首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The bipotential glial progenitor cells (O-2A progenitors), which during development of the rat optic nerve give rise to oligodendrocytes and type 2 astrocytes, are stimulated to divide in culture by platelet-derived growth factor (PDGF), and there is evidence that PDGF is important for development of the O-2A cell lineage in vivo. We have visualized PDGF mRNA in the rat optic nerve by in situ hybridization, and its spatial distribution is compatible with the idea that type 1 astrocytes are the major source of PDGF in the nerve. We can detect mRNA encoding the A chain, but not the B chain of PDGF in the brain and optic nerve, suggesting that the major form of PDGF in the central nervous system is a homodimer of A chains (PDGF-AA). PDGF-AA is a more potent mitogen for O-2A progenitor cells than is PDGF-BB, while the reverse is true for human or rat fibroblasts. Fibroblasts display two types of PDGF receptors, type A receptors which bind to all three dimeric isoforms of PDGF, and type B receptors which bind PDGF-BB and PDGF-AB, but have low affinity for PDGF-AA. Our results suggest that O-2A progenitor cells possess predominantly type A receptors, and proliferate during development in response to PDGF-AA secreted by type 1 astrocytes.  相似文献   

2.
3.
4.
We have been studying the differing characteristics of oligodendrocyte- type-2 astrocyte (O-2A) progenitors isolated from optic nerves of perinatal and adult rats. These two cell types display striking differences in their in vitro phenotypes. In addition, the O- 2Aperinatal progenitor population appears to have a limited life-span in vivo, while O-2Aadult progenitors appear to be maintained throughout life. O-2Aperinatal progenitors seem to have largely disappeared from the optic nerve by 1 mo after birth, and are not detectable in cultures derived from optic nerves of adult rats. In contrast, O-2Aadult progenitors can first be isolated from optic nerves of 7-d-old rats and are still present in optic nerves of 1-yr-old rats. These observations raise two questions: (a) From what source do O-2Aadult progenitors originate; and (b) how is the O-2Aadult progenitor population maintained in the nerve throughout life? We now provide in vitro evidence indicating that O-2Aadult progenitors are derived directly from a subpopulation of O-2Aperinatal progenitors. We also provide evidence indicating that O-2Aadult progenitors are capable of prolonged self renewal in vitro. In addition, our data suggests that the in vitro generation of oligodendrocytes from O-2Aadult progenitors occurs primarily through asymmetric division and differentiation, in contrast with the self-extinguishing pattern of symmetric division and differentiation displayed by O-2Aperinatal progenitors in vitro. We suggest that O-2Aadult progenitors express at least some properties of stem cells and thus may be able to support the generation of both differentiated progeny cells as well as their own continued replenishment throughout adult life.  相似文献   

5.
6.
Our previous research effort has resulted in a stochastic model that provides an excellent fit to our experimental data on proliferation and differentiation of oligodendrocyte type-2 astrocyte progenitor cells at the clonal level. However, methods for estimation of model parameters and their statistical properties still remain far away from complete exploration. The main technical difficulty is that no explicit analytic expression for the joint distribution of the number of progenitor cells and oligodendrocytes, and consequently for the corresponding likelihood function, is available. In the present paper, we overcome this difficulty by using computer-intensive simulation techniques for estimation of the likelihood function. Since the output of our simulation model is essentially random, stochastic optimization methods are necessary to maximize the estimated likelihood function. We use the Kiefer-Wolfowitz procedure for this purpose. Given sufficient computing resources, the proposed estimation techniques significantly extend the spectrum of problems that become approachable. In particular, these techniques can be applied to more complex branching models of multi-type cell systems with dependent evolutions of different types of cells.  相似文献   

7.
X-ray-induced tissue damage in the brain of adult rats was investigated in the presence or absence of O-(beta-hydroxyethyl)-rutosides (OHR; active agents of Venoruton, Zyma-Blaes, München, FRG). Histochemical methods were used for the detection of glycogen (periodic acid-Schiff), acid mucopolysaccharides (Hale) and acid phosphatases (Gomori) by light microscopy. The tissue alterations were reduced after drug application in the dose range between 5 and 7.5 Gy (300 kV, 12 mA). Exposure of the animals to higher irradiation doses (10, 20 Gy) led to an inversion of the drug effect, now exerting pronounced tissue injury. For a possible explanation we discuss the inhibitory influence of rutosides (e.g. OHR) on the glycolytic pathway. Hence, a vital energy source of brain tissue could be impaired by the drug after reaching a threshold of 10 Gy.  相似文献   

