首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-beta-D-ribofuranoside (3) was obtained in three steps from D-ribose. Exchange of the isopropylidene group for benzoate groups and acetolysis gave 1-O-acetyl-2,3-di-O-benzoyl-5-deoxy-5-iodo-D-ribofuranose which was coupled with 6-benzamidochloromercuripurine by the titanium tetrachloride method to afford the blocked nucleoside. Treatment with 1,5-diazabicyclo[5.4.0]undec-5-ene in N,N-dimethylformamide and removal of the blocking groups have 9-(5-deoxy-beta-D-erythro-pent-4-enofuranosyl)adenine (9). A similar route starting from methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-alpha-D-lyxofuranoside (14) afforded the enantiomeric nucleoside, 9-(5-deoxy-beta-L-erythro-pent-4-enofuranosyl)adenine (20). Methyl 2,3-O-isopropylidene-alpha-D-mannofuranoside was treated with sodium periodate and then with sodium borohydride to give methyl 2,3-O-isopropylidene-alpha-D-lyxofuranoside (11). Acid hydrolysis afforded D-lyxose. Tosylation of 11 gave methyl 2,3-O-isopropylidene-5-O-p-tolylsulfonyl-alpha dp-lyxofuranoside (12) which was converted into 14 with sodium iodide in acetone. Reduction of 12 gave methyl 5-deoxy-2,3-O-isopropylidene-alpha-D-lyxofuranoside which was hydrolyzed to give 5-deoxy-D-lyxose.  相似文献   

2.
Two routes for the synthesis of methyl 5-S-acetyl-6-deoxy-2,3-O-isopropylidene-5-thio-l-mannofuranoside (8) have been examined. Reaction of l-rhamnose with methanol in the presence of the cation-exchange resin gives methyl 6-deoxy-α-l-mannofuranoside (2), which on conventional acetonation yields methyl 6-deoxy-2,3-O- isopropylidene-α-l-mannofuranosides (3). Compounds 3 is also obtained by acetonation of l-rhamnose followed by treatment with a mixture of methanol, acetonation, Amberlite IR-120(H+) resin. Chlorination of 3 with triphenylphosphine-carbon tetrachloride gives methyl 5-chloro-5,6-dideoxy-2,3-O-isopropylidene-β-d-gulofuranoside (7), which reacts with potassium thioacetate to give 8. Alternatively, 3 is iodized with ruthenium tetraoxide to methyl 6-deoxy-2,3-O-isopropylidene-α-l-lyxo-hexofuranosid-5-ulose (9), which reduced by sodium borohydride mainly to methyl 6-deoxy-2,3-O-isopropylidene-β-d-gulofuranoside (10). The O-tosyl derivative of 10 reacts with potassium thioacetate to produced 8. Hydrolysis of 8 with 90% aqueous triflouroacetic acid, followed by acetolysis with a solution of acetic acid, acetic anhydride, and sulfuric acids gives an anomeric mixture of 1,2,3,4,-tetra-O-acetyl-6-deoxy-5-thio-l-mannopyranoses (12), together with a small proportion of 1,2,3,-tri-O-acetyl-5-S-acetyl-6-deoxy-5-thio-β-l-mannofuranose (13). Deacetylation of 12 or 13 gives 5-thio-l-rhamnose (6), from which crystalline 1,2,3,4-tetra-O-(p-nitrobenzoyl)-5-thio-β-l-rhamnopyranose (14) is obtained.  相似文献   

3.
Condensation of the silylated pyrimidines 5a-c with methyl 2-deoxy-3,5-di-O-toluoyl-D-pentofuranoside 6, using trimethylsilyltriflate as catalyst gave anomeric mixtures of 2'-deoxynucleosides 7a-c, the pure alpha- and beta-anomers were separated and deprotected with sodium methoxide in methanol to give 1-(2'-deoxy-alpha-D-pentafuranosyl)-4-hydroxy-5-substituted-6(1H)-pyrimidinones 10a,b and 13a and their corresponding beta-anomers 11a,b and 13b.  相似文献   

4.
The absolute configuration of the pyrrolizidine alkaloid acetylgynuramine was determined by X-ray diffraction to be (?)-(1aR,6bR,10R,11S)-9,14-dioxo-10-hydroxy-13-cis-ethylidene-11-methoxyacetyl-10-methyl-1a,2,3,6b-tetrahydro-5H-pyrrolizino-(1a,6b,6a,b,c)-1,8-dioxa-cyclododecane.  相似文献   

