首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of thymidine into DNA in the presence of hydroxyurea (HU) by guinea pig pancreatic slices following exposure to N-nitrosomethylurethane (NMUT) was used to follow DNA repair synthesis. HU was used to suppress normal replicative DNA synthesis. Slices from the duodenal segment of the pancreas were exposed for periods of 15 to 90 min to NMUT at concentrations of 2 to 20 mM, then incubated in tritiated thymidine ([H3]-TdR) free of carcinogen, and radioactivity in DNA was determined. NMUT induced a a dose- and time-dependent increase in HU-insensitive thymidine incorporation. This stimulated incorporation, which could be attributed to repair synthesis, occurred immediately following the treatment and was largely complete within 3 h.  相似文献   

2.
We examined the effect of prostaglandin E2 (PGE2), in the presence or absence of cortisol, on bone formation in 21-day fetal rat calvaria maintained in organ culture for 24 to 96 h. [3H]Thymidine and [3H] proline incorporation were used to assess DNA and collagen synthesis, respectively. Changes in dry weight and DNA content were assessed after 96 h.PGE2 (10−7 M) stimulated both DNA and collagen synthesis in calvaria. The effect on DNA synthesis was early (24 h), transient and limited to the periosteum. Collagen synthesis was stimulated at a later time (96 h), predominantly in the central bone. Cortisol (10−7 M) inhibited DNA and collagen synthesis. The addition of PGE2 reversed the inhibitory effects of cortisol on DNA synthesis and content and increased collage synthesis in central bone to levels above control untreated cultures.We conclude that PGE2 has stimulatory effects on bone formation and can reverse the inhibitory effects of cortisol. Hence the effects of cortisol may be mediated in part by their ability to reduce the endogenous production of prostaglandins.  相似文献   

3.
The incorporation of [3H]thymidine into DNA due to unscheduled DNA synthesis (UDS) induced by N-OH-2-acetylaminofluorene (N-OH-AAF), aflatoxin B1 (AFB1), ethyl methanesulfonate (EMS) and ultra-violet light was quantitated by autoradiography and by scintillation spectrometry on acid precipitable macromolecules or DNA insolated by isopycnic banding in cesium chloride (CsCl). Dose-dependent increases in UDS due to N-OH-AAF and AFB1 treatment were found. Only 2-fold increases at the highest dose levels were found, however, when incorporated [3H]thymidine was quantitated by scintillation spectrometry. Seven, 11, and 25-fold increases in UDS induced by AFB1, N-OH-AAF and ultra-violet light, respectively, were found when incorporated [3H]thymidine was quantitated by autoradiography, indicating a high sensitivity for detecting ‘long patch’ repair by this technique. Scintillation spectrometry was completely ineffective in detecting EMS-induced UDS, whereas autoradiography demonstrated a small, but significant induction in [3H]thymidine incorporation at high dose levels. The non-proliferative nature of the primary hepatocyte prohibits the uniform radioactive prelabeling of DNA, necessary in other techniques, for the detection of ‘short patch’ repair induced by compounds such as EMS. Therefore, the sensitivity of the primary cultured rat hepatocyte in conjunction with UDS for detecting DNA damage caused by mutagens and carcinogens which induce ‘short patch’ repair may be limited to the autoradiographic analysis of the unscheduled incorporation of [3H]thymidine.  相似文献   

4.
In sterile cultures of free barley embryos, N-methyl-N-nitrosourea (MNU) caused a decrease in the size of both template [14C]-labeled DNA and of daughter [3H]DNA strands as determined in alkaline sucrose gradients, and inhibited the rate of [3H]thymidine incorporation. In addition, duplexes containing [3H]-daughter DNA analyzed in BND cellulose contained more single-stranded regions in MNU-treated embryos than in the corresponding control. Incubation of MNU-treated embryos in nutrient medium for up to 18 h after the [3H]-labeling permitted the recovery of small-sized daughter DNA to full-sized strands and led to the enhancement of double-strandedness of DNA duplexes containing [3H]-labeled strands. If [3H]-labeling had been carried out 8–10 h after the MNU treatment, the size of daughter DNA, the proportion of double-strandedness and the rate of thymidine uptake into DNA partially increased in comparison with rates observed when labeling had been done just after or 3 h after the MNU treatment, but these variables did not reach the values of the corresponding controls.  相似文献   