8.
We have studied the developmental appearance of the O-2A(adult) progenitor cell, a specific type of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell that we have identified previously in cultures prepared from the optic nerves of adult rats. O-2A(adult) progenitors differ from their counterparts in perinatal animals (O-2A perinatal progenitor cells) in antigenic phenotype, morphology, cell cycle time, rate of migration, time course of differentiation into oligodendrocytes or type-2 astrocytes and sensitivity to the lytic effects of complement in vitro. In the present study, we have found that O-2A(adult) progenitor-like cells first appear in the developing optic nerve approximately 7 days after birth and that by 1 month after birth these cells appear to be the dominant progenitor population in the nerve. However, the perinatal-to-adult transition in progenitor populations is a gradual one and O-2A(adult) and O-2A perinatal progenitors coexist in the optic nerve for 3 weeks or more. In addition, cells derived from optic nerves of P21 rats express characteristic features of O-2adult and O-2A perinatal progenitors for extended periods of growth in the same tissue culture dish. Our results thus indicate that the properties that distinguish these two types of O-2A progenitors from each other are expressed in apparently identical environments. Thus, these cells must either respond to different signals present in the environment, or must respond with markedly different behaviours to the binding of identical signalling molecules.  相似文献   

9.
10.
The neurological reactions in Wallerian degeneration have been studied by electron microscopy in the optic nerve of adult albino rats from 7 to 120 days after unilateral enucleation. Reactive astrocytes contained abundant dense bodies, numerous microtubules and hyperplastic glial filaments. These astrocytes also assisted phagocytosis of degenerated myelin sheaths and in glial scar formation. Oligodendrocytes disconnected their cytoplasmic extensions, which were phagocytosed by microglial cells and astrocytes, by increased production of lysosomes. Microglial cells consisted of crinkled, long, rough endoplasmic reticula, several highly-active Golgi complexes, laminar inclusions and globoid lipid droplets. Microglia engulfed and lysed the disintegrated axons and myelin sheaths.  相似文献   

11.
We describe electrophysiological properties of the O-2A glial progenitor cell in a new serum-free culture system. O-2A progenitors have many properties characteristic of neurons: they have glutamate-activated ion channels, express the neuronal form of the sodium channel, fire single regenerative potentials, and synthesize the neurotransmitter GABA by an alternative synthetic pathway. Nearly identical properties were observed in acutely isolated O-2A progenitors, indicating that this phenotype is not an artifact of culture. The O-2A did not express a simple subset of channel types found in its descendant cells, the type-2 astrocyte and oligodendrocyte, studied in the same culture system. During development, these electrophysiological properties may contribute to O-2A function in vivo.  相似文献   

12.
After sectioning of the goldfish optic nerve a number of enzyme histochemical changes are observed in the hypertrophied retinal ganglion cells and in the optic nerve. Between one and eighteen days postoperatively an increase in the amount of acid phosphatase reaction product is noted. The enhanced activity decreased to normal first in the optic nerve, followed by the optic tract and tectum. Four days postoperatively higher levels of activity were noted in the hypertrophic retinal ganglion cells for the enzymes NADH tetrazolium reductase, cytochrome oxidase, glutamate dehydrogenase and lactate dehydrogenase. The same enzymes also showed an activity increase in the lesioned optic nerve after four to ten days postoperatively, beginning at the cut and gradually spreading towards the optic tectum. Between fifteen and eighteen days the activity dropped to normal in the hypertrophic retinal ganglion cells, while in the lesioned nerve raised levels of reaction products could be seen till days thirty-five and/or forty-five. It was concluded that the degeneration of the optic pathway is marked by the increase of acid phosphatase activity, whereas the process of regeneration is characterized by an increase of NADH tetrazolium reductase, cytochrome oxidase, glutamate dehydrogenase and lactate dehydrogenase activities. The possible functional implications of these enzymes in the regenerative phenomena are discussed.  相似文献   

