首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insects are responsible for the transmission of major infectious diseases. Recent advances in insect genomics and transformation technology provide new strategies for the control of insect borne pathogen transmission and insect pest management. One such strategy is the genetic modification of insects with genes that block pathogen development. Another is to suppress insect populations by releasing either sterile males or males carrying female‐specific dominant lethal genes into the environment. Although significant progress has been made in the laboratory, further research is needed to extend these approaches to the field. These insect control strategies offer several advantages over conventional insecticide‐based strategies. However, the release of genetically modified insects into the environment should proceed with great caution, after ensuring its safety, and acceptance by the target populations.  相似文献   

2.
昆虫免疫致敏研究进展   总被引:1,自引:0,他引:1  
通常认为昆虫缺少获得性免疫(acquired immunity)且完全依赖天然免疫系统(innate immune defense system)来应对病原微生物的感染。然而越来越多的研究表明,昆虫等无脊椎动物早期的病原菌感染经历能够增强后期遭遇病原感染时的免疫力,这种现象称为免疫致敏(immune priming)。类似于脊椎动物的获得性免疫,一些昆虫在致敏后可以展现出极大程度的特异性和记忆性,致敏保护效应甚至可以达到种或菌株水平的特异性,并且可以跨代传递。昆虫在体内缺乏获得性免疫分子元件的基础上,仍然可以实现免疫的记忆性和特异性,说明昆虫的天然免疫系统存在独特的机制来调控该过程。本文综述了昆虫免疫致敏和跨代传递的研究进展,探讨了昆虫免疫致敏发生的特定条件及影响因素,并对昆虫免疫致敏和跨代传递的潜在调控机理进行了阐述。此外,免疫致敏本身可能是耗能的过程,本文也从致敏可塑的角度探讨了致敏反应的适应性代价。最后,对昆虫免疫致敏未来的研究方向以及在害虫防治中的应用前景进行了展望。  相似文献   

3.
张棋麟  袁明龙 《昆虫学报》2013,56(12):1489-1508
新一代测序技术具有快速、 高通量和低成本的特点, 为“组学”研究带来了新方法、 新方案, 正在深刻地改变着当前生物学的研究模式。近年来, 新一代测序技术极大促进了昆虫特别是无参考基因组信息昆虫的转录组学研究。自2008年至今, 采用新一代测序技术已对7个目的68种昆虫进行了转录组测序, 其中由我国学者完成了6个目的22种昆虫的转录组测序。目前, 昆虫转录组学研究主要集中在基因挖掘、 分子标记开发、 基因表达分析等方面, 为全面揭示昆虫生命活动中相关基因功能、 系统发生与进化以及昆虫与其他生物相互作用等奠定了基础。本文总结了当前昆虫转录组学研究的已有成果, 分析了其今后的发展趋势, 讨论了采用新一代测序技术开展昆虫转录组学研究中存在的诸如研究对象相对局限、 测序准确性不够高等不足, 并指出开展昆虫转录组学研究时需充分思考所要回答的科学问题, 选择合适的研究策略, 评估性价比, 以及开发转录组信息高效利用的方法等。作者建议未来的研究方向侧重于: (1)大规模开展基于新一代测序技术的昆虫转录组学研究, 特别是对其他目以及独特生态环境中的代表性昆虫应予以重点关注; (2)开发昆虫转录组数据存储及分析的软硬件; (3)合理利用新一代测序技术研究昆虫转录组并充分挖掘已测昆虫转录组中的遗传信息。  相似文献   

