献   

2.
11 species from 7 genera of Chromatiaceae, depositing sulfur globules inside their cells, were analyzed by comparative oligonucleotide cataloguing of their 16S ribosomal RNA in order to determine the genealogical relationships to each other and to other Gram-negative phototrophic purple and non-phototrophic eubacteria. The rRNA data reveal that members of Chromatium, Amoebobacter, Lamprocystis, Thiocapsa, Thiocystis, Thiodictyon and Thiospirillum form a phylogenetically coherent grouping. The species investigated do not in each case cluster according to their present classification. Organisms storing sulfur inside their cells are moderately related to but clearly separated from members of Ectothiorhodospira, with which they form one of several sublines of group III of phototrophic purple bacteria as defined by Gibson et al. (1979).Dedicated to Professor H. G. Schlegel on the occasion of his 60th birthday.  相似文献   

3.
A new species of halophilic photosynthetic bacteria, Rhodospirillum salinarum, has been isolated and described. Its natural habitat are the terminal crystallization ponds of solar salt production plants. R. salinarum grows optimally at 42°C in the presence of 6–18% NaCl (w/v). Growth requirements are complex, yeast extract and peptone being required both for aerobic heterotrophic and for anaerobic phototrophic growth. Increasing concentrations of NaCl in the growth media did not give rise to any corresponding increase in intracellular concentrations of K+, Na+, polyalcohols or amino acids. Malate dehydrogenase from R. salinarum is not halophilic, being inhibited even at low concentrations of Na+ or K+. The GC mol % of DNA from R. salinarum is markedly higher than that for DNA from R. salexigens, the only previously described halophilic species of the genus Rhodospirillum.  相似文献   

4.
The polar lipids of photosynthetic purple bacteria of the genera Chromatium, Thiocapsa, Thiocystis, Ectothiorhodospira, Rhodopseudomonas, Rhodospirillum, and Rhodomicrobium were analyzed. Characteristic compositions of the polar lipids were found for most of the Rhodospirillaceae and Chromatiaceae species. Phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin were the major phospholipids in most species. Phosphatidylcholine was present as a major component in all species of the genus Ectothiorhodospira, but was not detected in the remaining Chromatiaceae. It was also present in most of the Rhodospirillaceae species. No glycolipids were found in any of the Ectothiorhodospira species. In the Rhodospirillaceae, the glycolipids mono- and digalactosyl diglycerides were generally absent. Sulfoquinovosyl diglyceride was present in significant amounts in at least three species of the Rhodospirillaceae and may have been present in most of them, but only in traces. All of the Chromatiaceae species contained several glycolipids, one of which was similar to monogalactosyl diglyceride. Ornithine lipids were found in large amounts in most Rhodospirillaceae, but were absent in Ectothiorhodospira and in the other Chromatiaceae. The species examined could be divided into three groups on the basis of their lipid composition: (i) the genus Ectothiorhodospira; (ii) the remaining Chromatiaceae; and (iii) the Rhodospirillaceae. The data presented are compared with those available in the literature, and differences from other phototrophic organisms are discussed.  相似文献   

5.
为了解柴达木盆地茶卡盐湖、柯柯盐湖和小柴旦盐湖等三大硫酸镁亚型高盐盐湖可分离嗜盐耐盐菌的种群多样性,采用RM中、高盐培养基筛选分离可培养的嗜盐菌和耐盐菌,扩增16S rRNA基因序列进行种属鉴定和环境因子典范对应分析(CCA),选取优势菌属构建系统发育树,并采用高效液相色谱法(HPLC)检测次级代谢产物四氢嘧啶(Ect...  相似文献   

