首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution conformation of a 21-residue vasoconstrictor peptide endothelin-1 (ET-1) in water-ethylene glycol has been determined by two-dimensional 1H-NMR spectroscopy and constrained molecular dynamics simulations. The N-terminus (residues 1-4) appears to undergo conformational averaging and no single structure consistent with the NMR constraints could be found for this region. Residues 5-8 form a turn, and residues 9-16 exist in a helical conformation. A flexible 'hinge' between residues 8-9 allows various orientations of the turn relative to the helix. Another 'hinge' at residue 17 connects the extended C-terminus to the bicyclic core region (residues 1-15). Residues important for binding and biological activity form a contiguous surface on one side of the helix, with the two disulfides extending from the other side of the helix.  相似文献   

2.
Retroviral nucleocapsid proteins (NCPs) are CCHC-type zinc finger proteins that mediate virion RNA binding activities associated with retrovirus assembly and genomic RNA encapsidation. Mason-Pfizer monkey virus (MPMV), a type D retrovirus, encodes a 96-amino acid nucleocapsid protein, which contains two Cys-X2-Cys-X4-His-X4-Cys (CCHC) zinc fingers connected by an unusually long 15-amino acid linker. Homonuclear, two-dimensional sensitivity-enhanced 15N-1H, three-dimensional 15N-1H, and triple resonance NMR spectroscopy have been used to determine the solution structure and residue-specific backbone dynamics of the structured core domain of MPMV NCP containing residues 21-80. Structure calculations and spectral density mapping of N-H bond vector mobility reveal that MPMV NCP 21-80 is best described as two independently folded, rotationally uncorrelated globular domains connected by a seven-residue flexible linker consisting of residues 42-48. The N-terminal CCHC zinc finger domain (residues 24-37) appears to adopt a fold like that described previously for HIV-1 NCP; however, residues within this domain and the immediately adjacent linker region (residues 38-41) are characterized by extensive conformational averaging on the micros-ms time scale at 25 degrees C. In contrast to other NCPs, residues 49-77, which includes the C-terminal CCHC zinc-finger (residues 53-66), comprise a well-folded globular domain with the Val49-Pro-Gly-Leu52 sequence and C-terminal tail residues 67-77 characterized by amide proton exchange properties and 15N R1, R2, and (1H-15N) NOE values indistinguishable to residues in the core C-terminal finger. Twelve refined structural models of MPMV NCP residues 49-80 (pairwise backbone RMSD of 0.77 A) reveal that the side chains of the conserved Pro50 and Trp62 are in van der Waals contact with one another. Residues 70-73 in the C-terminal tail adopt a reverse turn-like structure. Ile77 is involved in extensive van der Waals contact with the core finger domain, while the side chains of Ser68 and Asn75 appear to form hydrogen bonds that stabilize the overall fold of this domain. These residues outside of the core finger structure are conserved in D-type and related retroviral NCPs, e.g., MMTV NCP, suggesting that the structure of MPMV NCP may be representative of this subclass of retroviral NCPs.  相似文献   

3.
D Kohda  F Inagaki 《Biochemistry》1992,31(3):677-685
The interaction of mouse epidermal growth factor (mEGF) with micelles of a phospholipid analogue, perdeuterated dodecylphosphocholine (DPC), was investigated by two-dimensional 1H NMR. Sequence-specific resonance assignments of the micelle-bound mEGF have been made, and the chemical shifts were compared with those in the absence of DPC. DPC induced large chemical shift changes of the resonances from the residues in the C-terminal tail (residues 46-53) but little perturbation on the residues in the main core (residues 1-45). Starting from the three-dimensional structure in the absence of DPC, micelle-bound structures were calculated using the program XPLOR with interproton distance data obtained from NOESY spectra recorded in the presence of DPC. The C-terminal tail of mEGF was found to change conformation to form an amphiphilic structure when bound to the micelles. It is possible that induced fit in the C-terminal tail of mEGF occurs upon binding to a putative hydrophobic pocket of the EGF receptor.  相似文献   

