首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By applying the double diffusion technique of Ouchterlony and the immunoelectrophoresis, sequence in the appearance of antigens reactive with antisera against HbCOs from 5-day embryos and adult chickens, and the major component of adult HbCO in the course of chicken development has been studied.
Antigenic components reacting to antiserum against HbCO from 5-day embryos have been detected throughout development. Three globin-like components specific to early embryos are detectable in embryos to 2 days of incubation. Two Hb components are detectable in embryos from 3 to 5 days of incubation; one is apparently specific to embryos, while the other seems to be somewhat different from adult Hb. After 6 days of incubation only one adult Hb component is detectable.
Antigenic components reacting to antiserum against HbCO from adults have also been detectable throughout embryonic life. One globin-like component specific to early embryos can be found in embryos to 2 days of incubation. One or two Hb components which are probably specific to embryos can be detected in embryos from 3 to 5 days of incubation. After 6 days of incubation one adult Hb component is detectable, while one globin-like component specific to adults can be found after 15 days of incubation. Further, the other globin-like component is detectable after 3 days of incubation.
Antigenic components reacting to antiserum against the major component of adult HbCO have been detected throughout development; one which seems to be somewhat different from either adult Hb components can be found in embryos from 2 to 5 days of incubation, while the other which is identical with the major component of adult Hb is detectable after 6 days of incubation.  相似文献   

2.
Chemical identifications of various hemoglobin types were performed on unfractionated erythroid cells derived from chicken embryos at 5 and 7 days of development and on purified primitive and definitive cells. Proteins were pulse-labelled in primitive erythroid cells at various times of culture to identify those actually synthesized. The data show that primitive cells contain and synthesize only embryonic hemoglobins at all stages of maturation and definitive cells contain adult and minor embryonic hemoglobins, but no major embryonic hemoglobins, not even in trace amounts. These results support a model for hemoglobin switch in the chicken embryo based on cell line substitution.  相似文献   

3.
Rabbit antibodies specific for the major tadpole and frog hemoglobin components of R. catesbeiana were used for the detection of the two hemoglobins inside single cells. The antisera, after fractionation by ammonium sulfate precipitation and diethylaminoethyl (DEAE)-cellulose chromatography, were conjugated with fluorescein isothiocyanate for the antifrog hemoglobin serum and tetramethylrhodamine isothiocyanate for the antitadpole hemoglobin serum. The conjugated fractions, refractionated by stepwise elution from a DEAE-cellulose column, were used for the fluorescent staining of blood smears, liver tissue imprints, and smears of liver cell suspensions. Both simultaneous and sequential staining with the two fluorescent preparations indicated that larval and adult hemoglobins were not present within the same erythrocyte during metamorphosis. In other experiments, erythroid cells from animals in metamorphosis were spread on agar containing specific antiserum. Precipitates were formed around the cells which contain the particular hemoglobin. The percentages of cells containing either tadpole or frog hemoglobin were estimated within the experimental error of the method. The data showed that the two hemoglobins are in different cells. It is concluded that the hemoglobin change observed during the metamorphosis of R. catesbeiana is due to the appearance of a new population of erythroid cells containing exclusively frog hemoglobin.  相似文献   

4.
To investigate the immunological relationships of pepsinogen isozymes present in embryonic and adult chicken proventriculi, we obtained monoclonal and polyclonal antibodies to these pepsinogens. Zymograms and immunoblots demonstrated that monoclonal antibody Y37 reacted with both embryonic and slow-migrating adult pepsinogens, while polyclonal antibodies against embryonic pepsinogen and fast-migrating adult pepsinogen were specific for these respective antigens. Shift from embryonic to adult-type pepsinogen occurred at about the time of hatching and the localizations of embryonic and adult-type pepsinogens within proventricular gland cells were found to differ by the indirect immunofluorescence method. Results with these antibodies revealed the immunological relations of these pepsinogens and the unique properties of embryonic chicken pepsinogen.  相似文献   

