首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been shown that cats can be protected against infection with the prototypic Petaluma strain of feline immunodeficiency virus (FIV(PET)) using vaccines based on either inactivated virus particles or replication-defective proviral DNA. However, the utility of such vaccines in the field is uncertain, given the absence of consistent protection against antigenically distinct strains and the concern that the Petaluma strain may be an unrepresentative, attenuated isolate. Since reduction of viral pathogenicity and dissemination may be useful outcomes of vaccination, even in the absence of complete protection, we tested whether either of these vaccine strategies ameliorates the early course of infection following challenge with heterologous and more virulent isolates. We now report that an inactivated virus vaccine, which generates high levels of virus neutralizing antibodies, confers reduced virus loads following challenge with two heterologous isolates, FIV(AM6) and FIV(GL8). This vaccine also prevented the marked early decline in CD4/CD8 ratio seen in FIV(GL8)-infected cats. In contrast, DNA vaccines based on either FIV(PET) or FIV(GL8), which induce cell-mediated responses but no detectable antiviral antibodies, protected a fraction of cats against infection with FIV(PET) but had no measurable effect on virus load when the infecting virus was FIV(GL8). These results indicate that the more virulent FIV(GL8) is intrinsically more resistant to vaccinal immunity than the FIV(PET) strain and that a broad spectrum of responses which includes virus neutralizing antibodies is a desirable goal for lentivirus vaccine development.  相似文献   

2.
More than 90% of cats immunized with inactivated whole infected-cell or cell-free feline immunodeficiency virus (FIV) vaccines were protected against intraperitoneal infection with 10 50% animal infectious doses of either homologous FIV Petaluma (28 of 30 cats) or heterologous FIV Dixon strain (27 of 28 cats). All 15 control cats were readily infected with either strain of FIV. Protection appears to correlate with antiviral envelope antibody levels by a mechanism yet to be determined.  相似文献   

3.
Eight monkeys were immunized at 0, 4, 9, and 18 weeks with a total of 2 mg of formalin inactivated SIVmac vaccine with Ribi adjuvant. Two weeks after the last booster four immunized monkeys and two controls were challenged with 10 MID50 of live homologous virus SIVmac, and the remaining four vaccinated animals along with two controls were challenged with the heterologous SIVsm strain. All eight vaccinated monkeys resisted the virus challenge, whereas all controls became infected. Three months after the first challenge the monkeys were rechallenged with the same virus strain, without further boosting. Two of four vaccinated monkeys were still resistant to the homologous SIV strain, and three of four monkeys were resistant to the heterologous SIVsm strain. This study demonstrates vaccine induced cross-protection between SIV strains.  相似文献   

4.
Feline immunodeficiency virus (FIV) infection is a naturally occurring lentiviral infection of cats which progresses to immunodeficiency in a manner strikingly similar to that observed in HIV infection in man. The rectal and cervico-vaginal mucosae are common routes of transmission of HIV and it has been shown that the gastrointestinal tract is an important site of HIV infection and primary pathology. Although biting is the principle mode of transmission for FIV, we have shown that it is possible to reliably infect cats via both the rectal and vaginal routes. Using a biotin-streptavidin linked immunoperoxidase technique we have detected FIV core and envelope proteins in the colonic follicle associated epithelial cells, cells within the lymphoid follice and occasional cells in the lamina propria. Further, in the intestine we have detected FIV RNA and proviral DNA in epithelial cells, colonic lymphoid aggregates and isolated lamina propria cells. We have studied a group of asymptotic cats which have been rectally infected with FIV for 1 year or longer and shown an increase in the number of lamina propria CD8+ cells and greater levels of IL-2, IL-6, IL-10 and gamma-IFN mRNA. Since these cats remained clinically healthy these results might suggest that both local antibody and class I restricted cytotoxic lymphocytes (CTLs) may play a role in control of viral replication. We have investigated a range of vaccination regimes for their ability to generate responses which would protect from rectal challenge with virulent virus. Cats have been immunized with whole virus (FIV-pet, FIV-GLA-8), V3, V3MAP or C2 with cholera toxin (CT), or Quil A based adjuvants via rectal, intra-nasal, parenteral or targeted lymph node routes, and challenged rectally with ten mucosal cat infectious doses (MCID) of FIV-GLA-8. We have shown that the adjuvant effects of cholera toxin and Quil A are not influenced by the route of delivery (intraperitoneal (i.p.) versus rectal) with CT more effective in stimulating humoral and Quil A more effective in stimulating cellular responses to FIV antigens. However we have shown that, quantitatively, CT is more effective when used as an adjuvant via the intra-nasal than the rectal route. Recently, we have begun to investigate if the promising results obtained with targeted lymph node (TLN) vaccination in monkeys could be reproduced in the cat. We have shown that TLN was more effective than rectal immunisation in stimulating both humoral and proliferative responses. In a preliminary study we have also been able to detect FIV specific CTLs and have observed protection from rectal challenge in four out of four cats.  相似文献   

