首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
In an attempt to elucidate the transfer and integration mechanism of Agrobacterium DNA upon crown gall induction, we translocated a borderless T-DNA to different sites of the C58 Ti plasmid. As a result of the physical linkage of the T-DNA onc genes with other Ti plasmid functions, the concerned strain retained tumor-inducing capacity. However, when the borderless T-DNA is separated on an independent replicon while all other pTi functions are provided in trans, the strain can no longer induce tumors on plants. We provide evidence that the right T-DNA border region harbors one or more in cis active functions essential in the transfer and/or stabilization of the T-DNA into plant cells. The strains used in these experiments allowed us to conclude that some function(s) of the Ti plasmid can induce plant cell proliferations independently of the T-DNA transformation event. The results described here indicate that other Ti plasmid sequences than solely the T-region can be transferred to plant cells.  相似文献   

2.
Agrobacterium tumefaciens harbouring the Ti plasmid incites crown gall tumor on dicotyledonous species. Upon infection of these plants, T-DNA in the Ti plasmid is transferred by unknown mechanisms to plant cells to be integrated into nuclear DNA. WhenAgrobacterium is incubated with protoplasts or seedlings of dicotyledonous plants, circulation of T-DNA and expression ofvir (virulence) genes on the Ti plasmid are induced. The circularization event is efficiently induced by mesophyll protoplasts of tobacco which are highly competent for transformation by the T-DNA, and is also induced by diffusible phenolic compounds excreted from the protoplasts. The circularization and formation of crown gall both require the expression of thevirD locus, one of the induciblevir genes. These results suggest that the circularization of T-DNA reflects one of steps of the T-DNA transfer during formation of crown gall. In contrast to dicotyledonous plants, monocotyledonous plants are thought to be unresponsive to infection byAgrobacterium. We showed that monocotyledonous plants do not excrete diffusible inducers for the expression ofvir genes, while they contain a novel type of a signal substance(s). This inducer is not detected in the exudates of seedlings of monocotyledonous plants, but is found in the extracts from the seedlings, and also those from the seeds, bran and germ of wheat and oats. This finding suggests that T-DNA processing, and possibly its transfer, should take place whenAgrobacterium invades seedlings and seeds of monocotyledonous plants. Recipient of the Botanical Society Award for Young Scientists, 1987.  相似文献   

3.
Summary Fertile transgenic plants of the annual pasture legume Medicago truncatula were obtained by Agrobacterium-mediated transformation, utilising a disarmed Ti plasmid and a binary vector containing the kanamycin resistance gene under the control of the cauliflower mosaic virus 35S promoter. Factors contributing to the result included an improved plant regeneration protocol and the use of explants from a plant identified as possessing high regeneration capability from tissue culture. Genes present on the T-DNA of the Ri plasmid had a negative effect on somatic embryogenesis. Only tissue inoculated with Agrobacterium strains containing a disarmed Ti plasmid lacking the T-DNA region or a Ri plasmid with an inactivated rol A gene regenerated transgenic plants. Fertile transgenic plants were only obtained with disarmed A. tumefaciens, and the introduced NPT II gene was transmitted to R1 progeny.Abbreviations BAP 6-benzylaminopurine - NAA 1-naphthaleneacetic acid - NPT neomycin phosphotransferase  相似文献   

4.
Stable transformation of plants by Agrobacterium T-DNAs requires that the transgene insert into the host chromosome. Although most of the Agrobacterium Ti plasmid genes required for this process have been studied in depth, few plant-encoded factors have been identified, although such factors, presumably DNA repair proteins, are widely presumed to exist. It has previously been suggested that the UVH1 gene product is required for stable T-DNA integration in Arabidopsis. Here we present evidence suggesting that uvh1 mutants are essentially wild type for T-DNA integration following inoculation via the vacuum-infiltration procedure.  相似文献   

