首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Transferrin-binding protein B (TbpB) from Neisseria meningitidis binds human transferrin (hTf) at the surface of the bacterial cell as part of the iron uptake process. To identify hTf binding sites within the meningococcal TbpB, defined regions of the molecule were produced in Escherichia coli by a translational fusion expression system and the ability of the recombinant proteins (rTbpB) to bind peroxidase-conjugated hTf was characterized by Western blot and dot blot assays. Both the N-terminal domain (amino acids [aa] 2 to 351) and the C-terminal domain (aa 352 to 691) were able to bind hTf, and by a peptide spot synthesis approach, two and five hTf binding sites were identified in the N- and C-terminal domains, respectively. The hTf binding activity of three rTbpB deletion variants constructed within the central region (aa 346 to 543) highlighted the importance of a specific peptide (aa 377 to 394) in the ligand interaction. Taken together, the results indicated that the N- and C-terminal domains bound hTf approximately 10 and 1000 times less, respectively, than the full-length rTbpB (aa 2 to 691), while the central region (aa 346 to 543) had a binding avidity in the same order of magnitude as the C-terminal domain. In contrast with the hTf binding in the N-terminal domain, which was mediated by conformational epitopes, linear determinants seemed to be involved in the hTf binding in the C-terminal domain. The host specificity for transferrin appeared to be mediated by the N-terminal domain of the meningococcal rTbpB rather than the C-terminal domain, since we report that murine Tf binds to the C-terminal domain. Antisera raised to both N- and C-terminal domains were bactericidal for the parent strain, indicating that both domains are accessible at the bacterial surface. We have thus identified hTf binding sites within each domain of the TbpB from N. meningitidis and propose that the N- and C-terminal domains together contribute to the efficient binding of TbpB to hTf with their respective affinities and specificities for determinants of their ligand.  相似文献   

2.
Pathogenic bacteria in the Neisseriaceae possess a surface receptor mediating iron acquisition from human transferrin (hTf) that consists of a transmembrane iron transporter (TbpA) and a surface‐exposed lipoprotein (TbpB). In this study, we used hydrogen/deuterium exchange coupled to mass spectrometry (H/DX‐MS) to elucidate the effects on hTf by interaction with TbpB or derivatives of TbpB. An overall conserved interaction was observed between hTf and full‐length or N‐lobe TbpB from Neisseria meningitidis strains B16B6 or M982 that represent two distinct subtypes of TbpB. Changes were observed exclusively in the C‐lobe of hTf and were caused by the interaction with the N‐lobe of TbpB. Regions localized to the ‘lip’ of the C1 and C2 domains that flank the interdomain cleft represent sites of direct contact with TbpB whereas the peptides within the interdomain cleft that encompass iron binding ligands are inaccessible in the closed (holo) conformation. Although substantial domain separation upon binding TbpB cannot be excluded by the H/DX‐MS data, the preferred model of interaction involves binding hTf C‐lobe in the closed conformation. Alternate explanations are provided for the substantial protection from deuteration of the peptides encompassing iron binding ligands within the interdomain cleft but cannot be differentiated by the H/DX‐MS data.  相似文献   

3.
We have readdressed the ability of the transferrin-binding protein B (TbpB) from Neisseria meningitidis to discriminate between the iron-loaded and the iron-free human transferrin (hTf) by using the BIAcore technology, a powerful experimental technique for the observation of direct interactions between a receptor and its ligands, without the use of labels. Recombinant full-length TbpB from five N. meningitidis strains were produced and purified from Escherichia coli as fusion proteins. They showed a preference for the binding to iron-loaded hTf. As for the full-length molecule, we have demonstrated that the minimal N-terminal hTf binding domain of meningococcal TbpB from B16B6 and M982 strains was able to discriminate between both hTf forms.  相似文献   