5.
6.
Murine leukemia virus (MLV)-derived envelope proteins containing alterations in or adjacent to the highly conserved PHQ motif present at the N terminus of the envelope surface subunit (SU) are incorporated into vector particles but are not infectious due to a postbinding block to viral entry. These mutants can be rendered infectious by the addition of soluble receptor-binding domain (RBD) proteins in the culture medium. The RBD proteins that rescue the infectivity of these defective MLV vectors can be derived from the same MLV or from other MLVs that use distinct receptors to mediate entry. We have now constructed functional immunologically reactive gibbon ape leukemia virus (GALV) envelope proteins, tagged with a feline leukemia virus (FeLV)-derived epitope tag, which are efficiently incorporated into infectious particles. Tagged GALV envelope proteins bind specifically to cells expressing the phosphate transporter protein Pit1, demonstrating for the first time that Pit1 is the binding receptor for GALV and not a coreceptor or another type of GALV entry factor. We have also determined that GALV particles bearing SU proteins with an insertion C-terminal to the PHQ motif (GALV I(10)) bind Pit1 but fail to infect cells. Incubation with soluble GALV RBD renders GALV I(10) particles infectious, whereas incubation with soluble RBDs from MLV or FeLV-B does not. This finding is consistent with the results obtained by Lauring et al. using FeLV-T, a virus that employs Pit1 as a receptor but requires soluble FeLV RBD for entry. MLV and GALV RBDs are not able to render FeLV-T infectious (A. S. Lauring, M. M. Anderson, and J. Overbaugh, J. Virol. 75:8888-8898, 2001). Together, these results suggest that fusion-defective FeLV-T and GALV are restricted to homologous RBD rescue of infectivity.  相似文献   

7.
The ability of two vaccine preparations (UV-psoralen inactivated SIV administered intramuscularly and live-attenuated SIV inoculated intravaginally) to prevent genital transmission of virulent SIV in rhesus macaques was tested. Two of six whole-inactivated SIV vaccinated macaques, three of five live-attenuated SIV vaccinated macaques, and four of six controls became persistently infected after two separate intravaginal inoculations with a 50% animal infectious dose of virulent SIV. No association was observed between levels of SIV-specific antibodies in serum or vaginal secretions prior to challenge and subsequent infection with virulent SIV.  相似文献   

8.
This study attempted to determine if SIV vaccines could protect against challenge with peripheral blood mononuclear cells (PBMCs) from an SIV infected rhesus monkey. Mature Macaca mulatta were vaccinated four times with formalin inactivated SIVmac32H administered in MDP adjuvant (n = 8) or SIVmac32H ISCOM vaccine (n = 8). Controls included animals vaccinated with measles virus in MDP adjuvant (n = 4) or ISCOM (n = 4) preparations. Of each group, half were challenged intravenously (IV) with ten MID50 of the cell-free SIVmac32H (11-88) SIV stock and half were challenged with ten MID30 of PBMCs from the SIVmac32H infected macaque 1XC. All SIV vaccinated animals challenged with the 11-88 cell free stock of SIVmac32H were protected, whereas only half of the SIV vaccinated monkeys receiving the same infectious dose of the 1XC cell stock were protected.  相似文献   

