首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barrier to autointegration factor 1 (BANF1) is a DNA-binding protein found in the nucleus and cytoplasm of eukaryotic cells that functions to establish nuclear architecture during mitosis. The cDNA and the genomic sequence of BANF1 were cloned from the Giant Panda (Ailuropoda melanoleuca) and Black Bear (Ursus thibetanus mupinensis) using RT-PCR technology and Touchdown-PCR, respectively. The cDNA of the BANF1 cloned from Giant Panda and Black Bear is 297 bp in size, containing an open reading frame of 270 bp encoding 89 amino acids. The length of the genomic sequence from Giant Panda is 521 bp, from Black Bear is 536 bp, which were found both to possess 2 exons. Alignment analysis indicated that the nucleotide sequence and the deduced amino acid sequence are highly conserved to some mammalian species studied. Topology prediction showed there is one Protein kinase C phosphorylation site, one Casein kinase II phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Giant Panda, and there is one Protein kinase C phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Black Bear. The BANF1 gene can be readily expressed in E. coli. Results showed that the protein BANF1 fusion with the N-terminally His-tagged form gave rise to the accumulation of an expected 14 kD polypeptide that formed inclusion bodies. The expression products obtained could be used to purify the proteins and study their function further.  相似文献   

2.
运用RT-PCR 技术,从大熊猫的肌肉组织总RNA 中成功克隆了酸性核糖体磷酸蛋白P1 (RPLP1)基因的表达序列,并对其进行了测序及初步分析。结果表明:大熊猫RPLP1 基因的表达序列全长为448 bp,开放阅读框(ORF)为344 bp,编码114 个氨基酸的蛋白质,该蛋白的分子量为11.566 kDa,pI 为4.4,含有3 个酪蛋白激酶Ⅱ磷酸化位点和2 个N - 酰基化位点。进一步分析发现,大熊猫RPLP1 基因的表达序列及其编码的氨基酸序列与已报道的部分哺乳动物具有很高的相似性。   相似文献   

3.
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is a key enzyme of the glycolytic pathway and it is related to the occurrence of some diseases. The cDNA and the genomic sequence of GAPDH were cloned successfully from the Giant Panda (Ailuropoda melanoleuca) using the RT-PCR technology and Touchdown-PCR, respectively. Both sequences were analyzed preliminarily. The cDNA of GAPDH cloned from the Giant Panda is 1191 bp in size, contains an open reading frame of 1002 bp encoding 333 amino acids. The genomic sequence is 3941 bp in length and was found to possess 10 exons and 9 introns. Alignment analysis indicates that the nucleotide sequence and the deduced amino acid sequence are highly conserved in some mammalian species, including Homo sapiens, Mus musculus, Rattus norvegicus, Canis lupus familiaris and Bos taurus. The homologies for the nucleotide sequences of the Giant Panda GAPDH to that of these species are 90.67, 90.92, 90.62, 95.01 and 92.32% respectively, while the homologies for the amino acid sequences are 94.93, 95.5, 95.8, 98.8 and 97.0%. Primary structure analysis revealed that the molecular weight of the putative GAPDH protein is 35.7899 kDa with a theoretical pI of 8.21. Topology prediction showed that there is one Glyceraldehyde 3-phosphate dehydrogenase active site, two N-glycosylation sites, four Casein kinase II phosphorylation sites, seven Protein kinase C phosphorylation sites and eight N-myristoylation sites in the GAPDH protein of the Giant Panda. The GAPDH gene was overexpressed in E. coli BL21. The results indicated that the fusion of GAPDH with the N-terminally His-tagged form gave rise to the accumulation of an expected 43 kDa polypeptide. The SDS-PAGE analysis also showed that the recombinant GAPDH was soluble and thus could be used for further functional studies.  相似文献   