5.
Geometric and position isomers of zeatin and of ribosylzeatin and other compounds closely related to zeatin have been tested in the tobacco (Nicotiana tabacum var. Wisconsin No. 38) bioassay. None was more active than zeatin itself. There was a much greater difference in activity (> 50-fold) between trans- and cis-zeatin than between trans-isozeatin [6-(4-hydroxy-2-methyl-trans-2-butenylamino) purine] and cis-isozeatin [6-(4-hydroxy-2-methyl-cis-2-butenylamino) purine], the latter being less active than cis-zeatin and trans-isozeatin. Higher concentrations were required for equivalent callus growth stimulated by the 9-ribosyl derivatives, which followed an order of decreasing activity: ribosyl-trans-zeatin > ribosyl-cis-zeatin > ribosyl-trans-isozeatin > ribosyl-cis-isozeatin, corresponding roughly to that of the bases. The effect of side chain, double bond saturation was to diminish the activity, and in the dihydro series the shift of the methyl group from the 3- to the 2-position in going from dihydrozeatin to dihydroisozeatin [6-(4-hydroxy-2-methylbutylamino) purine] resulted in a 70-fold decrease in activity. cis-Norzeatin [6-(4-hydroxy-cis-2-butenylamino) purine], which was less than one-fifth as active as cis-zeatin, showed the effect of complete removal of the side chain methyl group, and cyclic-norzeatin [6-(3,6-dihydro-1,2-oxazin-2-yl) purine] was about 1/100 as active as cis-norzeatin. These findings delineate completely the effect on the cytokinin activity of zeatin of variation in side chain geometry, presence and position of the methyl substituent, presence and geometry of hydroxyl substitution, presence of the double bond, and of side chain cyclization.  相似文献   

6.
The DBU-promoted intramolecular aldol condensation of two partially protected L-lyxo-hexos-5-ulose derivatives (8 and 9), in turn obtained starting from methyl beta-D-galactopyranoside, takes place with fairly good yield and complete diastereoselectivity to give 2L-(2,3,6/4,5)-pentahydroxycyclohexanone derivatives, 10 and 11. The stereoselective reduction of inosose 10 with sodium triacetoxyborohydride leads, after catalytic debenzylation, to D-chiro-inositol (1), while the sodium borohydride reduction furnishes, with opposite stereoselectivity, a derivative of allo-inositol.  相似文献   

7.
Periodate-oxidized methyl 4,6-O-benzylidene-α-D-glucopyranoside (1) reacted with p-toluenesulfonylhydrazine to give the substituted bis(hydrazone) 2, which was converted into an N-substituted epimino derivative (3) by treatment with sodium borohydride in ethanol. Compound 3 was further converted into the glyc-2-enoside 4 by heating it with sodium borohydride in 1,4-dioxane. Sodium cyanoborohydride in ethanol reduced 2 to an epimeric mixture of 2-deoxy-D-arabino (5) and D-ribo (6)-hexoside derivatives. In the presence of an acidic resin in the same solvent, however, compound 2 underwent hydrogenation to the bis(hydrazino) derivative (7). The mechanisms of these reactions are discussed.  相似文献   

8.
G Halperin 《Steroids》1979,33(3):295-304
Reaction of methyl-3 alpha-7 alpha-diacetoxy-11 alpha-bromo-12-oxo-5 beta-cholan-24-oate with sodium borohydride in pyridine solution containing sodium acetate gave the corresponding 11 beta, 12 beta-epoxide in 65% yield. The epoxy-ring was opened with hydrobromic or hydroiodic acid to give the corresponding 12 alpha-halo-11 beta-alcohols, which were converted to the halo-ketones and finally to methyl 3 alpha,7 alpha-diacetoxy-11-oxo-5 beta-cholan-24-oate.  相似文献   

9.
We wish to report here the syntheses of (5S, 6R)-5-hydroxy-, (5R, 6R)-5-hydroxy-, (5R, 6S)-5-hydroxy-, and (5S, 6S)-5-hydroxy-PGI1 and their methyl ester derivatives. Treatment of (5R, 6S)-5-epoxy- and (5S, 6R)-5-epoxy-PFG methyl esters with acid washed silica gel afforded (5R, 6R)-5-hydroxy- and (5S, 6S)-5-hydroxy-PGI1 methyl esters; correspondingly, silica promoted cyclization of (5S, 6S)-epoxy- and (5S, 6R)-5-epoxy- PGF1 methyl esters yielded (5S, 6R)-5-hydroxy- and (5R, 6S)-5-hydroxy- PGI1 methyl esters. Alternatively, the 5-hydroxyl group was introduced into the PGI1 skeleton via reaction of the 5-mercuric halides with sodium borohydride in the presence of oxygen. Stereochemical assignments were based on their mode of synthesis and 1H nmr shift differences.  相似文献   