5.
Agrobacterium tumefaciens VirD2 protein is one of the key elements of Agrobacterium-mediated plant transformation, a process of transfer of T-DNA sequence from the Agrobacterium tumour inducing plasmid into the nucleus of infected plant cells and its integration into the host genome. The VirD2 protein has been shown to be a substrate for a plant caspase-like protease activity (PCLP) in tobacco. We demonstrate here that mutagenesis of the VirD2 protein to prevent cleavage by PCLP increases the efficiency of reporter gene transfer and expression. These results indicate that PCLP cleavage of the Agrobacterium VirD2 protein acts to limit the effectiveness of T-DNA transfer and is a novel resistance mechanism that plants utilise to combat Agrobacterium infection. Brian Reavy and Svetlana Bagirova contributed equally to this work.  相似文献   

6.
A new plasmid series has been created for Agrobacterium-mediated plant transformation. The pBECKS2000 series of binary vectors exploits the Cre/loxP site-specific recombinase system to facilitate the construction of complex T-DNA vectors. The new plasmids enable the rapid generation of T-DNA vectors in which multiple genes are linked, without relying on the availability of purpose-built cassette systems or demanding complex, and therefore inefficient, ligation reactions. The vectors incorporate facilities for the removal of transformation markers from transgenic plants, while still permitting simple in vitro manipulations of the T-DNA vectors. A `shuttle' or intermediate plasmid approach has been employed. This permits independent ligation strategies to be used for two gene sets. The intermediate plasmid sequence is incorporated into the binary vector through a plasmid co-integration reaction which is mediated by the Cre/loxP site-specific recombinase system. This reaction is carried out within Agrobacterium cells. Recombinant clones, carrying the co-integrative binary plasmid form, are selected directly using the antibiotic resistance marker carried on the intermediate plasmid. This strategy facilitates production of co-integrative T-DNA binary vector forms which are appropriate for either (1) transfer to and integration within the plant genome of target and marker genes as a single T-DNA unit; (2) transfer and integration of target and marker genes as a single T-DNA unit but with a Cre/loxP facility for site-specific excision of marker genes from the plant genome; or (3) co-transfer of target and marker genes as two independent T-DNAs within a single-strain Agrobacterium system, providing the potential for segregational loss of marker genes.  相似文献   

7.
Different strains and species of the soil phytopathogen Agrobacterium possess the ability to transfer and integrate a segment of DNA (T-DNA) into the genome of their eukaryotic hosts, which is mainly mediated by a set of virulence (vir) genes located on the bacterial Ti-plasmid that also contains the T-DNA. To date, Agrobacterium is considered to be unique in its capacity to mediate genetic transformation of eukaryotes. However, close homologs of the vir genes are encoded by the p42a plasmid of Rhizobium etli; this microorganism is related to Agrobacterium, but known only as a symbiotic bacterium that forms nitrogen-fixing nodules in several species of beans. Here, we show that R. etli can mediate functional DNA transfer and stable genetic transformation of plant cells, when provided with a plasmid containing a T-DNA segment. Thus, R. etli represents another bacterial species, besides Agrobacterium, that encodes a protein machinery for DNA transfer to eukaryotic cells and their subsequent genetic modification.  相似文献   

8.
The abilities of Agrobacterium tumefaciens and A. rhizogenes to transform dicotyle-dons and cause crown gall and hairy root disease are caused by the presence of tumor inducing (Ti) and root inducing (Ri) plasmids. During transformation plasmid T-DNA (transferred DNA) is inserted into the plant genome. The T-region is flanked by 25 bp direct repeats, which are essential for transfer. The T-regions contain oncogenes that are expressed in the plants. Some of these code for enzymes that synthesize auxin or cytokinin. Another type, present in Ri plasmids only, appears to impose a high hormone sensitivity on the infected tissue. The T-DNA also contains genes for enzymes synthesizing opines, which the bacteria catabolize. The T-DNA transfer is initiated by the induction of genes in the virulence (vir) region of the plasmid by phenolic compounds secreted by wounded tissue. The products of the vir -genes and of chromosomal genes mediate transfer of T-DNA to the plant cells. Crown gall disease is caused by production of auxin and cytokinin by the transferred T-DNA. The T-DNA of Ri plasmids codes for at least three genes that each can induce root formation, and that together cause hairy root formation from plant tissue. Current results indicate that the products of these genes induce a potential for increased auxin sensitivity that is expressed when the transformed cells are subjected to a certain level of auxin. After this stage the transformed roots can be grown in culture without exogenous supply of hormones.  相似文献   