4.
Myelin basic protein is a water soluble membrane protein which interacts with acidic lipids through some type of hydrophobic interaction in addition to electrostatic interactions. Here we show that it can be labeled from within the lipid bilayer when bound to acidic lipids with the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID) and by two lipid photolabels. The latter included one with the reactive group near the apolar/polar interface and one with the reactive group linked to an acyl chain to position it deeper in the bilayer. The regions of the protein which interact hydrophobically with lipid to the greatest extent were determined by cleaving the TID-labeled myelin basic protein (MBP) with cathepsin D into peptides 1-43, 44-89, and 90-170. All three peptides from lipid-bound protein were labeled much more than peptides from the protein labeled in solution. However, the peptide labeling pattern was similar for both environments. The two peptides in the N-terminal half were labeled similarly and about twice as much as the C-terminal peptide indicating that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half. MBP can be modified post-translationally in vivo, including by deamidation, which may alter its interactions with lipid. However, deamidation had no effect on the TID labeling of MBP or on the labeling pattern of the cathepsin D peptides. The site of deamidation has been reported to be in the C-terminal half, and its lack of effect on hydrophobic interactions of MBP with lipid are consistent with the conclusion that the N-terminal half interacts hydrophobically more than the C-terminal half. Since other studies of the interaction of isolated N-terminal and C-terminal peptides with lipid also indicate that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half, these results from photolabeling of the intact protein suggest that the N-terminal half of the intact protein interacts with lipid in a similar way as the isolated peptide. The similar behavior of the intact protein to that of its isolated peptides suggests that when the purified protein binds to acidic lipids, it is in a conformation which allows both halves of the protein to interact independently with the lipid bilayer. That is, it does not form a hydrophobic domain made up from different parts of the protein.  相似文献   

5.
Transferrin-binding protein B (TbpB) is one component of a bipartite receptor in several gram-negative bacterial species that binds host transferrin and mediates the uptake of iron for growth. Transferrin and TbpB are both bilobed proteins, and the interaction between these proteins seems to involve similar lobe-lobe interactions. Synthetic overlapping peptide libraries representing the N lobe of TbpB from Moraxella catarrhalis were prepared and probed with labeled human transferrin. Transferrin-binding peptides were localized to six different regions of the TbpB N lobe, and reciprocal experiments identified six different regions of the C lobe of transferrin that bound TbpB. Truncations of the N lobe of TbpB that sequentially removed each transferrin-binding determinant were used to probe an overlapping peptide library of the C lobe of human transferrin. The removal of each TbpB N-lobe transferrin-binding determinant resulted in a loss of reactivity with peptides from the synthetic peptide library representing the C lobe of transferrin. Thus, individual peptide-peptide interactions between ligand and receptor were identified. A structural model of human transferrin was used to map surface regions capable of binding to TbpB.  相似文献   

6.
Antibodies were raised in rabbits against synthetic peptides corresponding to the N-terminal (residues 1-15) and the C-terminal (residues 477-492) regions of the human erythrocyte glucose transporter. The antisera recognized the intact transporter in enzyme-linked immunosorbent assays (ELISA) and Western blots. In addition, the anti-C-terminal peptide antibodies were demonstrated, by competitive ELISA and by immunoadsorption experiments, to bind to the native transporter. Competitive ELISA, using intact erythrocytes, unsealed erythrocyte membranes, or membrane vesicles of known sidedness as competing antigen, showed that these antibodies bound only to the cytoplasmic surface of the membrane, indicating that the C terminus of the protein is exposed to the cytoplasm. On Western blots, the anti-N-terminal peptide antiserum labeled the glycosylated tryptic fragment of the transporter, of apparent Mr = 23,000-42,000, showing that this originates from the N-terminal half of the protein. The anti-C-terminal peptide antiserum labeled higher Mr precursors of the Mr = 18,000 tryptic fragment, although not the fragment itself, indicating that the latter, with its associated cytochalasin B binding site, is derived from the C-terminal half of the protein. Antiserum against the intact transporter recognized the C-terminal peptide on ELISA, and the Mr = 18,000 fragment but not the glycosylated tryptic fragment on Western blots.  相似文献   

7.
The transferrin receptor of Neisseria meningitidis is composed of the transmembrane protein TbpA and the outer membrane protein TbpB. Both receptor proteins have the capacity to independently bind their ligand human transferrin (htf). To elucidate the specific role of these proteins in receptor function, isothermal titration calorimetry was used to study the interaction between purified TbpA, TbpB or the entire receptor (TbpA + TbpB) with holo- and apo-htf. The entire receptor was shown to contain a single high affinity htf-binding site on TbpA and approximately two lower affinity binding sites on TbpB. The binding sites appear to be independent. Purified TbpA was shown to have strong ligand preference for apo-htf, whereas TbpA in the receptor complex with TbpB preferentially binds the holo form of htf. The orientation of the ligand specificity of TbpA toward holo-htf is proposed to be the physiological function of TbpB. Furthermore, the thermodynamic mode of htf binding by TbpB of isotypes I and II was shown to be different. A protocol for the generation of active, histidine-tagged TbpB as well as its individual N- and C-terminal domains is presented. Both domains are shown to strongly interact with each other, and isothermal titration calorimetry and circular dichroism experiments provide clear evidence for this interaction causing conformational changes. The N-terminal domain of TbpB was shown to be the site of htf binding, whereas the C-terminal domain is not involved in binding. Furthermore, the interactions between TbpA and the different domains of TbpB have been demonstrated.  相似文献   