9.
Domestic cats endure infections by all three subfamilies of the retroviridae: lentiviruses (feline immunodeficiency virus [FIV]), gammaretroviruses (feline leukemia virus [FeLV]), and spumaretroviruses (feline foamy virus [FFV]). Thus, cats present an insight into the evolution of the host-retrovirus relationship and the development of intrinsic/innate immune mechanisms. Tetherin (BST-2) is an interferon-inducible transmembrane protein that inhibits the release of enveloped viruses from infected cells. Here, we characterize the feline homologue of tetherin and assess its effects on the replication of FIV. Tetherin was expressed in many feline cell lines, and expression was induced by interferons, including alpha interferon (IFN-α), IFN-ω, and IFN-γ. Like human tetherin, feline tetherin displayed potent inhibition of FIV and HIV-1 particle release; however, this activity resisted antagonism by either HIV-1 Vpu or the FIV Env and "OrfA" proteins. Further, as overexpression of complete FIV genomes in trans could not overcome feline tetherin, these data suggest that FIV lacks a functional tetherin antagonist. However, when expressed stably in feline cell lines, tetherin did not abrogate the replication of FIV; indeed, syncytium formation was significantly enhanced in tetherin-expressing cells infected with cell culture-adapted (CD134-independent) strains of FIV (FIV Fca-F14 and FIV Pco-CoLV). Thus, while tetherin may prevent the release of nascent viral particles, cell-to-cell spread remains efficient in the presence of abundant viral receptors and tetherin upregulation may enhance syncytium formation. Accordingly, tetherin expression in vivo may promote the selective expansion of viral variants capable of more efficient cell-to-cell spread.  相似文献   

10.
Prior infection with a nef-deleted simian immunodeficiency virus (SIV) protects macaques not only against a homologous pathogenic SIV challenge but also against challenge with a chimeric SIV expressing a human immunodeficiency virus type 1 env gene (SHIV). Since this SHIV is itself nonpathogenic, we sought to explore the use of a nonpathogenic SHIV as a live, attenuated AIDS virus vaccine. Four cynomolgus monkeys infected for greater than 600 days with a chimeric virus composed of SIVmac 239 expressing the human immunodeficiency virus type 1 HXBc2 env, tat, and rev genes were challenged intravenously with 100 animal infectious doses of the J5 clone of SIVmac 32H, an isolate derived by in vivo passage of SIVmac 251. Three of the four monkeys became infected with SIVmac. This observation underlines the difficulty, even with a live virus vaccine, in protecting against an AIDS virus infection.  相似文献   

11.
All six cats passively immunized with sera from either feline immunodeficiency virus (FIV)-vaccinated cats or cats infected with FIV (Petaluma strain) were protected from homologous FIV infection at a challenge dose that infected all six control cats. Passive immunization with sera from cats vaccinated with uninfected allogeneic T cells used to grow the vaccine virus did not protect either of two cats against the same FIV challenge. These results suggest that antiviral humoral immunity, perhaps in synergy with anticellular antibodies, may be responsible for previously reported vaccine protection.  相似文献   

12.
Transmission of pathogens from domestic animals to wildlife populations (spill-over) has precipitated local wildlife extinctions in multiple geographic locations. Identifying such events before they cause population declines requires differentiating spillover from endemic disease, a challenge complicated by a lack of baseline data from wildlife populations that are isolated from domestic animals. We tested sera collected from 12 ocelots (Leopardus pardalis) native to Barro Colorado Island, Panama, which is free of domestic animals, for antibodies to feline herpes virus, feline calicivirus, feline corona virus, feline panleukopenia virus, canine distemper virus, and feline immunodeficiency virus (FIV), typically a species-specific infection. Samples also were tested for feline leukemia virus antigens. Positive tests results were only observed for FIV; 50% of the ocelots were positive. We hypothesize that isolation of this population has prevented introduction of pathogens typically attributed to contact with domestic animals. The high density of ocelots on Barro Colorado Island may contribute to a high prevalence of FIV infection, as would be expected with increased contact rates among conspecifics in a geographically restricted population.  相似文献   