9.
NewAgrobacterium helper plasmids for gene transfer to plants   总被引:27,自引:0,他引:27  
We describe the construction of new helper Ti plasmids forAgrobacterium-mediated plant transformation. These plasmids are derived from three differentAgrobacterium tumefaciens Ti plasmids, the octopine plasmid pTiB6, the nopaline plasmid pTiC58, and the L,L-succinamopine plasmid pTiBo542. The T-DNA regions of these plasmids were deleted using site-directed mutagenesis to yield replicons carrying thevir genes that will complement binary vectorsin trans. Data are included that demonstrate strain utility. The advantages ofAgrobacterium strains harbouring these disamed Ti plasmids for plant transformation viaAgrobacterium are discussed.  相似文献   

10.
Cultured stem fragments from the monocotyledonous plant Asparagus officinalis infected by the oncogenic bacterium Agrobacterium tumefaciens developed tumorous proliferations. This tissue was propagated in vitro on hormone-free culture medium. The T-DNA-encoded markers nopaline and agrocinopine were unambiguously detected in these tissues. The data demonstrate that stable T-DNA transfer as well as expression of T-DNA genes is possible in at least some monocotyledonous plants. This opens new possibilities for plant genetic engineering using the Ti plasmid as a gene vector.  相似文献   

11.
In both applied and basic research, Agrobacterium-mediated transformation is commonly used to introduce genes into plants. We investigated the effect of three Agrobacterium tumefaciens strains and five transferred (T)-DNA origins of replication on transformation frequency, transgene copy number, and the frequency of integration of non-T-DNA portions of the T-DNA-containing vector (backbone) into the genome of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). Launching T-DNA from the picA locus of the Agrobacterium chromosome increases the frequency of single transgene integration events and almost eliminates the presence of vector backbone sequences in transgenic plants. Along with novel Agrobacterium strains we have developed, our findings are useful for improving the quality of T-DNA integration events.Since the generation of transgenic plants approximately 25 years ago, Agrobacterium tumefaciens has been widely used for introducing genes into plants for purposes of basic research as well as for generation of commercially used transgenic crops. For plant transformation, the gene of interest is placed between the left and right border repeats of Agrobacterium transferred (T)-DNA (Gelvin, 2003). The T-DNA region harboring the transgene is stably integrated into the plant genome by using an appropriate plant transformation protocol. T-DNA originates from the Agrobacterium tumor-inducing (Ti) plasmid. Because Ti plasmids are large and difficult to manipulate, smaller T-DNA binary vectors are currently predominately used for generation of transgenic plants (de Framond et al., 1983; Lee and Gelvin, 2008).Although Agrobacterium has been used for plant transformation for more than two decades, problems using this bacterium remain. Agrobacterium-mediated transformation generally results in lower transgene copy numbers than do other transformation methods such as particle bombardment or polyethylene glycol-mediated transformation (Kohli et al., 1998; Shou et al., 2004). On the other hand, transformation frequently results in unwanted high copy number T-DNA integration events (Jorgensen et al., 1987; Deroles and Gardner, 1988; Shou et al., 2004; De Buck et al., 2009). Multiple integration events, often coupled with inverted repeat T-DNA integration patterns, may affect the stability of transgene expression by silencing mechanisms (Jorgensen et al., 1996). An additional problem with Agrobacterium-mediated transformation is the propensity for DNA sequences outside the T-DNA region to integrate into the plant genome (Kononov et al., 1997; Wenck et al., 1997; Shou et al., 2004). Integration of such vector backbone sequences can occur with high frequency. For example, Kononov et al. (1997) detected backbone sequences in 75% of tested transgenic tobacco (Nicotiana tabacum) plants, and very often the entire vector backbone is introduced into the plant genome (De Buck et al., 2000). T-DNA vector backbones usually harbor bacterial antibiotic resistance genes that can create governmental regulatory concerns.Here we show that launching T-DNA from the A. tumefaciens chromosome reduces integrated transgene copy number and almost eliminates the presence of T-DNA backbone sequences. We describe several plasmids and bacterial strains to facilitate use of this methodology.  相似文献   