4.
Summary The solution conformation of human big endothelin-1, a 38-residue peptide which serves as the putative precursor to the potent vasoconstrictor endothelin-1 has been examined by1H NMR. NOEs were utilized as distance restraints in the distance geometry program DSPACE to generate initial structures. Further refinement of these structures was accomplished through molecular mechanics/molecular dynamics in an iterative process involving the incorporation of stereospecific assignments of prochiral centers and the use of back-calculation of NOESY spectra. A family of structures consisting of a type 11 -turn for residues 5–8 and an -helix extending from residues 9–16 constitute a well-defined region, as reflected by the atomic root-mean-square (RMS) difference of 1.56 Å about the mean coordinate positions of the backbone atoms (N, C, Ca and O). This core region (residues 1-15) is very similar to the core residues of endothelin-1 (Donlan, M. et al. (1991)J. Cell. Biochemistry, S15G, 85). While the evidence from NOESY and coupling constant data suggests that the C-terminal region, residues 17–34, is not a mixture of randomly distributed chain conformations, it is also not consistent with a single chain conformation. Under the conditions studied, residues 17–38 in human big endothelin-1 in water at pH 3.0 between 20–30°C appear to be represented by a series of conformers in dynamic equilibrium.  相似文献   

5.
Merozoite surface protein 2 (MSP2) is a GPI-anchored protein on the surface of the merozoite stage of the malaria parasite Plasmodium falciparum. It is largely disordered in solution, but has a propensity to form amyloid-like fibrils under physiological conditions. The N-terminal conserved region (MSP2(1-25)) is part of the protease-resistant core of these fibrils. To investigate the structure and dynamics of this region, its ability to form fibrils, and the role of individual residues in these properties, we have developed a bacterial expression system that yields > or =10 mg of unlabeled or (15)N-labeled peptide per litre of culture. Two recombinant versions of MSP2(1-25), wild-type and a Y7A/Y16A mutant, have been produced. Detailed conformational analysis of the wild-type peptide and backbone (15)N relaxation data indicated that it contains beta-turn and nascent helical structures in the central and C-terminal regions. Residues 6-21 represent the most ordered region of the structure, although there is some flexibility around residues 8 and 9. The 10-residue sequence (MSP2(7-16)) (with two Tyr residues) was predicted to have a higher propensity for beta-aggregation than the 8-mer sequence (MSP2(8-15)), but there was no significant difference in conformation between MSP2(1-25) and [Y7A,Y16A]MSP2(1-25) and the rate of fibril formation was only slightly slower in the mutant. The peptide expression system described here will facilitate further mutational analyses to define the roles of individual residues in transient structural elements and fibril formation, and thus contribute to the further development of MSP2 as a malaria vaccine candidate.  相似文献   

6.
Adsorption of T4 bacteriophage to the Escherichia coli host cell is mediated by six long and six short tail fibres. After at least three long tail fibres have bound, short tail fibres extend and bind irreversibly to the core region of the host cell lipo-polysaccharide (LPS), serving as inextensible stays during penetration of the cell envelope by the tail tube. The short tail fibres consist of a parallel, in-register, trimer of gene product 12 (gp12).X-ray crystallography at 1.5A resolution of a protease-stable fragment of gp12 generated in the presence of zinc chloride reveals the structure of the C-terminal receptor-binding domain. It has a novel "knitted" fold, consisting of three extensively intertwined monomers. It reveals a metal-binding site, containing a zinc ion coordinated by six histidine residues in an octahedral conformation. We also suggest an LPS-binding region.  相似文献   

