首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human hepatoma HepG2 cells were used to demonstrate coordinate regulation of three enzymes of cholesterol synthesis under a variety of conditions. Addition of either delipidized serum and mevinolin or low density lipoprotein, 25-hydroxycholesterol, or mevalonic acid to HepG2 cells resulted in rapid changes both in the levels of the mRNAs and in the rates of synthesis of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase, HMG-CoA reductase, and farnesyl pyrophosphate synthetase (prenyltranferase). In all cases, the changes in mRNA levels were paralleled by changes in the rates of specific protein synthesis. Pulse-chase techniques were used to determine the half-lives of all three proteins. Addition of low density lipoprotein to the media during the chase increased the rate of degradation of HMG-CoA reductase 4.6-fold but had no affect on the half-lives of HMG-CoA synthase or prenyltransferase. Therefore, we conclude that the coordinate regulation of these three enzymes under a variety of conditions occurs at the level of enzyme synthesis and not at the level of protein stability.  相似文献   

3.
The possible role of HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (the rate-controlling enzyme of cholesterol biosynthesis) in regulating the rate of dolichyl phosphate biosynthesis in rat liver was investigated. Rats were either fasted 48 h or fed diets supplemented with the drug cholestyramine. The activity of HMG-CoA reductase was 5000-fold greater in liver from cholestyramine-fed rats as compared to fasted rats. The activity of dolichyl phosphate synthetase, the prenyl transferase responsible for the biosynthesis of dolichyl phosphate from farnesyl pyrophosphate and isopentenyl pyrophosphate, was similar in both nutritional conditions and was markedly less active than HMG-CoA reductase even in the fasted state. Acetate incorporation into cholesterol was 2200-fold greater in liver slices from cholestyramine-fed rats as compared to fasted rats. By contrast, acetate incorporation into dolichyl phosphate was only 6-fold higher. Further studies suggested that the levels of farnesyl pyrophosphate and isopentenyl pyrophosphate are several hundred-fold greater in liver from cholestyramine-treated rats. From these results, it is concluded that the rate of dolichyl phosphate biosynthesis in rat liver is not regulated by the activity of HMG-CoA reductase but is probably regulated at the level of dolichyl phosphate synthetase.  相似文献   

4.
Binding of sterol response element binding protein 1a to sterol response element-1 (SRE-1) in the promoter region of lanosterol 14 alpha-demethylase (14DM) has been demonstrated previously. Decreased 14DM activity has been shown to result in accumulation of the intermediate, 3 beta-hydroxy-lanost-8-en-32-al, a known translational downregulator of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Since it has also been demonstrated that feedback regulation of hepatic HMG-CoA reductase occurs primarily at the level of translation, the effects of dietary cholesterol and cholesterol lowering agents on levels of hepatic 14DM mRNA and immunoreactive protein were investigated. Addition of 1% cholesterol to a chow diet markedly decreased hepatic 14DM mRNA and protein levels in Sprague-Dawley rats. The extent and time course of this decrease in 14DM immunoreactive protein closely paralleled that of HMG-CoA reductase. Supplementation of the diet with the HMG-CoA reductase inhibitor, Lovastatin, to a level of 0.02%, raised 14DM mRNA and protein levels 2- to 3-fold. Addition of 2% Colestipol, a bile acid binding resin, to the chow diet caused smaller increases. The highest level of 14DM protein expression was observed in liver, the major site of feedback regulation of HMG-CoA reductase by cholesterol. Taken together, these observations suggest a critical role for 14DM in the feedback regulation of hepatic HMG-CoA reductase.  相似文献   

