首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three genetically complementing temperature-sensitive mutants of Caenorhabditis elegans have been studied. Each of the three mutants has two critical times of temperature sensitivity and two distinctive corresponding phenotypes. Exposure to high temperature during gonadogenesis blocks the production of zygotes. Exposure of adults to high temperature interrupts embryogenesis of the zygotes being produced. Each of the mutants carries an autosomal mutation with a maternal effect. These mutants indicate that the individual temperature-sensitive functions are required at least twice during development and that early embryogenesis is dependent on the contribution of these functions from the maternal gonad.  相似文献   

2.
Caffeine-resistant mutants of Caenorhabditis elegans   总被引:2,自引:0,他引:2  
  相似文献   

3.
A method has been developed for the isolation of temperature-dependent paralytic mutants of the nematode Caenorhabditis elegans, based on a screening procedure using short-time exposure to 30 degrees C. Of ten mutants isolated, eight lose their motilities between 30 degrees C and 33 degrees C without prominent changes in body forms. The other two strains that are mainly described in this report are accompanied by alterations in body forms. One mutation, cn101, is recessive and an allele of cha-1. The cn101 mutant shows reversible paralysis at 30 degrees, accompanied by a hypercontracted and coiled body form. At the restrictive temperature, the strain is resistant to all tested inhibitors of acetylcholinesterase (AChE). Another mutation, designated mah-2 (cn110), is a sex-linked semidominant that is mapped as 0.6 map units left of dpy-6. The cn110 mutant is rapidly paralyzed at the restrictive temperature and has a straight and rigid body form; the mutant rapidly recovers when the temperature is lowered. No disorganization of the muscle structure was detected by polarized light and electron microscopic inspection.  相似文献   

4.
5.
6.
Egg-laying defective mutants of the nematode Caenorhabditis elegans   总被引:11,自引:0,他引:11  
Trent C  Tsuing N  Horvitz HR 《Genetics》1983,104(4):619-647
We have isolated 145 fertile mutants of C. elegans that are defective in egg laying and have characterized 59 of them genetically, behaviorally and pharmacologically. These 59 mutants define 40 new genes called egl. for egg-laying abnormal. Most of the other mutants are defective in previously identified genes. The egl mutants differ with respect to the severity of their egg-laying defects and the presence of behavioral or morphological pleiotropies. We have defined four distinct categories of mutants based on their responses to the pharmacological agents serotonin and imipramine, which stimulate egg laying by wild-type hermaphrodites. These drugs test the functioning of the vulva, the vulval and uterine muscles and the hermaphrodite-specific neurons (HSNs), which innervate the vulval muscles. Mutants representing 14 egl genes fail to respond to serotonin and to imipramine and are likely to be defective in the functioning of the vulva or the vulval and uterine muscles. Four mutants (representing four different genes) lay eggs in response to serotonin but not to imipramine and appear to be egg-laying defective because of defects in the HSNs; three of these four were selected specifically for these drug responses. Mutants representing seven egl genes lay eggs in response to serotonin and to imipramine. One egl mutant responds to imipramine but not to serotonin. The remaining egl mutants show variable or intermediate responses to the drugs. Two of the HSN-defective mutants, egl-1 and her-1(n695), lack HSN cell bodies and are likely to be expressing the normally male-specific program of HSN cell death. Whereas egl-1 animals appear to be defective specifically in HSN development, her-1(n695) animals exhibit multiple morphological pleiotropies, displaying partial transformation of the sexual phenotype of many cells and tissues. At least two of the egl mutants appear to be defective in the processing of environmental signals that modulate egg laying and may define new components of the neural circuitry that control egg laying.  相似文献   

7.
It has been hypothesized that evolutionary changes will be more frequent in later ontogeny than early ontogeny because of developmental constraint. To test this hypothesis, a genomewide examination of molecular evolution through ontogeny was carried out using comparative genomic data in Caenorhabditis elegans and Caenorhabditis briggsae. We found that the mean rate of amino acid replacement is not significantly different between genes expressed during and after embryogenesis. However, synonymous substitution rates differed significantly between these two classes. A genomewide survey of correlation between codon bias and expression level found codon bias to be significantly correlated with mRNA expression (r(s) = -0.30 and P < 10(-131)) but does not alone explain differences in dS between classes. Surprisingly, it was found that genes expressed after embryogenesis have a significantly greater number of duplicates in both the C. elegans and C. briggsae genomes (P < 10(-20) and P < 10(-13)) when compared with early-expressed and nonmodulated genes. A similarity in the distribution of duplicates of nonmodulated and early-expressed genes, as well as a disproportionately higher number of early pseudogenes, lend support to the hypothesis that this difference in duplicate number is caused by selection against gene duplicates of early-expressed genes, reflecting developmental constraint. Developmental constraint at the level of gene duplication may have important implications for macroevolutionary change.  相似文献   