13.
14.
Cats were immunized three times with different recombinant feline immunodeficiency virus (FIV) candidate vaccines. Recombinant vaccinia virus (rVV)-expressed envelope glycoprotein with (vGR657) or without (vGR657 x 15) the cleavage site and an FIV envelope bacterial fusion protein (beta-Galactosidase-Env) were incorporated into immune-stimulating complexes or adjuvanted with Quil A. Although all immunized cats developed antibodies against the envelope protein, only the cats vaccinated with the rVV-expressed envelope glycoproteins developed antibodies which neutralized FIV infection of Crandell feline kidney cells. These antibodies failed to neutralize infection of thymocytes with a molecularly cloned homologous FIV. After the third immunization the cats were challenged with homologous FIV. Two weeks after challenge the cell-associated viral load proved to be significantly higher in the cats immunized with vGR657 and vGR657 x 15 than in the other cats. The cats immunized with vGR657 and vGR657 x 15 also developed antibodies against the Gag proteins more rapidly than the cats immunized with beta-Galactosidase-Env or the control cats. This suggested that immunization with rVV-expressed glycoprotein of FIV results in enhanced infectivity of FIV. It was shown that the observed enhancement could be transferred to naive cats with plasma collected at the day of challenge.  相似文献   

15.
The extraordinary genetic diversity of human immunodeficiency virus type 1 (HIV-1) is a major problem to overcome in the development of an effective vaccine. In the most reliable animal model of HIV-1 infection, chimpanzees were immunized with various combinations of HIV-1 antigens, which were derived primarily from the surface glycoprotein, gp160, of HIV-1 strains LAI and MN. The immunogens also included a live recombinant canarypox virus expressing a gp160-MN protein. In one experiment, two chimpanzees were immunized multiple times; one animal received antigens derived only from HIV-1LAI, and the second animal received antigens from both HIV-1LAI and HIV-1MN. In another experiment, four chimpanzees were immunized in parallel a total of five times over 18 months; two animals received purified gp160 and V3-MN peptides, whereas the other two animals received the recombinant canarypox virus and gp160. At 3 months after the final booster, all immunized and naive control chimpanzees were challenged by intravenous inoculation of HIV-1SF2; therefore, the study represented an intrasubtype B heterologous virus challenge. Virologic and serologic follow-up showed that the controls and the two chimpanzees immunized with the live recombinant canarypox virus became infected, whereas the other animals that were immunized with gp160 and V3-MN peptides were protected from infection. Evaluation of both cellular and humoral HIV-specific immune responses at the time of infectious HIV-1 challenge identified the following as possible correlates of protection: antibody titers to the V3 loop of MN and neutralizing antibody titers to HIV-1MN or HIV-1LAI, but not to HIV-1SF2. The results of this study indicate that vaccine-mediated protection against intravenous infection with heterologous HIV-1 strains of the same subtype is possible with some immunogens.  相似文献   

16.
We compared the efficacy of immunization with either simian immunodeficiency virus (SIV) Env glycoprotein (Env), Env plus Gag proteins (Gag-Env), or whole inactivated virus (WIV), with or without recombinant live vaccinia vector (VV) priming, in protecting 23 rhesus macaques (six vaccine and two control groups) from challenge with SIVmac251 clone BK28. Vaccination elicited high titers of syncytium-inhibiting and anti-Env (gp120/gp160) antibodies in all vaccinated macaques and anti-Gag (p27) antibodies in groups immunized with WIV or Gag-Env. Only WIV-immunized macaques developed anticell (HuT78) antibodies. After homologous low-dose intravenous virus challenge, we used frequency of virus isolation, provirus burden, and change in antibody titers to define four levels of resistance to SIV infection as follows. (i) No infection ("sterilizing" immunity) was induced only in WIV-immunized animals. (ii) Abortive infection (strong immunity) was defined when virus or provirus were detected early in the postchallenge period but not thereafter and no evidence of virus or provirus was detected in terminal tissues. This response was observed in two animals (one VV-Env and one Gag-Env). (iii) Suppression of infection (incomplete or partial immunity) described a gradient of virus suppression manifested by termination of viremia, declining postchallenge antibody titers, and low levels (composite mean = 9.1 copies per 10(6) cells) of provirus detectable in peripheral blood mononuclear cells or lymphoid tissues at termination (40 weeks postchallenge). This response occurred in the majority (8 of 12) of subunit-vaccinated animals. (iv) Active infection (no immunity) was characterized by persistent virus isolation from blood mononuclear cells, increasing viral antibody titers postchallenge, and high levels (composite mean = 198 copies per 10(6) cells) of provirus in terminal tissues and blood. Active infection developed in all controls and two of three VV-Gag-Env-immunized animals. The results of this study restate the protective effect of inactivated whole virus vaccines produced in heterologous cells but more importantly demonstrate that a gradient of suppression of challenge virus growth, reflecting partial resistance to SIV infection, is induced by subunit vaccination. The latter finding may be pertinent to studies with human immunodeficiency virus vaccines, in which it is plausible that vaccination may elicit significant suppression of virus infection and pathogenicity rather than sterilizing immunity.  相似文献   

