首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The gray whale (Eschrichtius robustus) is a coastal species whose nearshore summer foraging grounds off the coast of British Columbia offer an opportunity to study the fine scale foraging response of baleen whales. We explore the relationship between prey density and gray whale foraging starting with regional scale (10 km) assessments of whale density (per square kilometer) and foraging effort as a response to regional mysid density (per cubic meter), between 2006 and 2007. In addition we measure prey density at a local scale (100 m), while following foraging whales during focal surveys. We found regional mysid density had a significant positive relationship with both gray whale density and foraging effort. We identify a threshold response to regional mysid density for both whale density and foraging effort. In 2008 the lowest average local prey density measured beside a foraging whale was 2,300 mysids/m3. This level was maintained even when regional prey density was found to be substantially lower. Similar to other baleen whales, the foraging behavior of gray whales suggests a threshold response to prey density and a complex appreciation of prey availability across fine scales.  相似文献   

2.
    
Feeding performance (handling time, capture success) in numerous animal species is well known to be influenced by a variety of ecological, functional, and physiological factors. Nonetheless, few studies have tested which factors are the strongest determinants of animal feeding performance in the wild. Using a field-based experiment, we examined the relationships among a number of functionally important variables and the predatory behaviour of free-ranging pit-vipers ( Ovophis okinavensis ) from Okinawa Island, Japan. Our main findings were: (1) strike latency was negatively related to snake body temperature and, hence, hotter snakes struck at frogs more readily than colder snakes; (2) initial bite position was correlated with ingestion direction (headfirst versus hindfirst) but ingestion direction was not correlated with ingestion duration; and (3) both snake head length and body temperature were negatively related with ingestion duration and, thus, snakes with longer heads and higher body temperatures had shorter ingestion durations. In O. okinavensis , head size and body temperature are therefore likely to have direct ecological consequences in terms of its feeding rate on explosively breeding frogs. More generally, however, this field-based study adds to the growing body of literature demonstrating that temperature has a pervasive influence on the feeding performance of ectotherms in general.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 53–62.  相似文献   

3.
We tested some predictions relating metabolic constraints offoraging behavior and prey selection by comparing food handlingand utilization in four sympatric shrew species: Sorex minutus(mean body mass = 3.0 g), S. araneus (8.0 g), Neomys anomalus(10.0 g), and N. fodiens (14.4 g). Live fly larvae, mealwormlarvae, and aquatic arthropods were offered to shrews as smallprey (body mass <0.1 g). Live earthworms, snails, and smallfish were offered as large prey (>0.3 g). The larvae werethe high-nutrition food (>8 kJ/g), and the other prey werethe low-nutrition food (<4 kJ/g). The smallest shrew, S.minutus, utilized (ate + hoarded) <30% of offered food,and the other species utilized >48% of food. The largerthe shrew, the more prey it ate per capita. However, highlyenergetic insect larvae composed 75% of food utilized by S.minutus and only >40% of the food utilized by the other species. Thus, inverse relationships appeared between shrewbody mass and mass-specific food mass utilization and betweenshrew body mass and mass-specific food energy utilization:the largest shrew, N. fodiens, utilized the least food massand the least energy quantity per 1 g of its body mass. Also,the proportion of food hoarded by shrews decreased with increase in size of shrew. With the exception of S. araneus, the sizeof prey hoarded by the shrews was significantly larger thanthe size of prey eaten. Tiny S. minutus hoarded and ate smallerprey items than the other shrews, and large N. fodiens hoardedlarger prey than the other shrews.  相似文献   

4.
5.
    
When sexual cannibalism presents a sexual conflict, one expects to find male traits that reduce the risk of cannibalism. In sexually cannibalistic species, selection is thought to have favored the evolution of male approach behaviors that reduce the probability that the female will kill the male. We tested the hypothesis that male mantids change their approach behavior in response to wind to reduce the risk of being noticed by females. Time between detection of the female by the male and mating was shorter under windy than windless conditions. Sexual approach behavior was observed more frequently under windy than windless conditions. Moreover, this behavior was observed more frequently when the female was walking than when the female was not walking under windy conditions. The detection rate of male mantids by females was significantly lower on swaying leaves than on fixed leaves. Our results thus indicate that male mantids were more active in response to wind. Therefore, we suggest that the male's quick approach strategy toward females when the wind is blowing at short range is adaptive in reducing the risk of detection by females.  相似文献   

6.
    