13.
GTP-binding protein Gem, a member protein of the Ras superfamily, can regulate actin cytoskeleton reorganization mediated by Rho-associated coiled-coil-containing protein kinase (ROCK). One attractive activity of the ROCK is playing a potential role in physiological and pathological process in retinal ganglion cells (RGCs) apoptosis. However, the function of Gem in retina is still with limited understanding. To investigate whether Gem is involved in optic nerve injury, we performed an optic nerve crush (ONC) model in adult rats. Western blot analysis indicated that Gem was significantly increased in the retina at the 3rd day after ONC. Meanwhile, double-immunofluorescent staining showed that Gem expression was mainly up-regulated in ganglion cell layer and co-localized with NeuN (a marker of RGCs). Additionally, the co-localizations of Gem/active-caspase-3 and Gem/TUNEL-positive cells were detected in RGCs. Furthermore, the expression of active-caspase-3 and TUNEL-positive cells was parallel with that of Gem. Finally, expression pattern of ROCK family (only ROCK2 but not ROCK1) was increased in the differentiated process, which was collected with the expression of GEM and active-caspase-3. Based on the present results, it is suggested that Gem might play a crucial role in RGCs apoptosis after ONC, which might be involved in ROCK pathway.  相似文献   

14.
The effects of X irradiation on oligodendrocyte-type-2-astrocyte (O-2A) progenitor cells derived from different regions of the perinatal central nervous system (CNS) of rats were investigated in vitro. The O-2A progenitor cells can differentiate into either oligodendrocytes or type-2 astrocytes. The depletion of these cells could lead to demyelination, seen as a delayed reaction after irradiation of the CNS in vivo. To quantify cell survival, O-2A progenitor cells were grown on monolayers of type-1 astrocytes. Monolayers of type-1 astrocytes stimulate O-2A progenitor cells to divide. O-2A progenitor cells were irradiated in vitro and clonogenic cell survival was measured. The O-2A progenitor cells derived from perinatal optic nerve were quite radiosensitive in contrast to O-2A progenitor cells derived from perinatal spinal cord and perinatal corpus callosum. Furthermore, O-2A progenitor cells derived from the optic nerve formed smaller colonies, with most colonies showing early differentiation into oligodendrocytes. In contrast, more than half of the colonies derived from corpus callosum did not show any differentiation after 2 weeks in vitro and kept growing. These differences support the view that perinatal O-2A progenitor cells derived from the optic nerve are committed progenitor cells while the O-2A progenitor cells derived from the perinatal corpus callosum and the perinatal spinal cord have more stem cell properties.  相似文献   

15.
Retinal ganglion cells (RGCs) die by apoptosis after optic nerve injury. A number of reports have separately shown changes in pro-apoptotic proteins such as the Bcl-2 family members following optic nerve injury. However, induction time of these apoptotic signals has not been identified due to different treatments of the optic nerve, and insufficient time intervals for measurements. Therefore, the stream of cell death signals is not well understood. In the present study, we systematically reinvestigated a detailed time course of these cell death/survival signals in the rat retina after optic nerve crush, to determine the signal cascade leading to RGC apoptosis. The most conspicuous changes detected in the retina were the rapid inactivation of phospho-Akt and phospho-Bad proteins 2-3 days after optic nerve damage, and the subsequent gradual activation of Bax protein and caspase-3 activity accompanied by cell loss of RGCs 6 days after nerve injury. Cellular localization of these molecular changes was limited to RGCs. Furthermore, amount of insulin-like growth factor-I (IGF-I), an activator of the phosphatidyl inositol-3-kinase (PI3K)/Akt system, was initially decreased from RGCs 1-2 days just prior to the inactivation of phospho-Akt by optic nerve crush. Conversely, supplementation with IGF-I into the rat retina induced upregulation of phospho-Akt expression and cell survival of RGCs both in vitro and in vivo. Thus, injury to the optic nerve might induce early changes in cellular homeostasis with a plausible loss of trophic support for injured RGCs. Actually, IGF-I drastically enhanced neurite outgrowth from adult rat RGCs via a wortmannin-dependent mechanism in a retinal explant culture. Our data strongly indicate that IGF-I is a key molecule that induces RGC apoptosis or RGC survival and regeneration in the retina during the early stage of optic nerve injury.  相似文献   