4.
αB-crystallin, a small heat-shock protein, has been shown to prevent the aggregation of other proteins under various stress conditions. Here we have cloned the cDNA and the genomic sequence of CRYAB gene from the Giant Panda (Ailuropoda melanoleuca) using RT-PCR technology and Touchdown-PCR, respectively. The length of cDNA fragment cloned contains an open reading frame of 528bp encoding 175 amino acids and the length of the genomic sequence is 3189bp, containing three exons and two introns. Alignment analysis indicated that the nucleotide sequence and the deduced amino acid sequence are highly conserved to other four species studied, including Homo sapiens, Mus musculus, Rattus norvegicus and Bos taurus. The homologies for nucleotide sequences of Giant Panda CRYAB to that of these species are 93.9%, 91.5%, 91.5% and 95.3%, respectively, and the homologies for amino acid sequences are 98.3%, 97.1%,97.7% and 99.4%, respectively. Topology prediction shows that there are only four Casein kinase II phosphorylation sites in the CRYAB protein of the Giant Panda. The cDNA of CRYAB was transfected into E. coli, and the CRYAB fused with the N-terminally His-tagged protein gave rise to the accumulation of an expected 24KDa polypeptide, which accorded with the predicted protein. The expression product obtained could be used for purification and study of its function further.  相似文献   

5.
6.
7.
The ribosomal protein L9 (RPL9), a component of the large subunit of the ribosome, has an unusual structure, comprising two compact globular domains connected by an α-helix; it interacts with 23 S rRNA. To obtain information about rpL9 of Ailuropoda melanoleuca (the giant panda) we designed primers based on the known mammalian nucleotide sequence. RT-PCR and PCR strategies were employed to isolate cDNA and the rpL9 gene from A. melanoleuca; these were sequenced and analyzed. We overexpressed cDNA of the rpL9 gene in Escherichia coli BL21. The cloned cDNA fragment was 627 bp in length, containing an open reading frame of 579 bp. The deduced protein is composed of 192 amino acids, with an estimated molecular mass of 21.86 kDa and an isoelectric point of 10.36. The length of the genomic sequence is 3807 bp, including six exons and five introns. Based on alignment analysis, rpL9 has high similarity among species; we found 85% agreement of DNA and amino acid sequences with the other species that have been analyzed. Based on topology predictions, there are two N-glycosylation sites, five protein kinase C phosphorylation sites, one casein kinase II phosphorylation site, two tyrosine kinase phosphorylation sites, three N-myristoylation sites, one amidation site, and one ribosomal protein L6 signature 2 in the L9 protein of A. melanoleuca. The rpL9 gene can be readily expressed in E. coli; it fuses with the N-terminal GST-tagged protein, giving rise to the accumulation of an expected 26.51-kDa polypeptide, which is in good agreement with the predicted molecular weight. This expression product could be used for purification and further study of its function.  相似文献   

8.
9.
RPS25 is a component of the 40S small ribosomal subunit encoded by RPS25 gene, which is specific to eukaryotes. Studies in reference to RPS25 gene from animals were handful. The Giant Panda (Ailuropoda melanoleuca), known as a “living fossil”, are increasingly concerned by the world community. Studies on RPS25 of the Giant Panda could provide scientific data for inquiring into the hereditary traits of the gene and formulating the protective strategy for the Giant Panda. The cDNA of the RPS25 cloned from Giant Panda is 436 bp in size, containing an open reading frame of 378 bp encoding 125 amino acids. The length of the genomic sequence is 1,992 bp, which was found to possess four exons and three introns. Alignment analysis indicated that the nucleotide sequence of the coding sequence shows a high homology to those of Homo sapiens, Bos taurus, Mus musculus and Rattus norvegicus as determined by Blast analysis, 92.6, 94.4, 89.2 and 91.5%, respectively. Primary structure analysis revealed that the molecular weight of the putative RPS25 protein is 13.7421 kDa with a theoretical pI 10.12. Topology prediction showed there is one N-glycosylation site, one cAMP and cGMP-dependent protein kinase phosphorylation site, two Protein kinase C phosphorylation sites and one Tyrosine kinase phosphorylation site in the RPS25 protein of the Giant Panda. The RPS25 gene was overexpressed in E. coli BL21 and Western Blotting of the RPS25 protein was also done. The results indicated that the RPS25 gene can be really expressed in E. coli and the RPS25 protein fusioned with the N-terminally his-tagged form gave rise to the accumulation of an expected 17.4 kDa polypeptide. The cDNA and the genomic sequence of RPS25 were cloned successfully for the first time from the Giant Panda using RT-PCR technology and Touchdown-PCR, respectively, which were both sequenced and analyzed preliminarily; then the cDNA of the RPS25 gene was overexpressed in E. coli BL21 and immunoblotted, which is the first report on the RPS25 gene from the Giant Panda. The data will enrich and supplement the information about RPS25, which will contribute to the protection for gene resources and the discussion of the genetic polymorphism.  相似文献   