We investigated the hunting strategies of wild common marmosets (Callithrix jacchus) to determine whether the strategies differed among animals of different age classes and/or prey type. The study was conducted in a fragment of Atlantic Rain Forest, situated 40 km from Recife (PE/Brazil). Twenty‐seven individuals from four social groups were observed. Captured prey items were divided into three categories. The hunting strategies of the common marmosets were ranked into four categories. The acquisition of larger prey (items more than 2.0 cm) involved the appropriate body movements and postures that concealed the approaching marmosets, whereas the acquisition of smaller prey (items under 2.0 cm) involved less concealing behaviors. Furthermore, adults and juveniles (age ≥5 months) were more capable of capturing larger prey than were younger (1–2 months) or older infants (3–4 months). Although older infants were successful in capturing certain prey, they often failed when they attempted to capture larger prey that jumped and/or used flight to escape. The results suggest that both the experience of the monkeys and escape behavior of the prey affect predation efficiency in wild common marmosets. Am. J. Primatol. 72:1039–1046, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
    
When animals detect predators they modify their behavior to avoid predation. However, less is known about whether prey species modify their behavior in response to predator body and behavioral cues. Recent studies indicated that tufted titmice, a small songbird, decreased their foraging behavior and increased their calling rates when they detected a potential predator facing toward a feeder they were using, compared to a potential predator facing away from that feeder. Here, we tested whether related Carolina chickadees, Poecile carolinensis, were also sensitive not just to the presence of a predator model, but to its facial/head orientation. Although chickadees are closely related to titmice, recent studies in different populations suggest chickadees respond to risky contexts involving predators differently than titmice. We conducted two field studies near feeders the birds were exploiting. In Study One, a mask‐wearing human observer stood near the feeder. In Study Two, a model of a domestic cat was positioned near the feeder. In both studies, the potential threatening stimulus either faced toward or faced away from the feeder. Chickadees avoided the feeder more in both studies when the potential predator was present, and showed strongest feeder avoidance when the potential predator faced toward the feeder. Chickadee calling behavior was also affected by the facial orientation of the potential predator in Study 1. These results suggest that, like titmice, chickadees exhibit predation‐risk‐sensitive foraging and calling behavior, in relation to facial and head orientation of potential threats. These small birds seem to attend to the likely visual space of potential predators. Sensitivity to predator cues like behavior and body posture must become more central to our theories and models of anti‐predator behavioral systems.  相似文献   

8.
I staged replicate encounters between unrestrained lizards andsnakes in outdoor enclosures to examine size-dependent predationwithin the common garden skink (Lampropholis guichenoti). Yellow-facedwhip snakes (Demansia psammophis) forage widely for activeprey and most often consumed large skinks, whereas death adders(Acanthophis antarcticus) ambush active prey and most oftenconsumed small skinks. Small-eyed snakes (Rhinoplocephalusnigrescens) forage widely for inactive prey and consumed bothsmall and large skinks equally often. Differential predationmay reflect active choice by the predator, differential preyvulnerability, or both. To test for active choice, I presentedforaging snakes with an inert small lizard versus an inertlarge lizard. They did not actively select lizards of a particularbody size. To test for differential prey vulnerability, I quantifiedvariation between small and large lizards in behavior thatis important for determining the outcome of predator—preyinteractions. Snakes did not differentiate between integumentarychemicals from small and large lizards. Large lizards tendto flee from approaching predators, thereby eliciting attackby the visually oriented whip snakes. Small lizards were moremobile than large lizards and therefore more likely to passby sedentary death adders. Additionally, small skinks were moreeffectively lured by this sit-and-wait species and less likelyto avoid its first capture attempt. In contrast, overnightretreat site selection (not body size) determined a lizard'schances of being detected by small-eyed snakes. Patterns ofsize-dependent predation by elapid snakes may arise not becauseof active choice but as a function of species-specific predatortactics and prey behavior.  相似文献   