8.
9.
The 100 kDa Type I isozyme of mammalian hexokinase has evolved by duplication and fusion of a gene encoding an ancestral 50 kDa hexokinase. Although the N- and C-terminal halves are similar in sequence, they differ in function, catalytic activity being associated only with the C-terminal half while the N-terminal half serves a regulatory role. The N- and C-terminal halves of rat Type I hexokinase have been coexpressed in M + R 42 cells. The halves associate noncovalently to produce a 100 kDa form that exhibits characteristics seen with the intact Type I isozyme but not with the isolated catalytic C-terminal half, i.e., characteristics that are influenced by interactions between the halves. These include a decreased K(m) for the substrate ATP and the ability of P(i) to antagonize inhibition by Glc-6-P or its analog, 1-5-anhydroglucitol-6-P. Thus, functional interactions between the N- and C-terminal halves do not require their covalent linkage.  相似文献   

10.
The lbpA gene of Neisseria meningitidis encodes an outer membrane lactoferrin-binding protein and shows homology to the transferrin-binding protein, TbpA. Previously, we have detected part of an open reading frame upstream of lbpA . The putative product of this open reading frame, tentatively designated lbpB showed homology to the transferrin-binding protein TbpB, suggesting that the lactoferrrin receptor, like the transferrin receptor, consists of two proteins. The complete nucleotide sequence of lbpB was determined. The gene encodes a 77.5 kDa protein, probably a lipoprotein, with homology, 33% identity to the TbpB of N . meningitidis . A unique feature of LbpB is the presence of two stretches of negatively charged residues, which might be involved in lactoferrin binding. Antisera were raised against synthetic peptides corresponding to the C-terminal part of the putative protein and used to demonstrate that the gene is indeed expressed. Consistent with the presence of a putative Fur binding site upstream of the lbpB gene, expression of both LbpA and LbpB was proved to be iron regulated in Western blot experiments. The LbpB protein appeared to be less stable than TbpB in SDS-containing sample buffer. Isogenic mutants lacking either LbpA or LbpB exhibited a reduced ability to bind lactoferrin. In contrast to the lbpB mutant, the lbpA mutant was completely unable to use lactoferrin as a sole source of iron.  相似文献   

11.
Calcium dissociation from the C-terminal and N-terminal halves of calmodulin, intact bovine brain calmodulin and the respective phenoxybenzamine complexes or melittin complexes was measured directly by stopped-flow fluorescence with the calcium chelator Quin 2 and, when possible, also by protein fluorescence using endogenous tyrosine fluorescence by mixing with EGTA. Calcium dissociation from the C-terminal half of calmodulin, which contains only the two high-affinity calcium-binding sites, and from intact calmodulin was monophasic, with good correlation of the rates of calcium dissociation obtained by the two methods. The apparent rates with Quin 2 and endogenous tyrosine fluorescence were 13.4 s-1 and 12.8 s-1, respectively, in the C-terminal half and 10.5 s-1 and 10.8 s-1, respectively, in intact calmodulin (pH 7.0, 25 degrees C, 100 mM KCl). Alkylation of the C-terminal half resulted in a biphasic calcium dissociation (Quin 2: kobs 1.90 s-1 and 0.73 s-1 respectively; tyrosine: kobs 1.65 s-1 and 0.61 s-1 respectively). Alkylation of intact calmodulin resulted in a four-phase calcium dissociation measured with Quin 2 (kobs 85.3 s-1, 11.1 s-1, 1.92 s-1 and 0.59 s-1); the latter two phases are assumed to represent calcium release from high-affinity sites since they correspond to the biphasic tyrosine fluorescence change in intact alkylated calmodulin (kobs 2.04 s-1 and 0.53 s-1 respectively) and the rate parameters determined in the C-terminal half. Evidently perturbation of the calcium-binding sites by alkylation reduces the rate of calcium dissociation and allows a distinction to be made between dissociation from each of the two high-affinity sites as well as the distinct conformational change on dissociation of each calcium. Alkylation of the N-terminal half resulted in biphasic calcium release with rates (kobs 153 s-1 and 10.9 s-1 respectively) similar to those observed in intact alkylated calmodulin. The rates of calcium dissociation from calmodulin-melittin or fragment-melittin complexes, measured with Quin 2, were slower and monophasic in the C-terminal half (kobs 1.12 s-1), biphasic in the N-terminal half (kobs 140 s-1 and 26.8 s-1 respectively) and triphasic in intact calmodulin (kobs 126 s-1, 12.1 s-1 and 1.38 s-1). Calmodulin antagonists thus increase the apparent calcium affinity of high and low-affinity sites mainly due to a reduced calcium 'off rate', presumably because of conformation restrictions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The transferrin-binding protein Bs (TbpBs) from the bacterium Neisseria meningitidis have been divided into two families according to genetic and antigenic features. TbpB from meningococcal strain B385 showed a molecular mass similar to that exhibited by TbpBs belonging to the high molecular mass family of TbpBs. TbpB was recognized by immunoassay using a specific serum directed against the TbpB of the reference strain for this family (strain M982). It was also recognized by a serum elicited against the TbpB of the reference strain for the low molecular mass family (strain B16B6). The tbpB gene from strain B385 was cloned and sequenced. The highest degree of sequence homology was found to be with the TbpBs belonging to the high molecular mass family, although a region of 14 amino acids that is only present in the TbpB from strain B16B6 was also found. This report illustrates a TbpB that shows hybrid antigenic and genetic behaviour.  相似文献   