7.
8.
Jung J  Byeon IJ  Ahn J  Gronenborn AM 《Proteins》2011,79(5):1609-1622
Nef is an HIV accessory protein that plays an important role in the progression of disease after viral infection. It interferes with numerous signaling pathways, one of which involves serine/threonine kinases. Here, we report the results of an NMR structural investigation on full-length Nef and its interaction with the entire regulatory domain of Hck (residues 72-256; Hck32L). A helical conformation was found at the N-terminus for residues 14-22, preceding the folded core domain. In contrast to the previously studied truncated Nef (Nef Δ1-39), the full-length Nef did not show any interactions of Trp57/Leu58 with the hydrophobic patch formed by helices α1 and α2. Upon Hck32L binding, the N-terminal anchor domain as well as the well-known SH3-binding site of Nef exhibited significant chemical shift changes. Upon Nef binding, resonance changes in the Hck spectrum were confined mostly to the SH3 domain, with additional effects seen for the connector between SH3 and SH2, the N-terminal region of SH2 and the linker region that contains the regulatory polyproline motif. The binding data suggest that in full-length Nef more than the core domain partakes in the interaction. The solution conformation of Hck32L was modeled using RDC data and compared with the crystal structure of the equivalent region in the inactivated, full-length Hck, revealing a notable difference in the relative orientations of the SH3 and SH2 domains. The RDC-based model combined with (15)N backbone dynamics data suggest that Hck32L adopts an open conformation without binding of the polyproline motif in the linker to the SH3 domain.  相似文献   

9.
The Ras-specific guanine nucleotide exchange region of hSos1 consists of two consecutive domains: the catalytic core (residues 742-1024) contains all residues binding to Ras, including the catalytic hairpin, and an upstream REM domain (residues 553-741), so called because it contains an evolutionary conserved Ras Exchange Motif (REM). We functionally define the boundaries of the REM domain through a combination of in vivo and in vitro assays. We show that an intra-REM domain interaction, mediated by phenylalanine 577, is required to allow interaction of the REM domain with the catalytic core, constraining it in the active conformation.  相似文献   

10.
J L Urban  S J Horvath  L Hood 《Cell》1989,59(2):257-271
Experimental autoimmune encephalomyelitis (EAE) results from T helper (TH) cell recognition of myelin basic protein (MBP). We have characterized TH cell reactivity in B10.PL and PL/J (H-2u) mice to 39 N-terminal MBP peptide derivatives of different lengths and with individual amino acid substitutions. The peptide determinant of murine MBP can be divided into a minimal stimulatory core region (residues 1-6) and a tail region (residues 7-20) that alters the structure of the core region to affect both T cell recognition and MHC binding. Core recognition by B10.PL and PL/J mice is highly similar but in one case strain dependent. Peptide analogs that do not stimulate MBP-specific TH cells but bind to the I-Au molecule competitively inhibit T cell reactivity to MBP in vitro and prevent the induction of EAE in vivo.  相似文献   

11.
P2X(7) receptors are ATP-gated cation channels composed of three identical subunits, each having intracellular amino and carboxyl termini and two transmembrane segments connected by a large ectodomain. Within the P2X family, P2X(7) subunits are unique in possessing an extended carboxyl tail. We expressed the human P2X(7) subunit as two complementary fragments, a carboxyl tail-truncated receptor channel core (residues 1-436 or 1-505) and a tail extension (residues 434-595) in Xenopus laevis oocytes. P2X(7) channel core subunits efficiently assembled as homotrimers that appeared abundantly at the oocyte surface, yet produced only approximately 5% of the full-length P2X(7) receptor current. Co-assembly of channel core subunits with full-length P2X(7) subunits inhibited channel current, indicating that the lack of a single carboxyl tail domain is dominant-negative for P2X(7) receptor activity. Co-expression of the tail extension as a discrete protein increased ATP-gated current amplitudes of P2X(7) channel cores 10-20-fold, fully reconstituting the wild type electrophysiological phenotype of the P2X(7) receptor. Chemical cross-linking revealed that the discrete tail extension bound with unity stoichiometry to the carboxyl tail of the P2X(7) channel core. We conclude that a non-covalent association of crucial functional importance exists between the carboxyl tail of the channel core and the tail extension. Using a slightly shorter P2X(7) subunit core and subfragments of the tail extension, this association could be narrowed down to include residues 409-436 and 434-494 of the split receptor. Together, these results identify the tail extension as a regulatory gating module, potentially making P2X(7) channel gating sensitive to intracellular regulation.  相似文献   