5.
6.
The regulation of hepatic cholesterol and lipoprotein metabolism was studied in the ethinyl estradiol-treated rat in which low density lipoprotein (LDL) receptors are increased many fold. Cholesterol synthesis was reduced at both its diurnal peak and trough by ethinyl estradiol. The diurnal variation in 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was abolished, whereas that for acyl coenzyme A: cholesterol acyltransferase (ACAT) was retained. LDL receptor number did not vary diurnally. Feeding these animals a cholesterol-rich diet for 48 h suppressed cholesterol synthesis and reductase activities to levels similar to those found in cholesterol-fed control animals, but ACAT activity was unaffected. LDL receptors were reduced about 50%. Intravenously administered cholesterol-rich lipoproteins suppressed HMG-CoA reductase and LDL receptors in 2 h but had a variable effect on ACAT activity. Intragastric administration of mevalonolactone reduced reductase and increased acyltransferase activity but had little effect on LDL receptors when given 2 or 4 h before death. Although animals fed a cholesterol-rich diet before and during ethinyl estradiol treatment became hypocholesterolemic, free and esterified cholesterol concentrations in liver were high as was ACAT activity. HMG-CoA reductase was inhibited to levels found in control animals fed the cholesterol-rich diet. LDL receptors were increased to a level about 50% of that reached in animals receiving a control diet and ethinyl estradiol. These data demonstrate that key enzymes of hepatic cholesterol metabolism and hepatic LDL receptors respond rapidly to cholesterol in the ethinyl estradiol-treated rat. Furthermore, estradiol increases LDL receptor activity several fold in cholesterol-loaded livers.  相似文献   

7.
8.
9.
Treatment of rats with pharmacological doses of oestrogen resulted in a 3-fold decrease in the activity of hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) and a 4-fold increase in saturable binding of 125I-labelled chylomicron remnants to liver membranes in vitro. Intragastric administration of mevalonolactone to rats did not affect the capacity of the liver membranes to bind to labelled chylomicron remnants even though there was a substantial decrease in the activity of HMG-CoA reductase. Similar results were obtained after cholesterol feeding. Simultaneous treatment of rats with cholestyramine and compactin increased hepatic HMG-CoA reductase activity 6-fold. However, liver membranes derived from these animals showed no change in their capacity to bind to labelled chylomicron remnants in vitro. Administration of mevalonolactone to the cholestyramine/compactin-treated animals also failed to produce a change in remnant-binding capacity. Although administration of mevalonolactone alone produced a significant 3-fold decrease in the activity of hepatic HMG-CoA reductase it was unable to suppress significantly the increase in enzyme activity caused by treatment with cholestyramine and compactin.  相似文献   

10.
In the normal fed rat, both 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) synthase and HMG-CoA reductase are found in high concentrations in hepatocytes that are localized periportally. The majority of the liver cells show little or no evidence of either enzyme. Addition of cholestyramine and mevinolin to the diet resulted in all liver cells showing strong positive staining for both HMG-CoA reductase and HMG-CoA synthase. These two drugs increased the hepatic HMG-CoA reductase and HMG-CoA synthase activities 92- and 6-fold, respectively, and also increased the HMG-CoA reductase activity in intestine, heart, and kidney 3- to 15-fold. We used immunofluorescence and avidin-biotin labeled antibody to localize HMG-CoA reductase in the rat intestine. In rats fed a normal diet, the most HMG-CoA reductase-positive cells were the villi of the ileum greater than jejunum greater than duodenum. Crypt cells showed no evidence of HMG-CoA reductase. Addition of cholestyramine and mevinolin to the diet led to a dramatic increase in the concentration of HMG-CoA reductase in the apical region of the villi of the ileum and jejunum and in the crypt cells of the duodenum. Hence these two drugs affected both the relative concentration and distribution of intestinal HMG-CoA reductase. Cholestyramine and mevinolin feeding induced in the liver, but not intestine, whorls of smooth endoplasmic reticulum that were proximal to the nucleus and contained high concentrations of HMG-CoA reductase. Administration of mevalonolactone led to the rapid dissolution of the hepatic whorls within 15 min, at a time when there is little or no change in the mass of HMG-CoA reductase. We conclude that the whorls are present in the livers of rats fed cholestyramine and mevinolin because the cells are deprived of a cellular product normally synthesized from mevalonate.  相似文献   