13.
Seo JK  Kim HK  Lee TY  Hahm KS  Kim KL  Lee MK 《Peptides》2005,26(11):2175-2181
C34-LAI containing amino acids 118 to 151 of the HIV-1(LAI) gp41 ectodomain exhibits potent anti-HIV-1 activity. However, the N-terminal halves of C34 peptides vary more according to the HIV-1 strain than the C-terminal halves. Therefore, an analysis was conducted on the anti-HIV-1 activities of the C34 peptides derived from various HIV-1 strains. C34-89.6 exhibited the strongest anti-HIV-1 activity among the C34 peptides tested. Interestingly, its N-terminal half was more acidic than those of the other C34 peptides, whereas its C-terminal half was more basic. Since the C-peptides derived from the HIV-1(LAI) strain are used extensively, the anti-HIV-1 activities of these peptides were compared between the HIV-1 strains 89.6 and LAI. When using chimeric peptides, it was found that the C-terminal basic region of C34-89.6 was more critical than its N-terminal basic region. The anti-HIV-1 activity of T20-89.6 and C28-89.6 was also stronger than that of T20-LAI and C28-LAI, respectively. The anti-HIV-1 activity of C28-89.6 was weakened when the C-terminal basic residues were changed to the corresponding residues of C28-LAI. However, no conformational differences were found among the C28 peptides. Accordingly, these results imply that introducing the C-terminal basic residues of the HIV-1 89.6 C-peptide may be useful for developing potent anti-HIV-1 drugs.  相似文献   

14.
Tropomodulin (Tmod) stabilizes the actin-tropomyosin filament by capping the slow-growing end (P-end). The N- and C-terminal halves play distinct roles; the N-terminal half interacts with the N-terminal region of tropomyosin, whereas the C-terminal half interacts with actin. Our previous study (A. Kostyukova, K. Maeda, E. Yamauchi, I. Krieger, and Y. Maéda Y., 2000, Eur. J. Biochem. 267:6470-6475) suggested that the two halves are also structurally distinct from each other. We have now studied the folding properties of the two halves, by circular dichroism spectroscopy and by differential scanning calorimetry of the expressed chicken E-type tropomodulin and its large fragments. The results showed that the C-terminal half represents a single, independently folded unit that melts cooperatively through a two-state transition. In contrast, the N-terminal half lacks a definite tertiary structure in solution. The binding of N11, a fragment that corresponds to the first 91 amino acids of the tropomodulin, to tropomyosin substantially stabilized the tropomyosin. This may indicate that the flexible structure of the N-terminal half of tropomodulin in solution is required for binding to tropomyosin and that the N-terminal half acquires its tertiary structure upon binding to tropomyosin.  相似文献   