10.
RPS14 is a component of the 40S ribosomal subunit encoded by the RPS14 gene and is required for its maturation. The cDNA and the genomic sequence of RPS14 were cloned successfully from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology and touchdown-PCR, respectively; they were both sequenced and analyzed. The length of the cloned cDNA fragment was 492 bp; it contained an open-reading frame of 456 bp, encoding 151 amino acids. The length of the genomic sequence is 3421 bp; it contains four exons and three introns. Alignment analysis indicates that the nucleotide sequence shares a high degree of homology with those of Homo sapiens, Bos taurus, Mus musculus, Rattus norvegicus, Gallus gallus, Xenopus laevis, and Danio rerio (93.64, 83.37, 92.54, 91.89, 87.28, 84.21, and 84.87%, respectively). Comparison of the deduced amino acid sequences of the giant panda with those of these other species revealed that the RPS14 of giant panda is highly homologous with those of B. taurus, R. norvegicus and D. rerio (85.99, 99.34 and 99.34%, respectively), and is 100% identical with the others. This degree of conservation of RPS14 suggests evolutionary selection. Topology prediction shows that there are two N-glycosylation sites, three protein kinase C phosphorylation sites, two casein kinase II phosphorylation sites, four N-myristoylation sites, two amidation sites, and one ribosomal protein S11 signature in the RPS14 protein of the giant panda. The RPS14 gene can be readily expressed in Escherichia coli. When it was fused with the N-terminally His-tagged protein, it gave rise to accumulation of an expected 22-kDa polypeptide, in good agreement with the predicted molecular weight. The expression product obtained can be purified for studies of its function.  相似文献   

11.
Messenger RNA for yeast cytosolic polypeptide chain elongation factor 1 alpha (EF-1 alpha) was partially purified from Saccharomyces cerevisiae. Double-stranded complementary DNA (cDNA) was synthesized and cloned in Escherichia coli with pBR327 as a vector. Recombinant plasmid carrying yEF-1 alpha cDNA was identified by cross-hybridization with the E. coli tufB gene and the yeast mitochondrial EF-Tu gene (tufM) under non-stringent conditions. A yeast gene library was then screened with the EF-1 alpha cDNA and several clones containing the chromosomal gene for EF-1 alpha were isolated. Restriction analysis of DNA fragments of these clones as well as the Southern hybridization of yeast genomic DNA with labelled EF-1 alpha cDNA indicated that there are two EF-1 alpha genes in S. cerevisiae. The nucleotide sequence of one of the two EF-1 alpha genes (designated as EF1 alpha A) was established together with its 5'- and 3'-flanking sequences. The sequence contained 1374 nucleotides coding for a protein of 458 amino acids with a calculated mol. wt. of 50 300. The derived amino acid sequence showed homologies of 31% and 32% with yeast mitochondrial EF-Tu and E. coli EF-Tu, respectively.  相似文献   