5.
Summary In order to study the cellular distribution of larval and adult hemoglobins during larval development ofPleurodeles waltlii a double specific immunofluorescent labelling technique was developed.Rabbit antibodies specific for larval and adult hemoglobin components were prepared and conjugated with tetramethyl-rhodamine isothiocyanate for the anti-larval antibodies and fluorescein isothiocyanate for the anti-adult hemoglobin antibodies.Both simultaneous and sequential staining with the two types of fluorescent antibodies indicated that larval and adult hemoglobins were never observed within the same erythrocyte during development. The results provide evidence that two distinct cell populations exist, one synthesizing exclusively larval hemoglobins which is progressively replaced by the other one synthesizing exclusively adult hemoglobins. It remains to be determined if these two populations arise from two distinct types of stem cells (adult and larval) or from the same stem cell type.  相似文献   

6.
Some properties of the carbonmonoxyhemoglobin (HbCO) from chicken embryos of ages 5, 10 and 15 days of incubation, from 1-day posthatching and from adult chickens have been investigated by chromatography on carboxymethylcellulose (CM-cellulose) column and by starch gel electrophoresis.
Chromatogram of the hemoglobin (Hb) from 5-day chicken embryos has shown that it consists of at least 6 components. Starch gel electrophoresis of each isolated component from the column in phosphate (pH 6.8), in borate (pH 8.6) and in formate buffer (pH 1.9) has shown later that there are 3–4 embryonic type Hb components in 5-day embryos.
Chromatogram of the hemoglobin from adult chickens has shown that it consists of at least 4 components, but the examination of each isolated component from the column by electrophoresis in phosphate (pH 6.8), in borate (pH 8.6) and in formate buffer (pH 1.9) has shown that there are 4–6 adult type Hb components in adults.
In ontogenic process, embryonic Hb type is detectable in embryos up to 15 days of incubation. Fetal Hb type, which is not detectable in adult chickens, can be first found in 10-day embryos.  相似文献   

7.
Colloidal gold-conjugated monoclonal antibodies were prepared to stage-specific fast myosin heavy chain (MHC) isoforms of developing chicken pectoralis major (PM). Native thick filaments from different stages of development were reacted with these antibodies and examined in the electron microscope to determine their myosin isoform composition. Filaments prepared from 12-d embryo, 10-d chick, and 1-yr chicken muscle specifically reacted with the embryonic (EB165), neonatal (2E9), and adult (AB8) antimyosin gold-conjugated monoclonal antibodies, respectively. The myosin isoform composition was more complex in thick filaments from stages of pectoral muscle where more than one isoform was simultaneously expressed. In 19-d embryo muscle where both embryonic and neonatal isoforms were present, three classes of filaments were found. One class of filaments reacted only with the embryonic antibody, a second class reacted only with the neonatal-specific antibody, and a third class of filaments were decorated by both antibodies. Similar results were obtained with filaments prepared from 44-d chicken PM where the neonatal and adult fast MHCs were expressed. These observations demonstrate that two myosin isoforms can exist in an individual thick filament in vivo. Immunoelectron microscopy was also used to determine the specific distribution of different fast MHC isoforms within individual filaments from different stages of development. The anti-embryonic and anti-adult antibodies uniformly decorated both homogeneous and heterogeneous thick filaments. The neonatal specific antibody uniformly decorated homogeneous filaments; however, it preferentially decorated the center of heterogeneous filaments. These observations suggest that neonatal MHC may play a specific role in fibrillogenesis.  相似文献   

8.
We have attempted to determine whether in Pleurodeles ontogenesis there exists a close relationship between the two following characteristics: change from primitive to definitive erythroid cell populations, which parallels the change of major erythropoietic site; change in the type of synthesized hemoglobin, larval or adult. The origin of red blood cells was investigated by embryonic grafts of hemopoietic anlage from 2n to 4n embryos. The larval or adult hemoglobin type was characterized by immunofluorescence by using specific antibodies. Our results show that in Pleurodeles, blood island-originating red blood cells and spleen-originating red blood cells are both able to synthesize either Hb L or Hb A at a given time, but in separate cells.  相似文献   