8.
DNA damage response proteins identify sites of DNA damage and signal to downstream effectors that orchestrate either apoptosis or arrest of the cell cycle and DNA repair. The C. elegans DNA damage response mutants mrt-2, hus-1, and clk-2(mn159) displayed 8- to 15-fold increases in the frequency of spontaneous mutation in their germlines. Many of these mutations were small- to medium-sized deletions, some of which had unusual sequences at their breakpoints such as purine-rich tracts or direct or inverted repeats. Although DNA-damage-induced apoptosis is abrogated in the mrt-2, hus-1, and clk-2 mutant backgrounds, lack of the apoptotic branch of the DNA damage response pathway in cep-1/p53, ced-3, and ced-4 mutants did not result in a Mutator phenotype. Thus, DNA damage checkpoint proteins suppress the frequency of mutation by ensuring that spontaneous DNA damage is accurately repaired in C. elegans germ cells. Although DNA damage response defects that predispose humans to cancer are known to result in large-scale chromosome aberrations, our results suggest that small- to medium-sized deletions may also play roles in the development of cancer.  相似文献   

9.
Zhuang JJ  Hunter CP 《Genetics》2011,188(1):235-237
Gene knockdown by RNA interference (RNAi) in Caenorhabditis elegans is readily achieved by feeding bacteria expressing double-stranded RNA (dsRNA). Enhanced RNAi (Eri) mutants facilitate RNAi due to their hypersensitivity to dsRNA. Here, we compare eight Eri mutants for sensitivity to ingested dsRNA, targeting a variety of tissue-specific genes.  相似文献   

10.
The detailed composition and structure of the Caenorhabditis elegans surface are unknown. Previous genetic studies used antibody or lectin binding to identify srf genes that play roles in surface determination. Infection by Microbacterium nematophilum identified bus (bacterially unswollen) genes that also affect surface characteristics. We report that biofilms produced by Yersinia pestis and Y. pseudotuberculosis, which bind the C. elegans surface predominantly on the head, can be used to identify additional surface-determining genes. A screen for C. elegans mutants with a biofilm absent on the head (Bah) phenotype identified three novel genes: bah-1, bah-2, and bah-3. The bah-1 and bah-2 mutants have slightly fragile cuticles but are neither Srf nor Bus, suggesting that they are specific for surface components involved in biofilm attachment. A bah-3 mutant has normal cuticle integrity, but shows a stage-specific Srf phenotype. The screen produced alleles of five known surface genes: srf-2, srf-3, bus-4, bus-12, and bus-17. For the X-linked bus-17, a paternal effect was observed in biofilm assays.  相似文献   

11.
Ubiquinone (UQ) (coenzyme Q) is a lipophilic redox-active molecule that functions as an electron carrier in the mitochondrial electron transport chain. Electron transfer via UQ involves the formation of semiubiquinone radicals, which causes the generation of superoxide radicals upon reaction with oxygen. In the reduced form, UQ functions as a lipid-soluble antioxidant, and protects cells from lipid peroxidation. Thus, UQ is also important as a lipophilic regulator of oxidative stress. Recently, a study on long-lived clk-1 mutants of Caenorhabditis elegans demonstrated that biosynthesis of UQ is dramatically altered in mutant mitochondria. Demethoxy ubiquinone (DMQ), that accumulates in clk-1 mutants in place of UQ, may contribute to the extension of life span. Here we elucidate the possible mechanisms of life span extension in clk-1 mutants, with particular emphasis on the electrochemical property of DMQ. Recent findings on the biochemical function of CLK-1 are also discussed.  相似文献   