9.
The influence of prey mobility and species on prey selection by the coccinellid Harmonia axyridis Pallas was determined under laboratory conditions for two prey species, Hyaliodes vitripennis (Say) and Tetranychus urticae Koch. Prey selection was influenced by prey mobility. In the presence of active prey, the coccinellid selected T. urticae while in presence of immobilized prey, H. vitripennis was preferred. Harmonia axyridis searching time was longer in the presence of active H. vitripennis than in the presence of active T. urticae. Moreover, the coccinellid capture rate was lower for active H. vitripennis caused by effective defensive mechanisms. Prey suitability was affected by prey mobility and species. Immobilized H. vitripennis were the most profitable prey, i.e. induced a shorter developmental time and no mortality. However, active H. vitripennis were not a suitable food source for H. axyridis. Our results suggested that three factors are involved in prey selection by H. axyridis: (i) prey mobility; (ii) prey defensive mechanisms; and (iii) prey species.  相似文献   

10.
    
Many organisms appear to mimic inanimate objects such as twigs, leaves, stones, and bird droppings. Such adaptations are considered to have evolved because their bearers are misidentified as either inedible objects by their predators, or as innocuous objects by their prey. In the past, this phenomenon has been classified by some as Batesian mimicry and by others as crypsis, but now is considered to be conceptually different from both, and has been termed ‘masquerade’. Despite the debate over how to classify masquerade, this phenomenon has received little attention from evolutionary biologists. Here, we discuss the limited empirical evidence supporting the idea that masquerade functions to cause misidentification of organisms, provide a testable definition of masquerade, and suggest how masquerade evolved and under what ecological conditions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 1–8.  相似文献   

11.
12.
    
Diving behavior and its frequency may differ among species of mosquito larvae because of differences in predation pressure. The present study aimed to investigate the relationship between water depth and predation frequency on two mosquito species, Culex tritaeniorhynchus (wetland breeder) and Aedes albopictus (container breeder), by the diving beetle Eretes griseus. Culex tritaeniorhynchus spends more time at the surface than A. albopictus, which spends more time thrashing underwater. When intact mosquito larvae of both species were present, the diving beetles consumed almost all A. albopictus larvae (98.3%). After all the A. albopictus larvae had been consumed, the diving beetles began to prey on C. tritaeniorhynchus. In order to compare the effect of position on the predation preference of the diving beetles, equal numbers of both species were heat‐killed and allowed to settle on the bottom of the container. When all the dead mosquito larvae had sunk to the bottom of a plastic container, the diving beetles caught both mosquito species at random. These results indicate that mosquito larvae near the surface were eaten less frequently by diving beetles than those at the bottom. The low diving frequency of C. tritaeniorhynchus is regarded as a form of anti‐predatory behavior.  相似文献   

13.
  总被引:1,自引:1,他引:0  
Active-acoustic surveys were used to determine the distribution of dusky dolphins and potential prey in two different New Zealand locations. During seven survey days off Kaikoura Canyon, dusky dolphins were found within the DeepScattering Layer (DSL) at 2000 when it rose to within 125 m of the surface. As the DSL rose to 30 m at 0100, the observed depth of dolphins decreased, presumably as the dolphins followed the vertical migration of their prey. Acoustically identified subgroups of coordinated animals ranged from one to five dolphins. Time, depth of layer, and layer variance contributed significantly to predicting foraging dusky dolphin subgroup size. In the much shallower and more enclosed Admiralty Bay, dolphins noted at the surface as foraging were always detected with the sonar, but were never observed in coordinated subgroups during the brief (two-day) study there. In Admiralty Bay dolphin abundance was correlated with mean volume scattering from potential prey in the water column; and when volume scattering, an index of prey density, was low, dolphins were rarely present. Ecological differences between the deep waters of Kaikoura Canyon and the shallow nearshore waters of Admiralty Bay may result in differences in how, when, and in what social groupings dusky dolphins forage.  相似文献   