16.
The Wallerian degeneration of the optic nerve of adult rat has been studied after destroying the retina. Animals were sacrificed between 4 days and 1 year after the lesion. Different cell types of the optic nerve have been studied ultrastructurally. Our results demonstrate the existence of a population of macrophages, probably of microglial origin, responsible for scavenging degenerated myelin. Astrocytes suffer a process of proliferation and hypertrophy, and are massively stuffed by gliofilaments, leading to a glial scar. These cells apparently do not participate in phagocytic phenomena, while some cytoplasmic inclusions (e.g. lipid droplets) suggest some implication in the local metabolization of some tissue degradation products. Oligodendrocytes do not undergo ultrastructural changes, showing a rather quiescent appearance.  相似文献   

17.
With the aim to reveal the ionising radiation effect to formation and structure of the optic nerve (ON), 55 white rat intact embryos and fetuses and 77 experimental embryos and fetuses, subjected to x-ray irradiation on the 10th-14th day of development, have been studied. The main regularities in formation of the ON have been stated under normal conditions. Certain disturbances in formation of the ON and in the internal membrane of the optic vesicle (future retina) under effect of x-rays in the dose of 2.24 Gy have been detected during the intrauterine period of development--folds, rosellas of retina, retardation in differentiation of the retina nervous layer, aberration of the ON growth with a subsequent reduction, the ON hypo- and aplasia, retardation in formation of neural sheaths, absence of intraspace between the sheaths.  相似文献   

18.
The stromal cells of the thymus of sham-irradiated and sublethal fission neutron-irradiated CBA/H mice were analyzed with immunohistology, using monoclonal antibodies directed to I-A and H-2K antigens as well as specific determinants for cortical and medullary stromal elements. In the control thymuses, I-A expression in the thymus shows a reticular staining pattern in the cortex and a confluent staining pattern in the medulla. In contrast, H-2K expression is mainly confluently located in the medulla. Whole body irradiation with 2.5 Gy fission neutrons reduces within 24 hr the cortex to a rim of vacuolized "nurse cell-like" epithelial cells, largely depleted of lymphoid cells. The localization of I-A antigens changes in the cortex and I-A determinants are no longer associated with or localized on epithelial reticular cells. Medullary stromal cells, however, are more or less unaffected. A high rate of phagocytosis is observed during the first 3 days after irradiation. About 5 days after irradiation, the thymus becomes highly vascularized and lymphoid cells repopulate the cortex. The repopulation of the thymic cortex coincides with the appearance of a bright H-2K expression in the cortex which is associated with both stromal cells as well as lymphoid blasts. During the regeneration of the thymus, the thymic stromal architecture is restored before the expression of cell surface-associated reticular MHC staining patterns. The observed sequential changes in the thymic microenvironment are related to the lymphoid repopulation of the thymus.  相似文献   

19.
20.
A subline of Brown Norway (BN) acute myelocytic leukemia (AML) which can be propagated in suspension culture (designated IPC-81) is described. Injection into Lewis x BN F1 hybrid (LBN) rats resulted in a log-linear correlation between tumor cell dose and time till death from the onset of leukemia even after multiple (greater than 16) passages in vitro. An in vitro clonogenic assay for IPC-81 colony formation (CFU-leuk) was developed with excellent cloning efficiency (55-82%). Colonies grew without the addition of specific growth factors; syngeneic spleen-conditioned medium inhibited CFU-leuk by 40%, but co-culture with untreated normal LBN rat bone marrow cells had no effect on CFU-leuk. CFU-leuk could be detected in the bone marrow 7 to 10 days before morphologic detection of leukemia in injected animals. This cell line should prove useful in the preclinical evaluation of new strategies for treating AML and evaluating new bone marrow purging methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号