6.
Occurrence of Purple Sulfur Bacteria in a Sewage Treatment Lagoon   总被引:5,自引:4,他引:1       下载免费PDF全文
The ecology of purple sulfur bacteria in a sewage oxidation lagoon was investigated. Chemical changes in the lagoon were investigated by monitoring biochemical oxygen demand (BOD(5)), sulfide, sulfate, phosphate, total carbohydrates, volatile acids, alkalinity, and pH. Lagoon water temperatures were observed daily. Microbial ecological relationships were deduced by enumerating coliforms, total bacteria other than anaerobes [Tryptone Glucose Extract (TGE) agar], methane formers such as Methanobacterium formicicum, sulfate reducers, purple sulfur bacteria, and algae. Finally, two strains of purple sulfur bacteria were characterized. Two populations, purple sulfur bacteria and total bacteria (TGE agar), reached maximal concentrations in the warmest part of the 1967 summer. Purple sulfur bacteria reached maximal numbers as concentrations of sulfide and volatile acids were depleted, whereas carbohydrates and alkalinity remained unchanged. Low sulfate levels, which were not limiting for sulfate reducers, may be attributable to storage of sulfur within purple sulfur bacteria. No biological, chemical, or physical agent was linked to the removal of coliforms. The increase of algae in the late summer of 1967 may have been related to the low organic content of the lagoon during this period. Although lagoon pH (7.7 to 8.2) was favorable for purple sulfur bacterial growth, temperatures and sulfides were not optimal in the lagoon for these organisms. Chromatium vinosum and Thiocapsa floridana (the predominant lagoon purple sulfur organism in 1967 and 1968) utilized certain carbohydrates, amino acids, volatile acids, and Krebs cycle intermediates. Also purple sulfur bacteria lowered BOD levels as demonstrated by the growth of T. floridana in sterilized sewage.  相似文献   

7.
Sediment samples taken at depths from 5 to 50 m in Borge Bay, Signy Island, Antarctica yielded purple ( Chromatiaceae ) and green ( Chlorobiaceae ) phototrophic bacteria when inoculated into Winogradsky columns or directly into Pfennig's medium. Pure cultures of Thiocapsa roseopersicina (2 strains), Thiocapsa pfennigii, Chromatium gracile, Chromatium vinosum, Thiocystis violaceae, Chlorobium limicola, Chlorobium vibrioforme and Prostaecochloris aestuarii were subsequently isolated from these enrichments. Thiocapsa roseopersicina and Chromatium vinosum were the species isolated most commonly. None of the isolates showed evidence of temperature adaptation; optimum growth was achieved between 25–30°C but all grew readily at low white light levels (spectral irradiance 160 μW/cm2) with mean generation times ranging from 8·9 to 14·2 h at 23°C depending upon the isolate. The green phototrophs grew readily in blue light (440–510 nm) of low irradiance (126 μW/cm2) which penetrates to a depth of 40–50 m in coastal waters surrounding Signy Island. Under these conditions Chlorobium limicola and Chlorobium vibrioforme had mean generation times of 22 and 12·2 h respectively compared with 10·3 and 8·9 when grown in white light of similar total irradiance. None of the purple phototrophs grew under blue light but they grew under yellow light (peak transmission 590 nm, irradiance 137 μW/cm2). Chromatium gracile and Thiocapsa roseopersicina had mean generation times of 22·3 and 18·3 h respectively compared with 14·2 and 12·3 h in white light of similar total irradiance.  相似文献   

8.
Abstract In the shallow lagoon of Prévost (43°30'N, 3°54'E; French Mediterranean coast), red waters occurring periodically during warm summers are a consequence of a succession of ecological events beginning in the early spring with a bloom of algae ( Ulva lactuca ). In summer 1977, a red water was analyzed; in the early summer, the water turned anoxic and became rich in sulfide which originated from sulfate reduction in the first 10 cm of the sediment. Numbers of both phototrophic and sulfate-reducing bacteria (SRB) increased during spring and summer, and the genera in the prevailing populations did not change: Thiocapsa (80%) among the phototrophic bacteria and Desulfovibrio and Desulfobacter among the SRB. They were also dominant during the period of red waters. A few Chromatium and Thiocystis species were also identified. During red water periods, these bacteria grew very actively, removing all the sulfide produced by SRB, and accumulated in the whole water column. Consequently, the sulfate level increased to 5 mmol·1−1 higher than the theoretical sulfate level calculated from salinity, showing the active oxidation of sulfide by phototrophic bacteria. After the dystrophic crisis, oxic conditions were reestablished and the phototrophic bacterial biomass was partly grazed by zoobenthos organisms which densely populated the sediment surface.  相似文献   