10.
The Michaelis-Arbuzov reaction of methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-β-D-ribofuranoside (4) with diethyl ethylphosphonite gave methyl 5-deoxy-5-(ethoxyethylphosphinyl)-2,3-O-isopropylidene-β-D-ribofuranoside (5) which, on treatment with sodium dihydrobis(2-methoxyethoxy)aluminate, afforded methyl-5-deoxy-5-(ethylphosphinyl)-2,3-O-isopropylidene-β-D-ribofuranoside (9). Hydrolysis of 9 with hydrochloric acid yielded a mixture of the anomeric 5-deoxy-5-(ethylphosphinyl)-D-ribopyranoses (10). The hygroscopic, syrupy mixture 10 was converted into a syrup consisting of the two 1,2,3,4-tetra-O-acetyl-5-deoxy-5-(ethylphosphinyl)-D-ribopyranoses (11).  相似文献   

11.
The isomerization of 5-androstene-3,17-dione and 17β-hydroxy-5-androstene-3-one to 4-androstene-3,17-dione and 17β-hydroxy-4-androstene-3-one, respectively, is catalyzed by primary amines. In the case of the isomerization catalyzed by glycylglycine the reaction proceeds through an intermediate which absorbs maximally at 275 nm. Based on spectral similarities to appropriate model compounds and structural analysis of the intermediate after its reduction by sodium borohydride, the intermediate has been tentatively identified as the Δ4-3-imine.  相似文献   

12.
The oxidation of linoleic acid in incubation mixtures containing extracts of barley lipoxygenase and hydroperoxide isomerase, and the production of these enzymes in quiescent and germinated barley, were investigated. The ratio of 9-hydroperoxylinoleic acid to 13-hydroperoxylinoleic acid was higher for incubation mixtures containing extracts of quiescent barley than for mixtures containing extracts of germinated barley; production of 13-hydroperoxylinoleic acid from germinated barley exceeded that of quiescent barley. Hydroperoxy metabolites of linoleic acid were converted to 9-hydroxy-10-oxo-cis-12-octadecenoic acid, 13-hydroxy-10-oxo-trans-11-octadecenoic acid, and small amounts of 11-hydroxy-12,13-epoxy-cis-9-octadecenoic acid and 11-hydroxy-9,10-epoxy-cis-13-octadecenoic acid whether quiescent or germinated barley was the enzyme source; a fifth product, 13-hydroxy-12-oxo-cis-9-octadecenoic acid was formed only when germinated barley was the enzyme source.  相似文献   

13.
E Mappus  C Y Cuilleron 《Steroids》1979,33(6):693-718
The 3-(O-carboxymethyl)oximino derivative of 17β-hydroxy-5α-androstan-3-one (5α-dihydrotestosterone) was prepared. Thin-layer chromatography of the corresponding methyl ester showed the presence of two syn (60%) and anti (40%) geometrical isomers of the oxime chain to the C-4 position, which were characterized by 13C nmr. The 3β-hemisuccinami-do-5α-androstan-17β-ol was obtained after selective saponification with potassium carbonate of the 17β-hemisuccinate group of the 3,17-dihemi-succinoylated derivative of the previously described 3β-amino-5α-androstan-17β-ol. This 3β-hemisuccinamide was purified as the corresponding methyl ester-17β-acetate and was regenerated after saponification. The 3,3'-ethylenedioxy-7-oxo-5α-androstan-17β-yl acetate was obtained in quantitative yield by catalytic hydrogenation over 10% palladium-oncharcoal of the Δ5-7-oxo precursor in a dioxane-ethanol mixture containing traces of pyridine. The exclusive 5α-configuration of this hydrogenated product was established from nmr data and was confirmed by the synthesis of methyl 3,3'-ethylenedioxy-7-oxo-5β-cholan-24-oate as 5β-H-reference compound. The preceding 5α-H-7-ketone was converted into the 7-(O-carboxymethyl)oximino derivative (syn isomer to the C-6 position, exclusively) which was esterified into the corresponding methyl ester. The selective hydrolysis of the 3-ethyleneketal group was achieved by a short treatment with a formic acid-ether 1:1 (v/v) mixture at 20°C. Saponification of the latter reaction product with ethanolic potassium hydroxide gave the 7-(O-carboxymethyl)oximino-17β-hydroxy-5α-androstan-3-one derivative, which was characterized as the corresponding methyl ester. The reduction of the oxime of the 5α-H-7-ketone with sodium in ethanol or with lithium-aluminium hydride gave respectively the 7β-amine or the 7α-amine as the major product. The 7β- and 7α-configurations were established from nmr spectra of the corresponding 7-acetamido derivatives. The 7β- and 7α-hemisuccinamido derivatives were prepared from the mixture of 7β- and 7α-amines, as described above for 3-derivatives and were isolated after thin-layer chromatography of the methyl esters, followed by saponification of the corresponding 17β-acetates.  相似文献   