17.
Tumor necrosis factor alpha (TNF-alpha) induced morphologic changes such as chromatin condensation and cell shrinkage in a feline fibroblastic cell line (CRFK) chronically infected with feline immunodeficiency virus (FIV) but not in uninfected CRFK cells. DNA extracted from TNF-alpha-treated CRFK cells infected with FIV showed a ladder of nucleosomal DNA, indicating that this cytocidal effect by TNF-alpha was due to programmed cell death, or apoptosis. These findings may have implications for understanding the pathogenesis of FIV infection and for the design of specific therapeutic strategies for AIDS in humans as well as cats.  相似文献   

18.
Two ALVAC (canarypox virus)-based recombinant viruses expressing the feline leukemia virus (FeLV) subgroup A env and gag genes were assessed for their protective efficacy in cats. Both recombinant viruses contained the entire gag gene. ALVAC-FL also expressed the entire envelope glycoprotein, while ALVAC-FL(dl IS) expressed an env-specific gene product deleted of the putative immunosuppressive region. Although only 50% of the cats vaccinated with ALVAC-FL(dl IS) were protected against persistent viremia after oronasal exposure to a homologous FeLV isolate, all cats administered ALVAC-FL resisted the challenge exposure. Significantly, protection was afforded in the absence of detectable FeLV-neutralizing antibodies. These results represent the first effective vaccination of cats against FeLV with a poxvirus-based recombinant vector and have implications that are relevant not only to FeLV vaccine development but also to developing vaccines against other retroviruses, including human immunodeficiency virus.  相似文献   

19.
Development of feline immunodeficiency virus (FIV) infection in cats as a small animal model for lentiviral immunodeficiency disease has been hampered by the prolonged and variable disease course following experimental infection. To address this issue, we generated high-titer, unselected FIV stocks by pooling plasma from cats acutely infected with a subgroup C FIV isolate designated CABCpadyOOC (FIV-C-PGammer). Subsequent infection with this virus pool resulted in rapidly progressive, fatal disease in greater than 50% of infected cats. Accelerated FIV disease was characterized by rapid and progressive CD4+ T-cell loss, lymphadenopathy, weight loss, lymphoid depletion, and severe thymic atrophy. Mortality and rate of disease progression were affected by the age of each cat at infection and whether the virus source animal was in the acute or chronic stage of infection. The rapid FIV disease syndrome was consistently associated with systemic lymphoid depletion, clinical disease, and susceptibility to opportunistic infections, analogous to accelerated and/or terminal HIV-1 infection. The results of this study demonstrate that FIV infection is a valid small animal model for lentiviral immunodeficiency disease.  相似文献   

20.
Naked DNA vaccines expressing the prM and E genes of two tick-borne flaviviruses, Russian spring summer encephalitis (RSSE) virus and Central European encephalitis (CEE) virus were evaluated in mice. The vaccines were administered by particle bombardment of DNA-coated gold beads by Accell gene gun inoculation. Two immunizations of 0.5 to 1 microg of RSSE or CEE constructs/dose, delivered at 4-week intervals, elicited cross-reactive antibodies detectable by enzyme-linked immunosorbent assay and high-titer neutralizing antibodies to CEE virus. Cross-challenge experiments demonstrated that either vaccine induced protective immunity to homologous or heterologous RSSE or CEE virus challenge. The absence of antibody titer increases after challenge and the presence of antibodies to E and prM, but not NS1, both before and after challenge suggest that the vaccines prevented productive replication of the challenge virus. One vaccination with 0.5 microg of CEE virus DNA provided protective immunity for at least 2 months, and two vaccinations protected mice from challenge with CEE virus for at least 6 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号