12.
We have examined the N-glycans present during the developmental stages of Caenorhabditis elegans using two approaches, 1) a combination of permethylation followed by MALDI-TOF mass spectrometry (MS) and 2) derivatization with 2-aminobenzamide followed by separation by high-performance liquid chromatography and analyses by MALDI-TOF MS, post source decay (PSD) MS, and MALDI-QoTOF MS/MS. The N-glycan profile of each developmental stage (Larva 1, Larva 2, Larva 3, Larva 4, and Dauer and adult) appears to be unique. The pattern of complex N-glycans was stage-specific with the general trend of number and abundance of glycans being Dauer approximately = L1 > adult approximately = L4 > L3 approximately = L2. Dauer larvae contained complex N-glycans with higher molecular masses than those seen in other stages. MALDI-QoTOF MS/MS of Hex4HexNAc4 showed an N-acetyllac-tosamine substitution not previously observed in C. elegans. Phosphorylcholine (Pc)-substituted glycans were also found to be stage-specific. Higher molecular weight Pc-containing glycans, including fucose-containing ones such as difucosyl Pc-glycan (Pc1dHex2Hex5HexNAc6) seen in Dauer larvae, have not been observed in any organism. Pc2Hex4HexNAc3, from Dauer larvae, when subjected to PSD MS analyses, showed Pc may substitute both core and terminally linked GlcNAc; no such structure has previously been reported in any organism. C. elegans-specific fucosyl and native methylated glycans were found in all developmental stages. Taken together, the above results demonstrate that in-depth investigation of the role of the above N-glycans during C. elegans development should lead to a better understanding of their significance and the ways that they may govern interactions, both within the organism during development and between the mobile nematode and its pathogens.  相似文献   

13.
Abstract In Caenorhabditis elegans, the decision to develop into a reproductive adult or arrest as a dauer larva is influenced by multiple pathways including insulin-like and transforming growth factor beta (TGFbeta)-like signalling pathways. It has been proposed that lipophilic hormones act downstream of these pathways to regulate dauer formation. One likely target for such a hormone is DAF-12, an orphan nuclear hormone receptor that mediates these developmental decisions and also influences adult lifespan. In order to find lipophilic hormones we have generated lipophilic extracts from mass cultures of C. elegans and shown that they rescue the dauer constitutive phenotype of class 1 daf-2 insulin signalling mutants and the TGFbeta signalling mutant daf-7. These extracts are also able to rescue the lethal dauer phenotype of daf-9 mutants, which lack a P450 steroid hydroxylase thought to be involved in the synthesis of the DAF-12 ligand; extracts, however, have no effect on a DAF-12 ligand binding domain mutant that is predicted to be ligand insensitive. The production of this hormone appears to be DAF-9 dependent as extracts from a daf-9;daf-12 double mutant do not exhibit this activity. Preliminary fractionation of the lipophilic extracts shows that the activity is hydrophobic with some polar properties, consistent with a small lipophilic hormone. We propose that the dauer rescuing activity is a hormone synthesized by DAF-9 that acts through DAF-12.  相似文献   

14.
Chen D  Pan KZ  Palter JE  Kapahi P 《Aging cell》2007,6(4):525-533
The antagonistic pleiotropy theory of aging proposes that aging takes place because natural selection favors genes that confer benefit early on life at the cost of deterioration later in life. This theory predicts that genes that impact development would play a key role in shaping adult lifespan. To better understand the link between development and adult lifespan, we examined the genes previously known to be essential for development. From a pool of 57 genes that cause developmental arrest after inhibition using RNA interference, we have identified 24 genes that extend lifespan in Caenorhabditis elegans when inactivated during adulthood. Many of these genes are involved in regulation of mRNA translation and mitochondrial functions. Genetic epistasis experiments indicate that the mechanisms of lifespan extension by inactivating the identified genes may be different from those of the insulin/insulin-like growth factor 1 (IGF-1) and dietary restriction pathways. Inhibition of many of these genes also results in increased stress resistance and decreased fecundity, suggesting that they may mediate the trade-offs between somatic maintenance and reproduction. We have isolated novel lifespan-extension genes, which may help understand the intrinsic link between organism development and adult lifespan.  相似文献   