14.
The 1-methyl derivatives (3 and 4) of 3-(1-phenyl- (1) and 3-(1-p-bromophenylhydrazono-L-threo-2,3,4-trihydroxybutyl)-2-quinoxalinone (2) were prepared by methylation. Periodate oxidation of 3 gave 1-methyl-3-[1-(phenylhydrazono)glyoxal-1-yl]-2-quinoxalinone (5), which, on reduction with sodium borohydride, gave the corresponding 3-[2-hydroxy-1-(phenylhydrazono)ethyl] derivative (8). Reaction of 5 with hydroxylamine or benzoylhydrazine gave the corresponding 2-oxime (6) and 2-(benzoylhydrazone) (7), respectively. Acetic anhydride causes one molecule of 3 or 4 to undergo elimination of two molecules of water, with simultaneous acetylation and ring closure to afford pyrazoles 9 and 10, respectively. Pyrolysis of the triacetate of 3 led to the elimination of acetic acid from the sugar and the hydrazone residue, to give the 3-[5-(acetoxymethyl)-1-phenylpyrazol-3-yl] derivatives (9). Acetic acid was found to effect the same rearrangement, but without acetylation, of 1, 2, and 3 to give the 3-[5-(hydroxymethyl)] derivatives 11, 12, and 13, respectively. The structure of these pyrazoles was confirmed by a series of reactions, including methylation and acetylation. The n.m.r. and i.r. spectra of the compounds were investigated.  相似文献   

15.
Methyl phenylphosphonite or dimethyl phosphite underwent acid-catalyzed addition reactions with some hexofuranos-5-ulose 5-(p-tolylsulfonylhydrazones) (7, 9, and 16), to give the corresponding adducts, 17, 18, 19, and 21. The isomer ratios of the adducts were affected by a 3-substituent in the hydrazones. Treatment of adduct 21 with sodium borohydride and sodium dihydrobis(2-methoxyethoxy)-aluminate (SDMA), followed by acid hydrolysis, gave 5,6-dideoxy-3-O-methyl-5-C-(phenylphosphinyl)-d-glucopyranose (26), which was acetylated to give the 1,2,4-tri-O-acetyl derivatives 27a and 27b. Conformational analysis of compound 27a by X-ray crystallography revealed that the compound was 1,2,4-tri-O-acetyl-5,6-dideoxy-3-O-methyl-5-C-[(S)-phenylphosphinyl]-β-d-glucopyranose in the 4C1(d) form having all substituents equatorial.  相似文献   

16.
The trunkwood of Machaerium kuhlmannii contains methyl palmitate, 3-O-acetyloleanolic acid and sitosterol; the benzene derivatives 2,3-dimethoxyphenol, 2,6-dimethoxyphenol, 2-hydroxy-3-methoxyphenol, 2,3-dimethoxybenzaldehyde and methyl 3-(2-hydroxy-4-methoxyphenyl)-propionate; the isoflavonoids formononetin and (6aS,11aS)-medicarpin; the neoflavonoids (R)-3,4-dimethoxydalbergione, (R)-3,4-dimethoxydalbergiquinol, kuhlmanniquinol [(R)-3-(4-hydroxyphenyl)-3-(5-hydroxy-2,3,4-trimethoxyphenyl)-propene], dalbergin, kuhlmannin (6-hydroxy-7,8-dimethoxy-4-phenylcoumarin) and kuhlmannene (6-hydroxy-7,8-dimethoxy-4-phenylchrom-3-ene), as well as the cinnamylphenol kuhlmannistyrene [Z-1-(5-hydroxy-2,3,4-trimethoxybenzyl)-2-(2-hydroxyphenyl)-ethylene]. Five of these compounds, in addition to (R)-4′-hydroxy-3,4-dimethoxydalbergione, were also isolated from a trunkwood extract of M. nictitans. Structural assignments were confirmed by chemical interconversion and by the synthesis of (±)-kuhlmanniquinol.  相似文献   