15.
T Vorherr  M Quadroni  J Krebs  E Carafoli 《Biochemistry》1992,31(35):8245-8251
Bovine brain calmodulin was labeled with synthetic peptides corresponding to the calmodulin-binding domain of the erythrocyte plasma membrane Ca(2+)-ATPase. One 20-amino acid peptide and two 28-amino acid peptides were used, carrying L-4'-(1-azi-2,2,2-trifluoroethyl)phenylalanine residues in position 9 (peptides C20W* and C28W*) and position 25 (peptide C28WC*), respectively. The localization of the contact regions between calmodulin and the N- and C-terminal portions of the peptides was the aim of this study. The three peptides were N-terminally blocked with a 3H-labeled acetyl group to facilitate the identification of labeled fragments after isolation and digestion. The binding site for phenylalanine 25 was identified in the N-terminal domain of calmodulin while the phenylalanine derivative in position 9 labeled the C-terminal domain. Fluorescence studies using the dansylated N- and C-terminal halves of calmodulin and peptide C20W corresponding to the first 20 amino acids of the calmodulin-binding domain showed that only the C-terminal lobe of calmodulin had high affinity for the peptide (KD in the nanomolar range).  相似文献   

16.
In plants, high capacity tonoplast cation/H+ antiport is mediated in part by a family of cation exchanger (CAX) transporters. Functional association between CAX1 and CAX3 has previously been shown. In this study we further examine the interactions between CAX protein domains through the use of nonfunctional halves of CAX transporters. We demonstrate that a protein coding for an N-terminal half of an activated variant of CAX1 (sCAX1) can associate with the C-terminal half of either CAX1 or CAX3 to form a functional transporter that may exhibit unique transport properties. Using yeast split ubiquitin, in planta bimolecular fluorescence complementation, and gel shift experiments, we demonstrate a physical interaction among the half proteins. Moreover, the half-proteins both independently localized to the same yeast endomembrane. Co-expressing variants of N- and C-terminal halves of CAX1 and CAX3 in yeast suggested that the N-terminal region mediates Ca2+ transport, whereas the C-terminal half defines salt tolerance phenotypes. Furthermore, in yeast assays, auto-inhibited CAX1 could be differentially activated by CAX split proteins. The N-terminal half of CAX1 when co-expressed with CAX1 activated Ca2+ transport, whereas co-expressing C-terminal halves of CAX variants with CAX1 conferred salt tolerance but no apparent Ca2+ transport. These findings demonstrate plasticity through hetero-CAX complex formation as well as a novel means to engineer CAX transport.  相似文献   

17.
Interaction of two separately expressed halves of sucrose transporter SUT1 was detected by an optimized split-ubiquitin system. The halves reconstitute sucrose transport activity at the plasma membrane with affinities similar to the intact protein. The halves do not function independently, and an intact central loop is not required for membrane insertion, plasma membrane targeting, and transport. Under native conditions, the halves associate into higher molecular mass complexes. Furthermore, the N-terminal half of the low-affinity SUT2 interacts functionally with the C-terminal half of SUT1. Since the N terminus of SUT2 determines affinity for sucrose, the reconstituted chimera has lower affinity than SUT1. The split-ubiquitin system efficiently detects intramolecular interactions in membrane proteins, and can be used to dissect transporter structure.  相似文献   

18.
Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small-angle X-ray scattering, receptor binding assays and synchrotron X-ray fluorescence microscopy, we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway--receptor-mediated endocytosis of the iron transport protein serum transferrin; however, only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small-angle scattering show that only transferrin with plutonium bound in the protein's C-terminal lobe (C-lobe) and iron bound in the N-terminal lobe (N-lobe) (Pu(C)Fe(N)Tf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal-binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin's two lobes act to restrict, but not eliminate, cellular Pu uptake.  相似文献   

19.
20.
Human heterochromatin protein HP1(Hsalpha) possesses two evolutionarily conserved regions in the N- and C-terminal halves, so-called chromo and chromo-shadow domains, and DNA-binding domain in the internal non-conserved region. Here, to examine its in vivo properties, we expressed HP1(Hsalpha) as a fusion product with green fluorescent protein in human cells. HP1(Hsalpha) was observed to form discrete dots in interphase nuclei and to localize in the centromeric region of metaphase chromosomes by fluorescence microscopy. Interestingly, this dot-forming activity was also found in the N-terminal half retaining the chromo and DNA-binding domains and in the C-terminal chromo-shadow domain. However, the chromo domain alone stained nuclei homogeneously. To correlate this dot-forming activity with self-associating activity in vitro, the chromo and chromo-shadow domain peptides were independently expressed in Escherichia coli, affinity purified, and chemically cross-linked with glutaraldehyde. In a SDS-polyacrylamide gel, the former mainly produced a dimer, while the latter produced a ladder of bands up to a tetramer. When passed through a gel filtration column in a native state, these peptides were exclusively separated as a dimer and a tetramer, respectively. These results suggested that the internal DNA-binding and C-terminal chromo-shadow domains are both involved in heterochromatin formation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号