9.
Fusions were performed between the mouse PAI myeloma cell line and spleen cells from Balb/c mice immunized with intact erythrocytes from 1-day Cornell K-strain White Leghorn chickens. Following single cell cloning, four hybridoma clones were found to secrete erythroid specific monoclonal antibodies. Based on its pattern of reactivity, the antibody (IgG2a, kappa) secreted by clone 10C6 detects a specific avian oncodevelopmental antigen associated with the hematopoietic system: chicken fetal antigen (CFA). Two other clones, designated as 3F12 and 4C2, produced antibodies (IgM, kappa) that recognize another avian developmental antigen: chicken adult antigen (CAA). A fourth clone, 9F9, produced an antibody (IgM, kappa) that reacts with all peripheral erythrocytes from both Japanese quail and chicken regardless of age. Clone 10C6 antibody apparently detects an erythrocyte specific (ES) determinant of CFA associated with determinant #8 while antibodies of clones 3F12 and 4C2 recognize a chicken specific determinant of CAA. Analysis by complement mediated microcytotoxicity indicated that the epitopes detected by 10C6 vs 3F12 and 4C2 antibodies were expressed on erythrocytes in a reciprocal fashion during development. Furthermore, strain variations in the incidence of erythrocytes carrying these epitopes were observed. The usefulness of these monoclonal antibodies for the study of erythroid populations is discussed.  相似文献   

10.
Myosin from embryonic chicken ventricle contained a light chain component which comigrated with fast skeletal myosin light chain 1 (Lf1) on two dimensional electrophoresis in addition to cardiac type light chains (Lc1 and Lc2). Immunoblot analysis showed that this minor light chain band reacted with anti-Lf1 antibody. Antigens binding with anti-Lc1 and anti-Lf1 antibodies were located on myofibrils in embryonic cardiac muscle cells in vivo and in vitro. From these observations, we conclude that a small amount of Lf1 exists in embryonic chicken cardiac muscle.  相似文献   

11.
We prepared monoclonal antibodies against chicken histone H5. These antibodies could be divided into two classes, and we present the results obtained with one representative antibody of each class. One class reacted exclusively with chicken H5, whereas the other additionally cross-reacted with rat H1(0) and with material present in adult but not embryonic chicken liver. The cross-reacting material in adult liver was identified by Western blotting as representing a minor band in histone preparations. The protein was not present in histone extracts from chicken erythrocytes. It is likely that this newly identified protein is a chicken H1(0) histone.  相似文献   

12.
Summary The regeneration of skeletal muscle fibers of the adult chicken was examined after a focal injury brought about with a liquid-nitrogen cooled brass rod. Immunofluorescence microscopy with antibodies specific for troponin (TN) components (T, I, and C) from adult chicken breast and ventricular muscles showed the presence of different fiber types in both the anterior and posterior latissimus dorsi muscles. New fibers produced in the regions adjacent to the site of injury in both muscles exhibited the same immunoreactivities as those previously seen in embryonic skeletal muscles. As differentiation proceeded, regenerating cells lost their embryonic antigenicities and recovered their characteristic adult reactivities. These results indicate that, during regeneration from cold injury, skeletal muscles apparently pass again through an embryonic stage during which they synthesize embryonic-like TN isoforms.  相似文献   

13.
Human adult red cell lysate contains glycosylated minor hemoglobins AIa1, AIa2, AIb, and AIc. Similar minor hemoglobins, designated FIa1, FIa2, Fib, and FIc, have been separated by a Biorex 70 column chromatographic procedure from red cell lysates of newborn children and from an adult homozygote for hereditary persistence of fetal Hb. The minor Hb components were characterized by analyzing for carbohydrate and phosphate contents, by oxygen equilibrium analysis, and by comparing the chromatographic elution profiles of naturally occurring and in vitro synthesized minor components. The results indicate that Hb FIa1, Hb FIa2, and Hb FIc have been formed by the modification of gamma chains of Hb F by reacting with fructose-1,6-P2, glucose-6-P, and glucose, respectively. Hb FIb is a glycoprotein; the mechanism of its formation is unclear. Hb FIa1 and Hb FIa2 had significantly lower oxygen affinities and n values than the other minor components and the major Hb F0. Moreover, 2,3-diphosphoglycerate did not influence the oxygenation of the minor or the major fetal Hb components. Incubations of Hb F with [14C]hexoses and subsequent chromatographic separation of hemoglobins and their globin chains confirm the previous findings that the binding of carbohydrate to Hb involves both specific and nonspecific reactions.  相似文献   