12.
旨在克隆内蒙古白绒山羊TSC2基因cDNA并分析其特性及基本表达模式.利用RT-PCR分段克隆TSC2基因cDNA片段并测序,将得到的cDNA各片段核苷酸序列拼接后获得绒山羊TSC2基因编码区全长序列(HQ684023)并进行生物信息学分析.半定量RT-PCR方法检测TSC2基因在不同组织中的表达特异性.结果表明内蒙古白绒山羊TSC2基因cDNA编码区核苷酸序列为5184 bp,包含了编码1727个氨基酸残基的全长ORF.核苷酸序列与牛、猪、马、大熊猫、犬、恒河猴、人、小鼠及大鼠的同源性分别为97%、90%、89%、88%、87%、87%、87%、86%和86%.NCBI CDD程序预测该基因编码的蛋白质有一个Tuberin结构域和一个Rap-GAP结构域;Psite程序分析有5个N糖基化位点、2个cAMP和cGMP依赖蛋白激酶磷酸化位点、16个蛋白激酶C磷酸化位点、25个酪蛋白激酶磷酸化位点.PSORT程序预测其定位于胞内体膜.TSC2基因在内蒙古白绒山羊的睾丸、脑、肝脏、肺、乳腺、脾和肾脏等组织中都有表达,mRNA丰度在睾丸中较高,乳腺中较低.  相似文献   

13.
14.
中国大熊猫保护战略探讨   总被引:7,自引:0,他引:7  
严旬 《动物学杂志》2005,40(5):57-60
简述了大熊猫(Ailuropoda melanoleuca)当前的生存状况,包括种群数量、密度、栖息地及其周边社区环境,分析了保护区所面临的主要问题:(1)严重的人为干扰造成大熊猫种群的孤岛状态;(2)竹子开花依然对大熊猫种群构成威胁;(3)社区发展与保护的矛盾依然十分突出。并提出了大熊猫保护的基本方针和战略目标:(1)形成大熊猫自然保护区群;(2)减少永久性工程对大熊猫活动的阻隔;(3)统筹发展社区经济,积极实施社区共管;(4)实施圈养大熊猫放归。文中指出了为实现这些方针和目标所需采取的具体措施。  相似文献   

15.
鲁瑞芳  李毅 《微生物学报》1999,39(4):305-314
从水稻矮缩病毒(Ricedwarfvirus,RDV)中国福建分离物中克隆分离了最外层外壳蛋白基因(S2)全长cDNA并对其进行序列分析,结果表明RDVS2cDNA全长3512bp,仅含一个3348bp的阅读框架,编码一人含有1116个氨基酸的蛋白(P2)。与基因库中已知基因序列比较,发现它与日本RDVH株系相应片段的核苷酸和氨基酸同源率分别为94.6%和95.4%与轮状病毒VP2氨基酸序列有一定  相似文献   

16.
利用GenBank公布的恒河猴达菲抗原/趋化因子受体基因(FY)核苷酸序列设计2对特异引物,采用PCR方法克隆藏酋猴Macaca thibetana FY基因,分别得到1.0kb和1.1kb的DNA片段,通过DNA测序和序列拼接获得藏酋猴FY基因1491bp片段,该片段包含2个外显子(21bp和990bp)和1个内含子(480bp)。该基因开放阅读框长1011bp,编码336个氨基酸,该蛋白等电点是5.77,分子量是35.52kDa,分子半衰期30h,不稳定指数是39.84,总平均疏水性是0.689,是疏水性蛋白。拓扑结构预测显示该基因编码氨基酸有15个潜在的功能位点:3个N-糖基化位点,2个酪蛋白激酶Ⅱ磷酸化位点,10个N-肉豆蔻酰化位点。整个蛋白质多肽链含有7个跨膜螺旋区,4个细胞外区和4个细胞内区。同源性比较结果显示,与人、恒河猴、牛、兔、犬、大熊猫6个物种FY基因编码区核苷酸序列间同源性分别为94.7%、99%、75.2%、80.2%、74.5%、71.7%,氨基酸序列间同源性分别为92%、99%、89.8%、78.2%、90%、89.3%。系统进化树结果表明:藏酋猴与恒河猴亲缘关系最近,与人类亲缘关系较近。  相似文献   