9.
Shallow coastal waters, where phototrophic purple sulfur bacteria (PSB) regularly form massive blooms, are subjected to massive diurnal and event-driven changes of physicochemical conditions including temperature and salinity. To analyze the ability of PSB to cope with these environmental factors and to compete in complex communities we have studied changes of the environmental community of PSB of a Baltic Sea lagoon under experimental enrichment conditions with controlled variation of temperature and NaCl concentration. For the first time, changes within a community of PSB were specifically analyzed using the photosynthetic reaction center genes pufL and M by RFLP and cloning experiments. The most abundant PSB phylotypes in the habitat were found along the NaCl gradient from freshwater conditions up to 7.5% NaCl. They were accompanied by smaller numbers of purple nonsulfur bacteria and aerobic anoxygenic phototrophic bacteria. Major components of the PSB community of the brackish lagoon were affiliated to PSB genera and species known as marine, halophilic or salt-tolerant, including species of M arichromatium, H alochromatium, T hiorhodococcus, A llochromatium, T hiocapsa, T hiorhodovibrio, and T hiohalocapsa. A dramatic shift occurred at elevated temperatures of 41 and 44°C when M arichromatium gracile became most prominent which was not detected at lower temperatures.  相似文献   

10.
Abstract Four strictly anaerobic, chemoorganotrophic halophiles were isolated from the hypersaline surface sediments of the evaporating closed lagoon at the rim of Salton Sea, California, and of Big Soda Lake, Nevada, whose condition was not strictly anaerobic. All of the isolates were Gram-negative, motile, non-spore-forming, moderately halophilic eubacteria and required a minimum concentration of 3–10% NaCl in the growth medium. Among the four isolates, strain SS-21 could grow at more than 30% NaCl concentration, and strain M-20 was an alkalophine. Isolation of these bacteria suggests that a variety of anaerobic halophiles is widely distributed in hypersaline environments.  相似文献   

11.
The lipopolysaccharides (LPS) of three species of purple sulfur bacteria (Chromatiaceae), Thiocystis violacea, Thiocapsa pfennigii, and the moderately thermophilic bacterium Chromatium tepidum, were isolated. The LPS of Thiocystis violacea and Chromatium tepidum contained typical O-specific sugars, indicating O-chains. Long O-chains were confirmed for these species by sodium deoxycholate gel electrophoresis of their LPS. Thiocapsa pfennigii, however, had short or no O-chains. The core region of the LPS of all three species comprised D-glycero-D-mannoheptose as the only heptose and 2-keto-3-deoxyoctonate. The lipid A, obtained from the LPS by mild acid hydrolysis, contained glucosamine as the main amino sugar. Amide-bound 3-hydroxymyristic acid was the only hydroxy fatty acid. The main ester-bound fatty acid in all lipid A fractions was 12:0. Mannose and small amounts of 2,3-diamino-2,3-dideoxy-D-glucose were common constituents of the lipid A of the three Chromatiaceae species investigated. All lipid A fractions were essentially free of phosphate.  相似文献   

12.
Quinones of phototrophic purple bacteria   总被引:1,自引:0,他引:1  
Abstract The quinone composition of the recognized species of the phototrophic purple nonsulfur bacteria, the Ectothiorhodospiraceae, and some Chromatiaceae species has been determined. Altogether more than 50 strains of 33 species have been investigated. Some of the purple nonsulfur bacteria have Q-10 as sole quinone component, while others have Q-10, Q-9, or Q-8, respectively, together with menaquinones of the same isoprenoid chain length as the major components. Rhodoquinone is present in Rhodospirillum rubrum and Rhodospirillum photometricum . The Ectothiorhodospira species have either Q-8 and MK-8, like the Chromatiaceae species, or Q-7 and MK-7 as the major components.  相似文献   