14.
Line-restricted hemoglobin synthesis in chick embryonic erythrocytes   总被引:1,自引:0,他引:1  
The presence of embryonic hemoglobin in early definitive erythrocytes was checked by indirect immunofluorescence assay, using specific antibodies raised against embryonic Hb P. As positive control we used anti-Hb A which reacted with the alpha A chain shared by the minor embryonic Hb E and the adult Hb A. The assay was performed using blood smears from embryos between 6 and 15 days of incubation and yolk sac sections from embryos between 4 and 6 days. Hb P was never detected in the definitive line in circulating erythrocytes or in maturing erythroblasts still sequestered in the blood islands of the yolk sac. The expression of the 'specific' embryonic genes is thus restricted to the primitive line (as the 'specific' adult beta gene is restricted to the definitive line), and the hemoglobin switch is the result of the progressive substitution of the primitive line by the definitive one.  相似文献   

15.
Hb switching in chickens   总被引:51,自引:0,他引:51  
We have taken advantage of the preferential digestion of active genes by DNAase I to investigate the chromosomal structure of embryonic and adult β-globin genes during erythropoiesis in chick embryos, and in particular to examine the question of hemoglobin switching during development. DNA in isolated red cell nuclei was mildly digested with DNAase I to about 10–15 kb, purified and restricted with a variety of restriction enzymes. The DNA was then separated on agarose gels, transferred to nitrocellulose filters and hybridized with an adult-specific β-globin cDNA clone or a genomic clone containing the genes coding for both an embryonic and an adult β-globin chain. Preferential sensitivity of the respective globin genes was monitored by the disappearance of specific restriction bands after DNAase I digestion of nuclei. In embryonic red cells, both adult and embryonic β-globin genes are very sensitive to DNAase I; however, in adult erythroid lines, the embryonic β-globin gene becomes relatively more resistant but the adult gene remains highly sensitive. Controls showed that all globin genes were resistant to DNAase I in brain nuclei and nuclei from lymphoid cells. Thus the switch from embryonic to adult globin expression is associated with an apparent change in the chromosome structure of the embryonic globin gene as reflected in the gene becoming less accessible to DNAase I in adult red cell nuclei. Our results also show that the chromosomal structure of both adult and embryonic genes is altered in embryonic red cell nuclei; thus the nonexpressed globin gene (that is, the adult gene in embryonic red cells) has already been “recognized” to some degree and marked by the erythroid compartment. The sensitivity of the adult globin gene in embryonic cells may represent a “pre-activation” state of the chromosome.  相似文献   

16.
Membrane glycoproteins involved in neurite fasciculation   总被引:43,自引:32,他引:11       下载免费PDF全文
Lectin affinity chromatography combined with mAb production was used to identify chick neural cell surface molecules related to L1 antigen, a mouse neural glycoprotein implicated in cell-cell adhesion (Rathjen, F. G., and M. Schachner, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 3:1-10). A glycoprotein, G4 antigen, isolated by mAb G4 from adult chick brain is described which comprises a major 135-kD component, a minor doublet at 190 kD, and diffusely migrating bands at 80 and 65 kD in SDS PAGE. This molecule is structurally related to mouse L1 antigen according to NH2-terminal amino acid sequence (50% identity) as well as the behavior of its components in two-dimensional IEF/SDS PAGE gels. A second chicken glycoprotein, F11 antigen, was isolated from adult chick brain using mAb F11. This protein has also a major 135-kD component and minor components at 170 kD and 120 kD. Both immunotransfer analysis with polyclonal antibodies to mAb G4 and to mAb F11 isolate and the behavior on IEF/SDS PAGE gels indicates that the major 135-kD component of F11 antigen is distinct from G4 antigen components. However, the 135-kD component of F11 antigen shares with G4 antigen and the neural cell adhesion molecule (NCAM) the HNK-1/L2 carbohydrate epitope. In immunofluorescence studies, G4 and F11 antigenic sites were found to be associated mainly with the surface of process-bearing cells, particularly in fiber-rich regions of embryonic brain. Although Fab fragments of polyclonal antibodies to mAbs G4 or F11 immunoaffinity isolate only weakly inhibit the Ca2+-independent aggregation of neural cells, they strongly inhibit fasciculation of retinal axons. Together these studies extend the evidence that bundling of axons reflects the combined effects of a group of distinct cell surface glycoproteins.  相似文献   