17.
Oxidation with the dimethyl sulfoxide-acetic anhydride reagent of methyl 2-O-acetyl-4,6-O-benzylidene-α-d-mannopyranoside, obtained in quantitative yield from the corresponding 4,6-benzylidene acetal by stereoselective opening of a 2,3-orthoester, led in good yield to methyl 2-O-acetyl-4,6-O-benzylidene-α-d-arabino-hexopyranosid-3-ulose, which was reduced with either sodium borohydride or sodium borodeuteride into a methyl 4,6-O-benzylidene-α-d-altropyranoside or its 3-2H derivative. A sequence involving a C-6 halogenation-dehydrohalogenation followed by catalytic hydrogenation of the resulting methyl 6-deoxy-α-d-arabino-hex-5-enopyranoside gave methyl 6-deoxy-β-l-galactopyranoside (methyl β-l-fucopyranoside) and then α-l-fucose, with an overall yield of 24% with respect to the starting methyl α-d-mannopyranoside.  相似文献   

18.
Two diastereoisomers, 5R,6R-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (7) and 5S,6S-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (10) were synthesized for evaluation as possible biosynthetic intermediates in the enzymatic transformation of PGH2 or PGG2 into PGI2. The synthetic sequence entails the stereospecific reduction of the 9-keto function in PGE2 methyl ester after protecting the C-11 and C-15 hydroxyls as tbutyldimethylsilyl ethers. The resulting PGF derivative was epoxidized exclusively at the C-5 (6) double bond to yield a mixture of epoxides, which underwent facile rearrangement with SiO2 to yield the 5S,6S and 5R,6R-5-hydroxy-6(9α)-oxido cyclic ethers. It was found that dog aortic microsomes were unable to transform radioactive 9β-5S,6S[3H] or 9β-5R,6R[3H]-5-hydroxy-6(9α)-oxido cyclic ethers into PGI2. Also, when either diastereoisomer was included in the incubation mixture, neither isomer diluted the conversion of [1-14C]arachidonic acid into [1-14C]PGI2.  相似文献   

19.
Methyl 2,3-dideoxy-DL-pent-2-enopyranosid-4-ulose (2) and 1-O-benzoyl-2,3- dideoxy-DL-pent-2-enopyranos-4-ulose (3), obtained from furfuryl alcohol, gave methyl β-DL-erythro-pentopyranosid-4-ulose (6) and 1-O-benzoyl-β-DL-erythro-pentopyranos-4-ulose (7), respectively, on cis-hydroxylation with silver chlorate- osmium tetroxide. Reduction of the isopropylidene derivatives (8 and 9) of 6 and 7 with lithium aluminium hydride and sodium borohydride, respectively, afforded DL-ribose derivatives.  相似文献   

20.
Incubation of human eosinophils with arachidonic acid led to the formation of a novel and potent eosinophil chemotactic lipid (ECL) (Morita, E., Schr?der, J.-M., and Christophers, E. (1990) J. Immunol. 144, 1893-1900). To test the working hypothesis of whether ECL could have been formed via eosinophil-arachidonic acid 15-lipoxygenase we investigated whether other arachidonic acid 15-lipoxygenases such as soybean lipoxygenase I catalyze formation of a similar ECL. In the presence of hemoproteins and soybean lipoxygenase I arachidonic acid is converted to an ECL, which has physicochemical properties similar to those found for the eosinophil-derived ECL. Purification of this ECL by high performance liquid chromatography revealed that ECL is structurally different from well known eosinophil chemotactic eicosanoids such as leukotriene B4, 5,15-(6E,8Z,11Z,13E)-dihydroxyeicosatetraenoic acid (5,15-diHETE), and (8S,15S)-(5Z,9E,11Z,13E)-dihydroxyeicosatetra eno ic acid ((8S,15S)-diHETE). UV spectra of this ECL with absorbance maxima at 230 and 278 nm revealed the presence of two independent chromophores such as a conjugated oxodiene and a conjugated diene. Catalytic hydrogenation of ECL methyl ester led to the formation of 5,15-dihydroxyarachidic acid methyl ester. Reduction of ECL with sodium borohydride produced a product which is identical with authentic (5S,15S)-(6E,8Z,11Z,13E)-diHETE. Formation of an ECL monomethoxime derivative supports the conclusion that this highly potent eosinophil chemotactic eicosanoid is structurally identical with 5-oxo-15-hydroxy-6,8,11,13-eicosatetraenoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号