12.
X B Tang  J R Casey 《Biochemistry》1999,38(44):14565-14572
AE1, the chloride/bicarbonate anion exchanger of the erythrocyte plasma membrane, is highly sensitive to inhibition by stilbene disulfonate compounds such as DIDS (4,4'-diisothiocyanostilbene-2, 2'-disulfonate) and DNDS (4,4'-dinitrostilbene-2,2'-disulfonate). Stilbene disulfonates recruit the anion binding site to an outward-facing conformation. We sought to identify the regions of AE1 that undergo conformational changes upon noncovalent binding of DNDS. Since conformational changes induced by stilbene disulfonate binding cause anion transport inhibition, identification of the DNDS binding regions may localize the substrate binding region of the protein. Cysteine residues were introduced into 27 sites in the extracellular loop regions of an otherwise cysteineless form of AE1, called AE1C(-). The ability to label these residues with biotin maleimide [3-(N-maleimidylpropionyl)biocytin] was then measured in the absence and presence of DNDS. DNDS reduced the ability to label residues in the regions around G565, S643-M663, and S731-S742. We interpret these regions either as (i) part of the DNDS binding site or (ii) distal to the binding site but undergoing a conformational change that sequesters the region from accessibility to biotin maleimide. DNDS alters the conformation of residues outside the plane of the bilayer since the S643-M663 region was previously shown to be extramembranous. Upon binding DNDS, AE1 undergoes conformational changes that can be detected in extracellular loops at least 20 residues away from the hydrophobic core of the lipid bilayer. We conclude that the TM7-10 region of AE1 is central to the stilbene disulfonate and substrate binding region of AE1.  相似文献   

13.
Two fragments of the C-terminal tail of the alpha(1) subunit (CT1, amino acids 1538-1692 and CT2, amino acids 1596-1692) of human cardiac L-type calcium channel (Ca(V)1.2) have been expressed, refolded, and purified. A single Ca(2+)-calmodulin binds to each fragment, and this interaction with Ca(2+)-calmodulin is required for proper folding of the fragment. Ca(2+)-calmodulin, bound to these fragments, is in a more extended conformation than calmodulin bound to a synthetic peptide representing the IQ motif, suggesting that either the conformation of the IQ sequence is different in the context of the longer fragment, or other sequences within CT2 contribute to the binding of calmodulin. NMR amide chemical shift perturbation mapping shows the backbone conformation of calmodulin is nearly identical when bound to CT1 and CT2, suggesting that amino acids 1538-1595 do not contribute to or alter calmodulin binding to amino acids 1596-1692 of Ca(V)1.2. The interaction with CT2 produces the greatest changes in the backbone amides of hydrophobic residues in the N-lobe and hydrophilic residues in the C-lobe of calmodulin and has a greater effect on residues located in Ca(2+) binding loops I and II in the N-lobe relative to loops III and IV in the C-lobe. In conclusion, Ca(2+)-calmodulin assumes a novel conformation when part of a complex with the C-terminal tail of the Ca(V)1.2 alpha(1) subunit that is not duplicated by synthetic peptides corresponding to the putative binding motifs.  相似文献   

14.
The conformation of pituitary adenylate cyclase activating polypeptide with 27 residues (PACAP27) has been determined by two-dimensional NMR and CD spectroscopies and distance geometry in 25% methanol. Residues 9-20 and 22-25 have well-defined conformations but other residues do not show ordered conformations. The conformation of residues 9-20 is composed of three distinct regions of beta turn-like conformation (residues 9-12), alpha helix (residues 12-14) and the looser helical conformation (residues 15-20), while residues 22-24 form alpha helix. PACAP27 has a 2 helices separated by a disordered region similar to a VIP analog reported by Fry et al. but is distinct from the VIP analog in the position of the first helix, which is shifted by 2 residues toward the C-terminus, and in the form of the second helix [Fry, D.C., Madison, V.S., Bolin, D.R., Greeley, D.N., Toome, V. and Wegrzynski, B.B. (1989) Biochemistry 28, 2399-2409].  相似文献   