12.
Stable transformation of plants by Agrobacterium T-DNAs requires that the transgene insert into the host chromosome. Although most of the Agrobacterium Ti plasmid genes required for this process have been studied in depth, few plant-encoded factors have been identified, although such factors, presumably DNA repair proteins, are widely presumed to exist. It has previously been suggested that the UVH1 gene product is required for stable T-DNA integration in Arabidopsis. Here we present evidence suggesting that uvh1 mutants are essentially wild type for T-DNA integration following inoculation via the vacuum-infiltration procedure. Received: 23 June 1998 / Accepted: 21 February 1999  相似文献   

13.
A new plasmid series has been created for Agrobacterium-mediated plant transformation. The pBECKS2000 series of binary vectors exploits the Cre/loxP site-specific recombinase system to facilitate the construction of complex T-DNA vectors. The new plasmids enable the rapid generation of T-DNA vectors in which multiple genes are linked, without relying on the availability of purpose-built cassette systems or demanding complex, and therefore inefficient, ligation reactions. The vectors incorporate facilities for the removal of transformation markers from transgenic plants, while still permitting simple in vitro manipulations of the T-DNA vectors. A `shuttle' or intermediate plasmid approach has been employed. This permits independent ligation strategies to be used for two gene sets. The intermediate plasmid sequence is incorporated into the binary vector through a plasmid co-integration reaction which is mediated by the Cre/loxP site-specific recombinase system. This reaction is carried out within Agrobacterium cells. Recombinant clones, carrying the co-integrative binary plasmid form, are selected directly using the antibiotic resistance marker carried on the intermediate plasmid. This strategy facilitates production of co-integrative T-DNA binary vector forms which are appropriate for either (1) transfer to and integration within the plant genome of target and marker genes as a single T-DNA unit; (2) transfer and integration of target and marker genes as a single T-DNA unit but with a Cre/loxP facility for site-specific excision of marker genes from the plant genome; or (3) co-transfer of target and marker genes as two independent T-DNAs within a single-strain Agrobacterium system, providing the potential for segregational loss of marker genes. Received: 30 July 1998 / Accepted: 2 November 1998  相似文献   

14.
Successful transformation of plant cells has been obtained utilizing vectors and DNA delivery methods derived from the plant pathogen, Agrobacterium tumefaciens. This soil bacterium is capable of transferring a DNA segment (T‐DNA), located between specific nucleotide border sequences, from its large tumor inducing (Ti) plasmid into the nuclear DNA of infected plant cells. The exploitation of the Agrobacterium/Ti plasmid system for plant cell transformation has been facilitated by (1) the construction of modified Agrobacterium strains in which the genes responsible for pathogenicity have been deleted; (2) the design of intermediate vectors containing selectable drug markers for introducing foreign genes into the Ti plasmid and subsequently into plant cells; and (3) the development of efficient in vitro methods for transforming plant cells and tissues with engineered Agrobacterium strains. These modifications have led to the development of a simple, efficient, and reproducible transformation system from which morphologically normal transformed plants can be readily regenerated. The foreign genes are stably maintained and expressed in the resulting plants and are inherited by progeny as typical Mendelian traits. The availability of transformation systems has already facilitated numerous studies on gene expression and regulation in plants and should eventually allow for the modification of various crop species in an agronomically significant manner. The needs and possibilities for the development of alternate vectors and transformation procedures will be discussed.  相似文献   