17.
侯怡铃  丁祥  侯万儒 《兽类学报》2012,32(3):228-238
慢肌肌钙蛋白C (Troponin C type 1,TNNC1)具有高度保守性,调控骨骼肌慢肌和心肌的收缩,影响肌蛋白的生成,从而可能导致动物肌肉的生长、进化和功能的差异。本研究以大熊猫和亚洲黑熊骨骼肌为材料,提取总RNA 和基因组DNA,运用RT-PCR 和Touch-down PCR 分别扩增出TNNC1 基因的cDNA 序列和结构基因序列,并且构建了含有TNNC1 cDNA 的重组表达载体,转化进入E. coli BL21 进行超表达研究。结果表明大熊猫TNNC1 基因的cDNA 片段长602 bp,包含一个编码161 个氨基酸的开放阅读框,其结构基因全长2 831 bp,包含6 个外显子和5 个内含子。亚洲黑熊TNNC1 基因的cDNA 片段长486 bp,亦包含一个编码161 个氨基酸的开放阅读框,其结构基因全长2 758 bp,同样包含6 个外显子和5 个内含子。该两个物种的TNNC1 基因与已报道的13种动物的TNNC1 基因具有很高的相似性。拓扑预测表明,大熊猫和亚洲黑熊TNNC1 蛋白有1 个蛋白激酶C 磷酸化位点,5 个酪蛋白激酶Ⅱ磷酸化位点,1 个N-豆蔻酰化位点,3 个EF 手性钙结合域及1 个N - 糖基化位点。将TNNC1 基因在大肠杆菌中表达发现TNNC1 蛋白与氮端多聚组氨酸标签蛋白(His6) 融合成大小为23. 5kD 左右的多肽,这与预期结果相一致。本研究结果为进一步深入探讨大熊猫和亚洲黑熊TNNC1 基因及蛋白的结构、功能和进化关系提供资料。  相似文献   

18.
报道编码牛 Ig G高亲和力受体 ( bovine Ig G Fc receptor I,bo FcγR )的全长序列 .从牛肺巨噬细胞 c DNA文库中克隆的该片段全长 1 .4kb,其中的 ORF为 1 0 50 bp,共编码包括信号肽、胞外域、穿膜区和胞内区在内的 349个氨基酸 ,含有 5个潜在的 N-连接糖基化位点 .与人和鼠的 Ig G高亲和力受体 ( hu FcγR 和 mo FcγR )相比 ,其核苷酸同源性分别为 80 %和 69% ,氨基酸同源性分别为 66%和 55% .研究表明 ,人、牛和鼠的 3种 Ig G高亲和力受体的单体 Ig G结合域高度保守  相似文献   

19.
We have cloned a DNA from a human pancreatic cDNA library using a cloned rat pancreatic elastase 1 cDNA as a probe, and determined its nucleotide sequence. This cDNA contains a coding region of 810 nucleotides which encodes a 270-amino-acid protein. The deduced amino acid sequence shows less than 60% homologies with rat and porcine pancreatic elastase 1, although its substrate binding region is homologous with those of the above elastases 1. When this deduced amino acid sequence was compared with known amino acid sequences of pancreatic proteases other than elastases, it was found to contain an amino acid sequence which was highly homologous with the N-terminal amino acid sequence of porcine pancreatic protease E. We also purified human pancreatic protease E isozymes from human pancreatic juice, and determined their N-terminal amino acid sequences. One of the isozymes does not hydrolyze elastin but does hydrolyze a synthetic substrate. Endoglycosidase F digests glycoside bonds of the isozyme. These results suggest that the cDNA cloned by us corresponded to one of the human protease E isozymes.  相似文献   

20.
The cDNA fragment of ribosomal protein L26 (RPL26) was cloned from Ailuropoda melanoleuca using RT-PCR method. The cDNA fragment is composed of 475 bp, containing an open reading frame of 145 amino acids. Alignment analyses indicated that the nucleotide sequence and the deduced amino acid sequence showed high identity to other known RPL26 sequences from vertebrates and invertebrates. The cDNA sequence was used to construct phylogenetic trees with other known vertebrate and invertebrate RPL26 sequences, and the obtained trees demonstrated similar topology with the classical systematics, indicating the potential value of RPL26 gene in phylogenetic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号