15.
The protein kinase PINK1 was recently shown to phosphorylate ubiquitin (Ub) on Ser65, and phosphoUb activates the E3 ligase Parkin allosterically. Here, we show that PINK1 can phosphorylate every Ub in Ub chains. Moreover, Ser65 phosphorylation alters Ub structure, generating two conformations in solution. A crystal structure of the major conformation resembles Ub but has altered surface properties. NMR reveals a second phosphoUb conformation in which β5-strand slippage retracts the C-terminal tail by two residues into the Ub core. We further show that phosphoUb has no effect on E1-mediated E2 charging but can affect discharging of E2 enzymes to form polyUb chains. Notably, UBE2R1- (CDC34), UBE2N/UBE2V1- (UBC13/UEV1A), TRAF6- and HOIP-mediated chain assembly is inhibited by phosphoUb. While Lys63-linked poly-phosphoUb is recognized by the TAB2 NZF Ub binding domain (UBD), 10 out of 12 deubiquitinases (DUBs), including USP8, USP15 and USP30, are impaired in hydrolyzing phosphoUb chains. Hence, Ub phosphorylation has repercussions for ubiquitination and deubiquitination cascades beyond Parkin activation and may provide an independent layer of regulation in the Ub system.  相似文献   

16.
The sulfonylurea receptor 2B (SUR2B) forms the regulatory subunit of ATP-sensitive potassium (KATP) channels in vascular smooth muscle. Phosphorylation of the SUR2B nucleotide binding domains (NBD1 and NBD2) by protein kinase A results in increased channel open probability. Here, we investigate the effects of phosphorylation on the structure and nucleotide binding properties of NBD1. Phosphorylation sites in SUR2B NBD1 are located in an N-terminal tail that is disordered. Nuclear magnetic resonance (NMR) data indicate that phosphorylation of the N-terminal tail affects multiple residues in NBD1, including residues in the NBD2-binding site, and results in altered conformation and dynamics of NBD1. NMR spectra of NBD1 lacking the N-terminal tail, NBD1-ΔN, suggest that phosphorylation disrupts interactions of the N-terminal tail with the core of NBD1, a model supported by dynamic light scattering. Increased nucleotide binding of phosphorylated NBD1 and NBD1-ΔN, compared with non-phosphorylated NBD1, suggests that by disrupting the interaction of the NBD core with the N-terminal tail, phosphorylation also exposes the MgATP-binding site on NBD1. These data provide insights into the molecular basis by which phosphorylation of SUR2B NBD1 activates KATP channels.  相似文献   

17.
The conformation of tachyplesin I, an antimicrobial cationic peptide of 17 residues found in the hemocyte debris of horseshoe crab, was investigated using two-dimensional NMR spectroscopy. The 1H NMR spectrum of tachyplesin I in aqueous solution could be completely assigned, and the secondary structure was substantiated by interpretation of the nuclear Overhauser effect, coupling constant, amide exchange rate, and temperature dependence of the amide chemical shift. Tachyplesin I takes on a fairly rigid conformation constrained by two disulfide bridges and adopts a conformation consisting of an anti-parallel beta-sheet (residues 3-8 and 11-16) connected by a beta-turn (residues 8-11). In this planar conformation, five bulky hydrophobic side groups are localized in one side of the plane and six cationic side groups are distributed at the "tail" part of the molecule (residues 1-5 and 14-17). This amphipathic structure of the molecule is presumed to be closely associated with the bactericidal activity.  相似文献   