4.
5.
昆虫碱性磷酸酶的研究进展   总被引:3,自引:0,他引:3  
严盈  彭露  刘万学  万方浩 《昆虫学报》2009,52(1):95-105
碱性磷酸酶存在于昆虫的头、唾液腺(唾液)、肠道、马氏管、表皮、血淋巴、脂肪体、生殖系统、附肢等部位,广泛参与了昆虫的发育、神经传导、激素合成、物质代谢、滞育、社会型昆虫亚种形成等过程。同时碱性磷酸酶与昆虫抗性有关,特别涉及到对Bt制剂的阻滞作用,其本身也是某些农药的靶标酶,某些生物源化合物及病毒、真菌也可以影响其活性。昆虫碱性磷酸酶的研究,将有助于提高对昆虫生化机制及代谢过程的认识,并为害虫治理和资源昆虫饲养提供新的思路。本文综述了国内外对昆虫碱性磷酸酶的研究状况,并描述了昆虫碱性磷酸酶的生化性质及其与生理功能的关系。  相似文献   

6.
Humans, all great ape species, and some lesser apes consume insects. Insects can provide comparable nutritional yields to meat on a gram‐for‐gram basis and may serve as an important source of energy, fat, protein, minerals, and vitamins for hominoids. Although potential insect prey are abundant in ape habitats, patterns of insectivory are not consistent across species or populations. Efforts to understand these patterns are complicated by a lack of nutritional data. We collected samples of insects consumed by the Kasekela chimpanzee community of Gombe National Park, Tanzania, as well as of some insects found within the community range and ignored by these chimpanzees but known to be preyed upon by Pan elsewhere. We determined the gross energy (GE), estimated metabolizable energy (ME), fat, protein, fiber, and ash content of these samples following standard methodologies. We use these data to test the hypothesis that Kasekela chimpanzees choose insect prey (at least in part) based on energy and/or macronutrient content. On a fresh‐weight, per‐gram basis, the insect prey consumed by Kasekela chimpanzees had significantly higher fat and lower ash content than other assayed insects, and on a fresh‐weight, per‐foraging‐unit (“per‐insect,” “per‐dip,” or “per‐nest”) basis were significantly higher in GE, fat, and protein. On a per‐gram basis, the assayed insects were generally comparable in energy and macronutrients to wild vertebrate meat. We conclude that Kasekela chimpanzees do favor insects that are high in energy, fat, and protein, and that the potential macronutrient yields from some forms of insectivory are not trivial. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Traditional chemically based methods for insect control have been shown to have serious limitations, and many alternative approaches have been developed and evaluated, including those based on the use of different types of mutation. The mutagenic action of ionizing radiation was well known in the field of genetics long before it was realized by entomologists that it might be used to induce dominant lethal mutations in insects, which, when released, could sterilize wild female insects. The use of radiation to induce dominant lethal mutations in the sterile insect technique (SIT) is now a major component of many large and successful programs for pest suppression and eradication. Adult insects, and their different developmental stages, differ in their sensitivity to the induction of dominant lethal mutations, and care has to be taken to identify the appropriate dose of radiation that produces the required level of sterility without impairing the overall fitness of the released insect. Sterility can also be introduced into populations through genetic mechanisms, including translocations, hybrid incompatibility, and inherited sterility in Lepidoptera. The latter phenomenon is due to the fact that this group of insects has holokinetic chromosomes. Specific types of mutations can also be used to make improvements to the SIT, especially for the development of strains for the production of only male insects for sterilization and release. These strains utilize male translocations and a variety of selectable mutations, either conditional or visible, so that at some stage of development, the males can be separated from the females. In one major insect pest, Ceratitis capitata, these strains are used routinely in large operational programs. This review summarizes these developments, including the possible future use of transgenic technology in pest control.  相似文献   

8.
Abstract Numerous studies indicate that target gene silencing by RNA interference (RNAi) could lead to insect death. This phenomenon has been considered as a potential strategy for insect pest control, and it is termed RNAi‐mediated crop protection. However, there are many limitations using RNAi‐based technology for pest control, with the effectiveness target gene selection and reliable double‐strand RNA (dsRNA) delivery being two of the major challenges. With respect to target gene selection, at present, the use of homologous genes and genome‐scale high‐throughput screening are the main strategies adopted by researchers. Once the target gene is identified, dsRNA can be delivered by micro‐injection or by feeding as a dietary component. However, micro‐injection, which is the most common method, can only be used in laboratory experiments. Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects. Hence, RNAi‐mediated crop protection has been considered as a potential new‐generation technology for pest control, or as a complementary method of existing pest control strategies; however, further development to improve the efficacy of protection and range of species affected is necessary. In this review, we have summarized current research on RNAi‐based technology for pest insect management. Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures. To accelerate its practical application in crop protection, further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed.  相似文献   