14.
During reproduction, seabirds need to balance the demands of self- and offspring-provisioning within the constraints imposed by central place foraging. To assess behavioral adjustments and tolerances to these constraints, we studied the feeding tactics and reproductive success of common murres (also known as common guillemots) Uria aalge , at their largest and most offshore colony (Funk Island) where parents travel long distances to deliver a single capelin Mallotus villosus to their chicks. We assessed changes in the distance murres traveled from the colony, their proximate foraging locations and prey size choice during two successive years in which capelin exhibited an order of magnitude decrease in density and a shift from aggregated (2004) to dispersed (2005) distributions. When capelin availability was low (2005), parental murres increased their maximum foraging distances by 35% (60 to 81 km) and delivered significantly larger capelin to chicks, as predicted by central place foraging theory. Murres preferred large (>140 mm) relative to small capelin (100–140 mm) in both years, but unexpectedly this preference increased as the relative density of large capelin decreased. We conclude that single prey-loading murres target larger capelin during long foraging trips as parents are 'forced' to select the best prey for their offspring. Low fledgling masses suggest also that increased foraging time when capelin is scarce may come at a cost to the chicks (i.e. fewer meals per day). Murres at this colony may be functioning near physiological limits above which further or sustained adjustments in foraging effort could compromise the life-time reproductive success of this long-lived seabird.  相似文献   

15.
    
Camouflage conceals animals from predators and depends on the interplay between the morphology and behaviour of animals. Behavioural elements of animals, such as the choice of a resting spot or posture, are important for effective camouflage, as well as the animals’ cryptic appearance. To date, the type of sensory input that mediates resting site choice remains poorly understood. Previously, we showed that bark‐like moths perceive and rely on bark structure to seek out cryptic resting positions and body orientations on tree trunks. In the present study, we investigated the sensory organs through which moths perceive the structure of bark when positioning their bodies in adaptive resting orientations. We amputated (or blocked) each one of the hypothetical sensory organs in moths (antennae, forelegs, wings, and eyes) and tested whether they were still able to perceive bark structure properly and adopt adaptive resting orientations. We found that visual information or stimulation is crucial for adaptively orienting their bodies when resting and tactile information from wings may play an additional role. The present study reveals multimodal information use by moths to achieve visual camouflage and highlights the sensory mechanism that is responsible for the adaptive behaviour of cryptic insects. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 900–904.  相似文献   

16.
Numerous species of birds break hard-shelled prey items by droppingthemfrom a height. This intriguing prey-extraction method providesan excellentopportunity for studying foraging behavior becausea single, easily measurablequantity—height of drop—maybe influenced by a wide variety ofidentifiable characteristicsof the prey (e.g., breakability, weight) andsocial environment(e.g., alone or in the presence of kleptoparasites). Usingadynamic, state variable modeling approach, this paper presentsthe firsttheoretical framework for avian prey-dropping systemsthat incorporates thediversity of prey characteristics andsocial situations. The model yielded aseries of qualitativepredictions about prey-dropping behavior that can betestedreadily in any prey-dropping system. In particular, the resultsindicatedthat quantitative and qualitative differences in item breakabilityandpotential kleptoparasitism should have a significant effecton the heightand pattern of prey dropping.  相似文献   

17.
The aye-aye, Daubentonia madagascariensis, uses its middle digit to tap on woody sources in search of subsurface cavities containing prey. The acoustical properties of these cavities are thought to be important to this percussive foraging, but the contributions of cavity size, configuration, and contents to efficient prey capture are not known. The purpose of this study was to characterize these cavities and their residents. An analysis of foraged trees at two sites in Madagascar revealed that many of the foraged cavities are mines bored by large cerambycid beetle larvae. Apparently cerambycids, as well as inquiline residents of their mines, are major targets of aye-aye foraging behavior. The larvae bore extended mines that course approximately parallel to the long axes of the trees in which they reside. The orientation and large size of the mines offer an acoustical trail that the aye-aye may follow to its prey. © 1995 Wiley-Liss, Inc.  相似文献   

18.
    