18.
A globular domain can be decomposed into compact modules consisting of contiguous 10-30 amino acid residues. The correlation between modules and exons observed in different proteins suggests that each module was encoded by an ancestral exon and that modules were combined into globular domains by exon fusion. Barnase is a single domain RNase consisting of 110 amino acid residues and was decomposed into six modules. We designed a mini-protein by removing the second module, M2, from barnase in order to gain an insight into the structural and functional roles of the module. In the molecular modeling of the mini-protein, we evaluated thermodynamic stability and aqueous solubility together with mechanical stability of the model. We chemically synthesized a mini-barnase with (15)N-labeling at 10 residues, whose corresponding residues in barnase are all found in the region around the hydrophobic core. Circular dichroism and NMR measurements revealed that mini-barnase takes a non-random specific conformation that has a similar hydrophobic core structure to that of barnase. This result, that a module could be deleted without altering the structure of core region of barnase, supports the view that modules act as the building blocks of protein design.  相似文献   

19.
Hirudin, a thrombin-specific inhibitor, comprises a compact amino-terminal core domain (residues 1-52) and a disordered acidic carboxyl-terminal tail (residues 53-65). An array of core fragments were prepared from intact recombinant hirudin by deletion of various lengths of its carboxyl-terminal tail on selective enzymatic cleavage. Hir1-56 and Hir1-53 were produced by pepsin digestion at Phe56-Glu57 and Asp53-Gly54. Hir1-52 was generated by Asp-N cleavage at Asn52-Asp53. Hir1-49 was prepared by cleavage of Gln49-Ser50 by chymotrypsin, elastase, and thermolysin. In addition, Hir1-62 (containing part of the carboxyl-terminal tail) was derived from Hir1-65 by selective removal of the three carboxyl-terminal amino acids using carboxypeptidase A. Hirudin amino-terminal core fragments were stable at extreme pH (1.47 and 12.6), high temperature (95 degrees C), and resistant to attack by various proteinases. For instance, following 24-h incubation with an equal weight of pepsin, the covalent structure of Hir1-52 remained intact and its anticoagulant activity unaffected. Unlike intact hirudin (Hir1-65) the inhibitory potency of which is a consequence of concerted binding of its amino-terminal and carboxyl-terminal domains to the active site and the fibrinogen recognition site of thrombin, the core fragments block only the active site of thrombin with binding constants of 19 nM (Hir1-56), 35 nM (Hir1-52), and 72 nM (Hir1-49). As an anticoagulant Hir1-56 is about 2-, 4-, and 30-fold more potent (on a molar basis) than Hir1-52, Hir1-49, and Hir1-43, respectively. Hir1-56 was also about 15-fold more effective than the most potent carboxyl-terminal fragment of hirudin, sulfated-Hir54-65, although they bind to independent sites on thrombin. The potential advantages of hirudin core fragments as antithrombotic agents are discussed in this report.  相似文献   

20.
Calpactin I, a Ca2+- and phospholipid-binding cytoskeletal protein, which serves as a major substrate of protein-tyrosine kinases, was isolated from bovine intestine and lung as a species containing two 36-kDa heavy chains and two 10-kDa light chains. The heavy chain is comprised of two distinct domains which can be identified by limited proteolysis: a COOH-terminal 33-kDa core, which contains the Ca2+- and phospholipid-binding sites, and an NH2-terminal tail, which contains the major site of phosphorylation by pp60v-src. To determine the site of association of the light chain on the heavy chain, we analyzed the association states of the light chain, core, and tail by sucrose gradient centrifugation after limited chymotryptic digestion. The core was not detected in higher Mr complexes with the light chain, and the tail cosedimented with a light chain dimer. The tail, isolated from chymotryptic digests and radiolabeled with 125I, was found to form a specific complex with the light chain, but not the core. The authentic tail and a synthetic peptide corresponding to residues 1-29 of the calpactin I heavy chain were both able to specifically inhibit the reassociation between heavy and light chain, whereas a synthetic peptide corresponding to residues 15-33 was inactive. These results suggest that the tail may serve as a site of regulation by light chain or phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号