9.
昆虫肠道的宏基因组学:微生物大数据的新疆界   总被引:2,自引:1,他引:1  
曹乐  宁康 《微生物学报》2018,58(6):964-984
微生物作为自然界中普遍存在的生命体,通常以"微生物群落"的形式共存。这些物种相互协作适应环境变化的同时,也对环境产生了长期而深刻的影响。随着人类对于微生物了解的深入,微生物群落基础研究及其在健康和环境等领域的应用研究日益重要。昆虫肠道内存在种类繁多、数量庞大的微生物,一方面,这些肠道微生物种群结构的多样性与昆虫种类、龄期、消化道形式、食物的来源、环境等都息息相关。另一方面,这些菌群也对宿主的一些生理活动有着一定的影响。随着高通量测序技术、组学技术的发展,昆虫肠道宏基因组大数据挖掘和应用已经成为研究热点,极大地推动人类微生物资源利用的能力。本文概述了昆虫肠道微生物宏基因组学的发展现状和发展趋势,特别是肠道宏基因组学大数据的挖掘工具和应用,以及现阶段昆虫肠道宏基因组学的研究进展、应用、优势和瓶颈,并对今后昆虫肠道微生物组大数据研究方向进行展望。  相似文献   

10.
Consumers are the principal agents of consumption when edible insect cookies are launched into the market; therefore, there is a need for research into consumer perception of this product and the factors that could affect their choice. Therefore, through this study, we aimed to provide such information for the development and launch of edible insect cookies. We investigated the importance of product features of edible insect cookies and the part‐worth of the feature levels while predicting the market share of edible insect cookies that are currently in development. We constructed 16 main and four hold‐out profiles from six product features and 16 levels of features. Following analysis of data collected from 203 of 250 respondents, product features were found to be important in the descending order of “type”, “price”, “size”, “availability of nutrition facts”, “thickness” and “use of edible insects”. When the market share of an edible insect cookie with the optimal combination of product features was analyzed through choice simulation, it had the second‐highest share in the cookie market, thus suggesting a direction for the development of edible insect cookies.  相似文献   

11.
微生物对昆虫行为的影响研究进展   总被引:1,自引:0,他引:1  
在漫长的进化过程中,微生物与昆虫形成了多种形式的互作关系.微生物的广泛分布为与昆虫接触并影响昆虫的行为提供了背景条件.为了深入探究微生物影响昆虫行为的现象和机制,本文综述了微生物影响昆虫行为方面的研究进展.微生物通过产生可被昆虫识别的化学信号物质、参与昆虫或寄主植物信息化合物的合成等方式可影响昆虫对其寄主的定位和选择....  相似文献   

12.
植物为数十万种昆虫提供各种资源,如食物、交配、产卵和躲避天敌的场所。目前对昆虫检测植物寄主的研究主要关注昆虫嗅觉系统和植物寄主挥发物之间的相互作用,对昆虫视觉系统发挥的作用关注较少。近年来,对昆虫视觉器官、光行为反应及分子生物学的研究表明,昆虫具有优异的视觉能力,能够辨别植物寄主的颜色、大小和轮廓,应该将视觉纳入昆虫检测植物寄主的研究中。昆虫能够利用视觉信号准确检测寄主,远距离时,主要依靠植物寄主轮廓检测寄主,近距离时,寄主的大小、颜色和形状发挥重要作用。利用昆虫视觉识别寄主的专一性研制诱捕装置,可为害虫的监测和防治提供一定的理论基础。  相似文献   