Conspecific individuals inhabiting nearby breeding colonies are expected to compete strongly for food resources owing to the constraints imposed by shared morphology, physiology, and behavior on foraging strategy. Consequently, colony‐specific foraging patterns that effectively partition the available resources may be displayed. This study aimed to determine whether intraspecific resource partitioning occurs in two nearby colonies of Lesser Frigatebirds (Fregata ariel). A combination of stable isotope analysis and GPS tracking was used to assess dietary and spatial partitioning of foraging resources during the 2013 and 2014 breeding seasons. These results were compared to vessel‐derived estimates of prey availability, local primary productivity, and estimates of reproductive output to suggest potential drivers and implications of any observed partitioning. Isotopic data indicated a more neritic source of provisioned resources for near‐fledged chicks at an inshore colony, whereas their offshore counterparts were provisioned with resources with a more pelagic signal. Deep pelagic waters (>200 m) had higher availability of a preferred prey type despite a trend for lower primary productivity. Differences in foraging ecology between the two populations may have contributed to markedly different reproductive outputs. These findings suggest environmental context influences dietary and spatial aspects of foraging ecology. Furthermore, the effect of colony‐specific foraging patterns on population demography warrants further research.  相似文献   

19.
  总被引:1,自引:0,他引:1  
How foragers balance risks during foraging is a central focus of optimal foraging studies. While diverse theoretical and empirical work has revealed how foragers should and do manage food and safety from predators, little attention has been given to the risks posed by dangerous prey. This is a potentially important oversight because risk of injury can give rise to foraging costs similar to those arising from the risk of predation, and with similar consequences. Here, we synthesize the literature on how foragers manage risks associated with dangerous prey and adapt previous theory to make the first steps towards a framework for future studies. Though rarely documented, it appears that in some systems predators are frequently injured while hunting and risk of injury can be an important foraging cost. Fitness costs of foraging injuries, which can be fatal, likely vary widely but have rarely been studied and should be the subject of future research. Like other types of risk‐taking behaviour, it appears that there is individual variation in the willingness to take risks, which can be driven by social factors, experience and foraging abilities, or differences in body condition. Because of ongoing modifications to natural communities, including changes in prey availability and relative abundance as well as the introduction of potentially dangerous prey to numerous ecosystems, understanding the prevalence and consequences of hunting dangerous prey should be a priority for behavioural ecologists.  相似文献   

20.
Seabirds use several methods to transport food to their chicks; most species carry food in their stomachs or crops, but some terns and auks carry prey in their bills. Terns usually only carry one prey item at a time, limiting the rate at which they can provision their chicks, and restricting their effective foraging range. However, some terns do occasionally carry multiple prey, which should offer a selective advantage, but there are very few studies investigating the factors influencing the occurrence of multi-prey loading. We investigated the occurrence of multi-prey loads in provisioning Greater Crested Terns (Swift Tern) Thalasseus bergii bergii breeding on Robben Island, South Africa. Of 24 173 loads photographed, 1.3% comprised multiple prey items. Up to 11 fish were carried at once, but most multi-prey loads contained two Anchovies Engraulis encrasicolus, the most common prey item for this population of terns. Mixed species prey were recorded for the first time in a tern. Multi-prey loads occurred more frequently during mid- and late-provisioning, presumably because large chicks can cope with multiple prey, and have higher energetic requirements than small chicks. Mean standard length of Anchovies in multi-prey prey loads was less than Anchovies in single loads, possibly suggesting terns compensate for smaller prey sizes by bringing multiple prey back to their chick. The orientation of multiple Anchovies in a tern’s bill tended to be the same, suggesting that they were captured from polarised fish schools. At least some multi-prey loads were caught in a single dive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号