11.
12.
The biosynthetic mechanism for determining the side-chain length of ubiquinone in rat heart mitochondria was investigated. The biosynthesis of nonaprenyl ubiquinone (UQ-9) and decaprenyl ubiquinone (UQ-10) in the mitochondria from rat hearts previously perfused with mevalonolactone was accelerated depending on the concentration of mevalonolactone. Furthermore the synthesis ratio between UQ-10 and UQ-9 (UQ-10/UQ-9) increased in accordance with the increasing concentration of mevalonolactone used. In addition, an enhancement of the synthesis ratio (UQ-10/UQ-9) was observed when the rats were treated with isoproterenol to increase the activity of 3-hydroxymethylglutaryl-CoA (HMG-CoA) reductase, a rate-limiting enzyme which forms mevalonate. Moreover, the addition of isopentenyl pyrophosphate, which is a metabolite of mevalonate, elevated the synthetic ratios UQ-10/UQ-9 in intact mitochondria and decaprenyl pyrophosphate/solanesyl pyrophosphate in the partially purified polyprenyl pyrophosphate synthetase from rat heart. These results suggest that the HMG-CoA reductase could be involved as a determining factor of the side-chain length of ubiquinone in rat heart.  相似文献   

13.
The liver plays a central role in regulating cholesterol homeostasis. High fat diets have been shown to induce obesity and hyperlipidemia. Despite considerable advances in our understanding of cholesterol metabolism, the regulation of liver cholesterol biosynthesis in response to high fat diet feeding has not been fully addressed. The aim of the present study was to investigate mechanisms by which a high fat diet caused activation of liver 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) leading to increased cholesterol biosynthesis. Mice were fed a high fat diet (60% kcal fat) for 5 weeks. High fat diet feeding induced weight gain and elevated lipid levels (total cholesterol and triglyceride) in both the liver and serum. Despite cholesterol accumulation in the liver, there was a significant increase in hepatic HMG-CoA reductase mRNA and protein expression as well as enzyme activity. The DNA binding activity of sterol regulatory element binding protein (SREBP)-2 and specific protein 1 (Sp1) were also increased in the liver of mice fed a high fat diet. To validate the in vivo findings, HepG2 cells were treated with palmitic acid. Such a treatment activated SREBP-2 as well as increased the mRNA and enzyme activity of HMG-CoA reductase leading to intracellular cholesterol accumulation. Inhibition of Sp1 by siRNA transfection abolished palmitic acid-induced SREBP-2 and HMG-CoA reductase mRNA expression. These results suggest that Sp1-mediated SREBP-2 activation contributes to high fat diet induced HMG-CoA reductase activation and increased cholesterol biosynthesis. This may play a role in liver cholesterol accumulation and hypercholesterolemia.  相似文献   

14.
We recently postulated that hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase functions as a cholesterol buffer to protect against the serum and tissue cholesterol raising action of dietary cholesterol. This postulate predicts that diminished basal expression of hepatic HMG-CoA reductase results in increased sensitivity to dietary cholesterol. Because diabetic and hypothyroid animals are known to have markedly reduced hepatic HMG-CoA reductase, these animals were selected as models to test our postulate. When rats were rendered diabetic with streptozotocin, their hepatic HMG-CoA reductase activity decreased from 314 to 22 pmol. min(-1). mg(-1), and their serum cholesterol levels increased slightly. When the diabetic animals were challenged with a diet containing 1% cholesterol, their serum cholesterol levels doubled, and their hepatic reductase activity decreased further to 0.9 pmol. min(-1). mg(-1). Hepatic low-density lipoprotein (LDL) receptor immunoreactive protein levels were unaffected in the diabetic rats whether fed cholesterol-supplemented diets or not. In rats rendered hypothyroid by thyroparathyroidectomy, serum cholesterol levels rose from 100 to 386 mg/dl in response to the 1% cholesterol challenge, whereas HMG-CoA reductase activity dropped from 33.8 to 3.4 pmol. min(-1). mg(-1). Hepatic LDL receptor immunoreactive protein levels decreased only slightly in the hypothyroid rats fed cholesterol-supplemented diets. Taken together, these results show that rats deficient in either insulin or thyroid hormone are extremely sensitive to dietary cholesterol largely due to low basal expression of hepatic HMG-CoA reductase.  相似文献   