17.
We found an enhancer element placed at the 3' side of the adult duck alpha A globin gene. The duck alpha globin gene cluster contains three genes from the 5' to 3' side: the pi embryonic gene, the alpha D minor adult gene and the alpha A adult major gene. We analyzed a 16 kb genomic domain extending from 2 kb upstream of the pi gene to 5 kb downstream of the alpha A gene. This enhancer is active in AEV transformed chicken erythroblasts. Its is inactive both in HeLa cells and in the human erythroid cells K562 which express only embryonic genes. These findings are discussed in relation to previous results concerning the duck beta globin enhancer located at the 3' side of the beta A globin gene.  相似文献   

18.
Summary By indirect immunofluorescence microscopy, the reactivities of extra- and intrafusal muscle fibers with antibodies against troponin (TN) components were studied in an avian slow muscle, the anterior latissimus dorsi (ALD) of the chicken. Serial cross sections of the muscle were exposed to antibodies specific to TN components (TN-T, -I, and -C) from adult chicken breast and ventricular muscles. In extrafusal fibers, four distinct categories were identified on the basis of differential reactivity with these antibodies. The predominant population of fibers (> 95%) reacted weakly only with antiventricular TN-C. The second type of fibers (< 5%) was stained with antibodies raised against breast TN components. The third group of fibers (< 1%) was labeled not only with antibreast TN components, but also with antiventricular TN-T and -C. The last class of fibers (< 1%) reacted with antibodies directed against ventricular TN-T and -C. These results were correlated with myofibrillar ATPase staining patterns of fibers. In intrafusal muscle fibers of this muscle, the same four types of fibers were observed; in these fibers, however, there appeared to be a longitudinal variation in the reactivity. In conclusion, the slow ALD muscle of the adult chicken contains populations of both extrafusal and intrafusal fibers which are heterogeneous in reactivity with TN component antibodies.  相似文献   

19.
To examine the function of murine beta-globin locus region (LCR) 5' hypersensitive site 3 (HS3) in its native chromosomal context, we deleted this site from the mouse germ line by using homologous recombination techniques. Previous experiments with human 5' HS3 in transgenic models suggested that this site independently contains at least 50% of total LCR activity and that it interacts preferentially with the human gamma-globin genes in embryonic erythroid cells. However, in this study, we demonstrate that deletion of murine 5' HS3 reduces expression of the linked embryonic epsilon y- and beta H 1-globin genes only minimally in yolk sac-derived erythroid cells and reduces output of the linked adult beta (beta major plus beta minor) globin genes by approximately 30% in adult erythrocytes. When the selectable marker PGK-neo cassette was left within the HS3 region of the LCR, a much more severe phenotype was observed at all developmental stages, suggesting that PGK-neo interferes with LCR activity when it is retained within the LCR. Collectively, these results suggest that murine 5' HS3 is not required for globin gene switching; importantly, however, it is required for approximately 30% of the total LCR activity associated with adult beta-globin gene expression in adult erythrocytes.  相似文献   

20.
A novel embryo-specific myosin light chain of 23 kDa molecular weight (L23) was found previously in embryonic chicken skeletal, cardiac, and smooth muscles (Takano-Ohmuro et al. (1985) J. Cell Biol. 100, 2025-2030). When we examined myosin in embryonic and adult brain by two-dimensional electrophoresis, 23 kDa myosin light chain present in brain (Burridge & Bray (1975) J. Mol. Biol. 99, 1-14) comigrated with L23. Two monoclonal antibodies, EL-64 and MT-185d, were applied to clarify the identity of the brain 23 kDa myosin light chain and the chicken embryonic muscle L23. The two antibodies recognize different antigenic determinants in the L23 molecule; the former antibody is specific for L23, whereas the latter recognizes the sequence common to fast skeletal muscle myosin light chains 1 and 3, and also L23. The immunoblots combined with two-dimensional gel electrophoresis showed that both EL-64 and MT-185d can bind to the brain 23 kDa myosin light chain as well as the chicken embryonic muscle L23. These results indicate that chicken brain and chicken embryonic muscles contain a common myosin light chain of 23 kDa molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号