15.
Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation.In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.  相似文献   

16.
Populations of agrobacteria in excess of 105 CFU/g were recovered from 12 soil and root samples obtained from the Allison Savanna, Minn., a natural oak savanna and tallgrass prairie which has never been disturbed agriculturally. Of 126 strains picked randomly from selective media, 54 were identified as Agrobacterium spp. Biovar 2 strains predominated (35 of 54), but these strains were distributed into three phenotypically distinct subgroups. Of the remaining Agrobacterium strains, four were biovar 1-2, one was biovar 1, and none were biovar 3. The last 14 Agrobacterium strains formed a homogeneous group which differed biochemically from the hitherto reported biovars. Opine utilization (coded for by genes on the tumor-inducing plasmid in pathogenic Agrobacterium spp.) by these agrobacteria was limited to two biovar 2 strains. In contrast, 10 nonfluorescent gram-negative strains utilized either nopaline or octopine as the sole carbon and nitrogen source. There may be a need to reexamine the source and role of opines in the terrestrial environment because (i) all of these opine utilizers were isolated from an environment free of crown gall, the only known terrestrial source of opines, and (ii) 83% of the opine utilizers were not Agrobacterium spp.  相似文献   

17.
Summary The transfer of the Agrobacterium T-DNA to plant cells involves the induction of the Ti plasmid virulence genes. This induction results in the generation of linear single-stranded (ss) copies of the T-DNA inside Agrobacterium and such molecules might be directly transferred to the plant cell. A central requirement of this ss transfer model is that the plant cell must generate a second strand and integrate the resulting double-stranded (ds) molecule into its genome. Here we report that incubating plant protoplasts with ss or ds DNA under conditions favouring DNA uptake results in transformation. The frequencies of transformation are similar and analysis of ss transformants suggests that the introduced DNA becomes double stranded and integrated. Analysis of transient expression from introduced ss DNA suggests that generation of the second strand is rapid and extrachromosomal.  相似文献   

18.
It has been proposed that transgenic plants of cereals can be generated by inoculating florets with Agrobacterium at or near anthesis. This procedure is shown to lead to the production of embryos of wheat and barley with enhanced resistance to antibiotic selection. It has also been possible to recover plants of wheat, barley and maize that gave positive hybridization signals with probes produced from within the T-DNA of the Agrobacterium vector. However, no evidence was found for transmission of the bands detected by hybridization in the progeny of the putative transgenic plants nor could enzyme activity associated with the resistance genes be found in plant extracts. Furthermore, undigested genomic DNA from the plants that were positive when probed with the T-DNA, showed hybridization to bands smaller than the genomic DNA. It is suggested that the apparent transformation is an artifact of the procedure and does not reflect transformation of the plant nuclear genome.  相似文献   

19.
Summary Agrobacterium strains harbouring the T-region and the virulence-region of the Ti plasmid on separate replicons still display efficient T-DNA transfer to plants. Based on this binary vector strategy we have constructed T-region derived gene vectors for the introduction of foreign DNA into plants. The vectors constructed can replicate in E. coli, thus the genetic manipulations with them can be performed with E. coli as a host. They can be transferred to Agrobacterium as a cointegrate with the wide host range plasmid R772. Their T-regions are transferred to plant cells from Agrobacterium strains conferring virulence functions.The plasmid pRAL 3940 reported here is 11.5 kb large, contains a marker to identify transformed plant cells and unique restriction sites for direct cloning of passenger DNA, flanked by the left- and right-hand border fragments of the T-region (including the 25 bp border repeats). The plasmid is free of onc-genes. Therefore, is does not confer tumorigenic traits on the transformed plant cells and mature, fertile plants can thus be regenerated from them.  相似文献   

20.
Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号