15.
16.
17.
18.
19.
3-Hydroxy-3-methylglutaryl(HMG)-coenzyme A reductase purified from rat liver in the absence of protease inhibitors is composed of two distinct polypeptides of Mr = 51,000 and 52,500. Antibody raised to enzyme purified from rats fed a diet supplemented with cholestyramine and mevinolin inactivated HMG-CoA reductase. The antibody specifically precipitated a polypeptide of Mr = 94,000 from rat liver cells that had been previously incubated with [35S]methionine. The immunoprecipitation of the 35S-labeled polypeptide of Mr = 94,000 was prevented by addition of unlabeled pure HMG-CoA reductase (Mr = 51,000 and 52,500). Incubation of rat liver cells with mevalonolactone resulted in a decreased activity of HMG-CoA reductase and in a 40% decrease in the rate of incorporation of [35S]methionine into the immunoprecipitable reductase polypeptide of Mr = 94,000. In pulse-chase experiments, mevalonolactone enhanced the rate of degradation of the Mr = 94,000 polypeptide 3-fold. We propose that endogenous microsomal HMG-CoA reductase has a subunit of Mr = 94,000 and that the synthesis and degradation of this polypeptide are regulated by either mevalonolactone or, more likely, a product of mevalonolactone metabolism.  相似文献   

20.
The early premalignant liver provides a model in which to study metabolic alterations that may be permissive for the development of full malignancy. Although there are biochemical changes in this model, there are no detectable morphological ones when compared with a normal, fully differentiated liver. The maintenance of cholesterol homeostasis, essential for proper functioning of mammalian cells, is known to be altered in malignancy. We used the ethionine-induced premalignant liver model to study the effects of the premalignant state on cellular parameters involved in the maintenance of hepatic cholesterol homeostasis. Cholesterol synthesis was elevated about twofold in the livers of rats treated with ethionine as was the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, its rate limiting enzyme. There was no change in reductase activation state. Acyl coenzyme A:cholesterol acyl-transferase (ACAT) was decreased about 30%, and cholesterol 7 alpha-hydroxylase, about 50%. There was no significant change in neutral cholesteryl ester hydrolase activity, but acid hydrolase activity was decreased. There was little change in low density lipoprotein receptor protein as determined by immunoblotting. Biliary lipid secretion was in the normal range when expressed per gram liver; however, bile flow was doubled. The ethionine-fed animals were mildly hypocholesterolemic and had an altered serum lipoprotein pattern. Cholesterol synthesis and HMG-CoA reductase activity exhibited decreased sensitivities to inhibition by dietary cholesterol when compared to control livers. However, sensitivity to intragastrically administered mevalonolactone was not altered. Although ACAT activity was increased by mevalonolactone administration to levels similar to those in untreated animals, it was not increased in the ethionine-fed animals by feeding cholesterol. The ethionine-induced premalignant liver responded to ethinyl estradiol treatment in a manner similar to that of the control, i.e., profound hypolipidemia, increased low density lipoprotein receptors, decreased reductase activity, and increased cholesterol esterification. Thus, these livers retained their estrogen responsiveness. Taken together, the data demonstrate that the major elements involved in maintaining hepatic cholesterol homeostasis are present in the premalignant liver, although in some cases at levels that are different from the control. However, the susceptibility to regulation was altered in these livers to suggest markedly decreased availability of cholesterol of exogenous origin to the regulatory compartment(s). Further, coupling of the different elements involved in maintenance of hepatic cholesterol homeostasis appeared to have been changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号