15.
16.
17.
We have isolated several new EMS-induced, long-lived mutants of Caenorhabditis elegans, using a novel screen that eliminates the need for replica plating. Three new alleles of age-1 (z10, z12, and z25) were identified by failure to complement age-1 (hx546) for life span extension; these alleles had life spans ranging from 18.9 to 25.9 days at 25°C, with an average 46% increase in life span. After backcrossing, alleles were examined in a wild-type background for resistance to several environmental stresses: heat (35°C), ultraviolet (UV) light (20 J/m2), and hydrogen peroxide (H2O2) (0.5 M). Two replicates of the test of thermotolerance were completed on each strain, giving mean survivals of 842 min (hx546), 810 min (z10), 862 min (z12), and 860 min (z25), compared to 562 min for wild type. All the age-1 alleles were significantly tolerant, compared with wild type (P < 0.001). Two replicates for UV resistance were also completed with mean survivals of 103, 118, 108, and 89 hr, respectively, compared to 72 hr for wild type. One test of hydrogen peroxide resistance has shown that z12 and N2 had a mean survival of 41 hr, while the other age-1 alleles had mean survival of 54 hr (z10), and 62 hr (z25); H2O2 resistance is the only environmental stress that differentiates among the age-1 alleles. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Watts JL  Phillips E  Griffing KR  Browse J 《Genetics》2003,163(2):581-589
Arachidonic acid and other long-chain polyunsaturated fatty acids (PUFAs) are important structural components of membranes and are implicated in diverse signaling pathways. The Delta6 desaturation of linoleic and linolenic acids is the rate-limiting step in the synthesis of these molecules. C. elegans fat-3 mutants lack Delta6 desaturase activity and fail to produce C20 PUFAs. We examined these mutants and found that development and behavior were affected as a consequence of C20 PUFA deficiency. While fat-3 mutants are viable, they grow slowly, display considerably less spontaneous movement, have an altered body shape, and produce fewer progeny than do wild type. In addition, the timing of an ultradian rhythm, the defecation cycle, is lengthened compared to wild type. Since all these defects can be ameliorated by supplementing the nematode diet with gamma-linolenic acid or C20 PUFAs of either the n6 or the n3 series, we can establish a causal link between fatty acid deficiency and phenotype. Similar epidermal tissue defects and slow growth are hallmarks of human fatty acid deficiency.  相似文献   

19.
K F O'Connell  C M Leys  J G White 《Genetics》1998,149(3):1303-1321
A novel screen to isolate conditional cell-division mutants in Caenorhabditis elegans has been developed. The screen is based on the phenotypes associated with existing cell-division mutations: some disrupt postembryonic divisions and affect formation of the gonad and ventral nerve cord-resulting in sterile, uncoordinated animals-while others affect embryonic divisions and result in lethality. We obtained 19 conditional mutants that displayed these phenotypes when shifted to the restrictive temperature at the appropriate developmental stage. Eighteen of these mutations have been mapped; 17 proved to be single alleles of newly identified genes, while 1 proved to be an allele of a previously identified gene. Genetic tests on the embryonic lethal phenotypes indicated that for 13 genes, embryogenesis required maternal expression, while for 6, zygotic expression could suffice. In all cases, maternal expression of wild-type activity was found to be largely sufficient for embryogenesis. Cytological analysis revealed that 10 mutants possessed embryonic cell-division defects, including failure to properly segregate DNA, failure to assemble a mitotic spindle, late cytokinesis defects, prolonged cell cycles, and improperly oriented mitotic spindles. We conclude that this approach can be used to identify mutations that affect various aspects of the cell-division cycle.  相似文献   

20.
Ailion M  Thomas JH 《Genetics》2003,165(1):127-144
Dauer formation in Caenorhabditis elegans is regulated by at least three signaling pathways, including an insulin receptor-signaling pathway. These pathways were defined by mutants that form dauers constitutively (Daf-c) at 25 degrees. Screens for Daf-c mutants at 25 degrees have probably been saturated, but failed to identify all the components involved in regulating dauer formation. Here we screen for Daf-c mutants at 27 degrees, a more strongly dauer-inducing condition. Mutations identified include novel classes of alleles for three known genes and alleles defining at least seven new genes, hid-1-hid-7. Many of the genes appear to act in the insulin branch of the dauer pathway, including pdk-1, akt-1, aex-6, and hid-1. We also molecularly identify hid-1 and show that it encodes a novel highly conserved putative transmembrane protein expressed in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号