13.
A new species of halophilic anoxygenic purple bacteria of the genus Rhodospirillum is described. The new organism, isolated from water/sediment of the Dead Sea, was vibrio-shaped and an obligate halophile. Growth was best at 12% NaCl, with only weak growth occurring at 6% or 21% NaCl. Growth occurred at Mg2+ concentrations up to 1 M but optimal growth was obtained at 0.05–0.1 M Mg2+. Bromide was well tolerated as an alternative anion to chloride. The new organism is an obligate phototroph, growing photoheterotrophically in media containing yeast extract and acetate or a few other organic compounds. Growth of the Dead Sea Rhodospirillum species under optimal culture conditions was slow (minimum td 20 h). Cells contained bacteriochlorophyll a and carotenoids of the spirilloxanthin series and mass cultures were pink in color. Absorption spectra revealed the presence of a B875 (light-harvesting I) but no B800/B850 (light-harvesting II) photopigment complex. The new organism shares a number of properties with the previously described halophilic phototrophic bacterium Rhodospirillum salinarum and was shown to be related to this phototroph by 16S rRNA sequencing. However, because of its salinity requirements, photosynthetic properties, and isolation from the Dead Sea, the new phototroph is proposed as a new species of the genus Rhodospirillum, R. sodomense.  相似文献   

14.
A novel type of purple sulfur bacterium was isolated from a hypersaline sulfur spring on the shore of the Dead Sea. The cells of the isolate are irregularly rod-shaped or curved, and motile by means of a tuft of polar flagella. The photosynthetic system, containing bacteriochlorophyll a and carotenoids of the spirilloxanthin series, is located on stacks of lamellar membranes in the cell cytoplasm. The organism can grow either photoautotrophically with sulfide as electron donor, which is oxidized via extracellular sulfur to sulfate, or photoheterotrophically, using acetate, succinate, fumarate, malate or pyruvate as carbon sources. The bacterium is obligately anaerobic, and requires a source of reduced sulfur for growth. The isolate is moderately halophilic, and grows optimally at NaCl concentrations between 3 and 8%, temperatures between 30 and 45°C, and neutral pH. 16S ribosomal RNA oligonucleotide cataloging suggests a close relationship to purple sulfur bacteria of the genus Ectothiorhodospira. As the isolate differs greatly from the described members of the genus Ectothiorhodospira, we describe the isolate as a new species, and propose the name Ectothiorhodospira marismortui sp. nov.  相似文献   

15.
In hypersaline environments bacteria are exposed to a high osmotic pressure caused by the surrounding high salt concentrations. Halophilic microorganisms have specific strategies for balancing the osmotic pressure and surviving in these extreme conditions. Halophilic fermentative bacteria form taxonomically and phylogenetically a coherent group mainly belonging to the order Halanaerobiales. In this review, halophilic anaerobic fermentative bacteria in terms of taxonomy and phylogeny, special characteristics, survival strategies, and potential for biotechnological applications in a wide variety of branches, such as production of hydrogen, are discussed.  相似文献   

16.
The bacteria of the sulphur cycle   总被引:5,自引:0,他引:5  
This paper concentrates on the bacteria involved in the reductions and oxidations of inorganic sulphur compounds under anaerobic conditions. The genera of the dissimilatory sulphate-reducing bacteria known today are discussed with respect to their different capacities to decompose and oxidize various products of fermentative degradations of organic matter. The utilization of molecular hydrogen and formate by sulphate reducers shifts fermentations towards the energetically more favourable formation of acetate. Since acetate amounts to about two-thirds of the degradation products of organic matter, the complete anaerobic oxidation of acetate by several genera of the sulphate-reducing bacteria is an important function for terminal oxidation in sulphate-sufficient environments. The results of pure culture studies agree well with ecological investigations of several authors who showed the significance of sulphate reduction for the complete oxidation of organic matter in anaerobic marine habitats. In the dissimilatory sulphur-reducing bacteria of the genus Desulfuromonas the oxidation of acetate is linked to the reduction of elemental sulphur. Major characteristics of the anaerobic, sulphide-oxidizing phototrophic green and purple sulphur bacteria as well as of some facultative anoxygenic cyanobacteria, are given. By the formation of elemental sulphur and sulphate, these bacteria establish sulphur cycles with the sulphide-forming bacteria. In view of the morphological diversity of the sulphate-reducing bacteria and question of possible evolutionary relations to phototrophic sulphur bacteria is raised.  相似文献   