13.
景天忠  李田宇 《生态学报》2018,38(10):3414-3421
森林昆虫种群表现出多样的时空模式,空间同步性是其中最常见的。回顾了森林昆虫空间同步性的特点、形成机制及研究方法方面的进展。森林害虫发生的同步性是广泛存在的,但不同昆虫种类的同步性大小不同。空间同步性常随距离的增大而下降,还与时间尺度有关。Moran效应和扩散是解释空间同步性的两种主要机制,通常Moran效应的影响要比扩散大。从虫害发生数据的获取、同步性的度量及成因3个方面介绍了空间同步性的研究方法方面的进展。利用树轮生态学原理重建森林虫害发生历史的方法可在事后获取可靠的数据,很值得国内研究者借鉴和应用。在空间自相关度量上,空间统计学方法和地统计学方法都是非常有力的手段,但由于不能处理多时间点数据而限制了其在同步性研究中的应用。在同步性成因研究中,利用变异分解将基于距离的Moran特征向量图(dbMEM)作为空间变量研究害虫发生的驱动力是比较新颖的研究方法。  相似文献   

14.
刘莹  王娜  张赞  李飞 《昆虫知识》2012,49(2):317-323
随着测序技术的发展,昆虫转录组数据不断积累,在昆虫学研究中的应用也越来越广泛。在害虫抗药性的研究中,转录组数据分析也是重要的最新研究手段。本文通过对5种鳞翅目害虫转录组的生物信息学分析,鉴定出13种与抗药性相关的基因,发现细胞色素P450基因序列数量最多,共887条。另外,谷胱甘肽S-转移酶、鱼尼丁受体、氨肽酶N、糖基转移酶相关的基因序列多于100条。同时,对这5种鳞翅目昆虫中部分Bt受体相关的基因做了多序列比对和进化分析。分析认为,从多物种、多基因的角度提出对农药抗性的系统性研究,是害虫抗性研究的发展趋势。  相似文献   

15.
The recognition of phytophagous insects by plants induces a set of very specific responses aimed at deterring tissue consumption and reprogramming metabolism and development of the plant to tolerate the herbivore. The recognition of insects by plants requires the plant’s ability to perceive chemical cues generated by the insects and to distinguish a particular pattern of tissue disruption. Relatively little is known about the molecular basis of insect perception by plants and the signalling mechanisms directly associated with this perception. Importantly, the insect feeding behaviour (piercing‐sucking versus chewing) is a decisive determinant of the plant’s defence response, and the mechanisms used to perceive insects from different feeding guilds may be distinct. During insect feeding, components of the saliva of chewing or piercing‐sucking insects come into contact with plant cells, and elicitors or effectors present in this insect‐derived fluid are perceived by plant cells to initiate the activation of specific signalling cascades. Although receptor–ligand interactions controlling insect perception have yet not been molecularly described, a significant number of regulatory components acting downstream of receptors and involved in the activation of defence responses against insects has been reported. Some of these regulators mediate changes in the phytohormone network, while others directly control gene expression or the redox state of the cell. These processes are central in the orchestration of plant defence responses against insects.  相似文献   

16.
The application of insect biotechnology is promising for the development of environmentally compatible pest management solutions. As we have refined and enhanced genetic engineering techniques in several insect species that cause significant economic loss and public health injury, it has become clear that insect biotechnology will move forward as one of the key tools of pest management in agriculture and in the human environment. Well characterized genetic elements can be manipulated toward specific aims and maintain a viable insect, albeit one with diminished capacity to exchange genetic material, vector a virus or bacterium, or complete its life cycle. Despite this degree of knowledge and precision, there remain unanswered questions regarding environmental fate, release and public acceptance of this technology. The uncertainty surrounding any novel technology inevitably increases the level of regulatory scrutiny associated with its use. Although the term “insect biotechnology” has many connotations, it certainly includes the genetic modification of symbiotic or commensally associated microbes as a means of delivering a trait (e.g. a toxin) to manage plant and human diseases and insect pests. The distinction between this paratransgenic approach and direct genetic modification of insect pests is an important one biologically as well as from a regulatory standpoint. The regulatory framework for microbial applications to agriculture is in many instances in place; however, we must strive to forge the development of guidelines and regulations that will foster deployment of insect biotechnologies.  相似文献   