17.
Abstract Cell volumes of different purple phototrophic bacteria were measured using several techniques: Coulter counter, phase contrast and epifluorescence microscopy. Volumes of Chromatium warmingii, C. minutissimum, Thiocapsa roseopersicina , and Thiocystis gelatinosa were measured as the organisms were accumulating sulfur. Cell volumes of Rhodobacter capsulatus were measured under different growth conditions including both anaerobically in the light and aerobically in the dark. Size distributions were flatter and more irregular by phase contrast microscopy than by Coulter counter. This latter technique could not be used in many cases, however, because phototrophic bacteria associate to form chains and aggregates of cells. In addition, Coulter counter measurements for organisms with capsules gave volumes intermediate between the volume of the cell and the volume of the capsule, as measured by phase contrast microscopy. Epifluorescence gave similar results to phase contrast if organic solvents were not used in the preparation of samples. Finally, cell volume of two phototrophic bacteria was shown to change both with depth and with season in a natural system.  相似文献   

18.
Abstract There exists a wide diversity of halophilic eubacteria with chemoorganotrophic-aerobic metabolism. Most of them have a more moderate salt response than halophilic archaebacteria, falling into the category of moderately halophilic bacteria. Although mostly isolated from salted food, their natural habitats are hypersaline waters of intermediate levels of salt concentration, and hypersaline soils. In hypersaline waters, the taxonomic groups found are the ones that also predominate in ocean waters, such as representatives of the genera Vibrio, Pseudomonas and Flavobacterium . However, in hypersaline soils, the taxonomic groups present are those typical of normal soils, such as Pseudomonas, Bacillus and Gram-positive cocci. The halophilic bacteria from soils are also more resistant to exposure to low salt concentrations than the organisms isolated from waters. Therefore, it seems that the general characteristics of the hypersaline environments drastically affect the types of halophilic bacteria present, and that the halophilic character has arisen in many phylogenetic groups of eubacteria.  相似文献   

19.
Abstract Several purple and green sulfur bacteria (genera Chromatium, Thiocapsa and Chlorobium ) were tested for their sensitivity to different antimicrobial agents by a disc diffusion assay, using thioacetamide as a source of hydrogen sulfide for plate growth. Chlorobium limicola strains were more sensitive to amoxicillin, erythromycin and nalidixic acid, whereas gentamicin and netilmicin were more active against the purple bacteria tested. None of the organisms were sensitive to oxacillin and trimethoprim + sulfamethoxazole. The critical concentrations at the edge of the inhibition zone were also calculated for three organisms and the antimicrobials colistin, mitomycin C, penicillin G, rifampicin, and streptomycin. The results obtained suggest that colistin, mitomycin C, penicillin G would provide selective conditions against the growth of Chlorobium limicola strains, while streptomycin and other aminoglycoside antibiotics would select against purple bacteria.  相似文献   

20.
Thioredoxin was isolated from a photosynthetic purple nonsulfur bacterium, Rhodospirillum rubrum, and its primary structure was determined by high-performance tandem mass spectrometry. The sequence identity of R. rubrum thioredoxin to Escherichia coli thioredoxin was intermediate to those of the Chlorobium thiosulfatophilum and Chromatium vinosum proteins. The results indicate that R. rubrum has an NADP-thioredoxin system similar to that of other photosynthetic purple bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号