17.
Franz G  Robinson AS 《Genetica》2011,139(1):1-5
The application of the Sterile Insect Technique (SIT) in area-wide integrated pest management (AW-IPM) programmes continues to increase. However, programme efficiency can still be considerably enhanced when certain components of the technology are improved, such as the development of improved strains for mass rearing and release. These include strains that (1) produce only male insects for sterilization and release and (2) carry easily identifiable markers to identify released sterile insects in the field. Using both classical and modern biotechnology techniques, key insect pests are targeted, where SIT programmes are being implemented. The pests include mosquitoes, the Mexican fruit fly, the codling moth, the oriental fruit fly and the pink bollworm. This special issue summarizes the results of research efforts aimed at the development and evaluation of new strains to a level where a decision can be made as to their suitability for use in large scale SIT programmes. Major beneficiaries will be operational AW-IPM programmes that apply the SIT against major insect pests.  相似文献   

18.
廖文宇  吕卓鸿  张友军  杨中侠 《昆虫学报》2022,65(11):1547-1564
作为最成功的生物农药,苏云金芽孢杆菌Bacillus thuringiensis (Bt)杀虫剂已在农业生产中应用了约80年。Bt由于其特异性强、安全高效的特点而得到广泛、成功的应用,极大减少了化学农药的用量,为环境保护作出了巨大贡献。然而,由于长期使用,一些靶标害虫逐渐对Bt产生抗性。本文对昆虫体液免疫及昆虫Bt抗性机制的研究成果进行了总结,已有研究认为害虫对Bt产生抗性的主要原因是毒素激活受阻及(或)毒素受体突变或减少。然而近年越来越多的研究表明,昆虫的Bt抗性还与其免疫系统,特别是与Toll, IMD和proPO-AS等体液免疫通路有关。由此,本文对昆虫体液免疫系统参与昆虫Bt抗性形成的主要通路进行了归纳和推论。IMD免疫通路可能通过MAPK信号通路参与调节昆虫Bt抗性,或可能通过多种免疫反应对抗因中肠组织被Bt破坏而引起的败血症,并通过JNK信号通路促使中肠组织愈合,进而提高其对Bt的抗性。从体液免疫系统切入研究,可能成为深入探索昆虫Bt抗性机制的新方向。  相似文献   

19.
The current state of knowledge regarding the effect of pesticides on insect immunity is reviewed here. A basic understanding of these interactions is needed for several reasons, including to improve methods for controlling pest insects in agricultural settings, for controlling insect vectors of human diseases, and for reducing mortality in beneficial insects. Bees are particularly vulnerable to sublethal pesticide exposures because they gather nectar and pollen, concentrating environmental toxins in their nests in the process. Pesticides do have effects on immunity. Organophosphates and some botanicals have been found to impact hemocyte number, differentiation, and thus affect phagocytosis. The phenoloxidase cascade and malanization have also been shown to be affected by several insecticides. Many synthetic insecticides increase oxidative stress, and this could have severe impacts on the production of some antimicrobial peptides in insects, but research is needed to determine the actual effects. Pesticides can also affect grooming behaviors, rendering insects more susceptible to disease. Despite laboratory data documenting pesticide/pathogen interactions, little field data is available at the population level.  相似文献   

20.
昆虫的繁盛与其强大的生殖能力密切相关,而环境友好的植物源活性物质是可持续的害虫防治方法之一,能够通过多种作用机制影响昆虫的生殖发育。本文从昆虫生殖行为、生长发育、生殖细胞或器官、生殖地位与性比、共生微生物等方面,综述了植物源活性物质对昆虫生殖干扰机理的研究进展及相关的应用情况,以期为昆虫生殖发育干扰的进一步研究与害虫综合防控技术的研发提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号