5.
Characterization was performed of a UV-resistant variant strain, UVr-10, derived from a human clonal cell line, RSb, with high sensitivity not only to the lethal effect of 254-nm far-ultraviolet (UV) irradiation but also to the effects of 4-nitroquinoline 1-oxide (4NQO) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and to the cell proliferation inhibition (CPI) effect of human leukocyte interferon (HuIFN-α) preparations.Colony-formation assays confirmed the increased resistance of UVr-10 cells to both UV and 4NQO, but no increased resistance to MNNG. The marked recovery from the inhibition of the total cellular DNA synthesis of UVr-10 cells, estimated by [methyl-3H]thymidine ([3H]dThd) uptake into the cellular DNA materials, was seen during 6 h after irradiation or 4NQO treatment even under the conditions without the recovery uptake into those of the parent RSb cells, but not during 6 h after MNNG treatment. Comparative studies on the activity of DNA repair synthesis between UVr-10 and RSb cells, by measuring the extent of UV-, 4NQO- or MNNG-induced unscheduled DNA synthesis (UDS) and DNA repair replication, revealed an increased activity of UVr-10 cells to UV and 4NQO but no significant increase of the activity to MNNG. These results suggest that increased DNA repair activities of a UVr-10 cell line may account for its becoming resistant to the lethal effect of UV and 4NQO.Concerning the CPI effect of HuIFN-α, UVr-10 cells showed increased resistance. Further, the DNA synthesis activity of UVr-10 cells was not so inhibited by HuIFN-α exposure as that of RSb cells. However, HuIFN-α-exposed UVr-10 cells showed more enhanced levels of activity of pppA(2′p5′A)n synthetase (2–5A synthetase) than the exposed RSb, thus suggesting that HuIFN-α could exert enough intracellular effect even in UVr-10 cells.The implication of the increased resistance of UVr-10 cells to the effects of UV, 4NQO and HuIFN-α, but not to those of MNNG, is discussed.  相似文献   

6.
Nucleotides and sugar nucleotides were extracted from cultures of human fibroblasts with perchloric acid, separated by isotachophoresis, and quantified by uv absorption analysis at 254 nm. ATP (936 pmol/μg DNA) was, as expected, the dominating nucleotide pool. The energy charge was estimated to 0.9. The UDP-N-acetylhexosamine pool was also a very prominent compound (596 pmol/μg DNA). After incubation of fibroblasts with [3H]glucosamine, more than 95% of the acid-soluble radioactivity was found in the UDP-N-acetylhexosamine pool. Incubation with [35S]sulfate resulted in the incorporation of [35S]sulfate into 3′-phosphoadenosine-5′-phosphosulfate (PAPS). The latter could, however, only be measured as radioactivity, as the amount was too small to be quantified as total mass. Pulse-labeling of fibroblasts with [35S]sulfate and [3H]glucosamine from 5 min to 16 h showed that [35S]PAPS was equilibrated in less than 10 min, while [3H]glucosamine required a longer time, 2–4 h, to attain a steady state with UDP-N-acetylhexosamine. [14C]Glucose required approximately the same time as [3H]glucosamine to reach steady state with UDP-acetylhexosamine, which suggests that the reason for the long equilibration time is the slow turnover of this pool.  相似文献   

7.
Amsacta moorei entomopoxvirus DNA synthesis was detected in Estigmene acrea cells by [3H]thymidine incorporation 12 hr after virus inoculation. Hybridization of 32P-labeled Amsacta entomopoxvirus DNA to the DNA from virus-infected cells indicated that viral-specific DNA synthesis was initiated between 6 and 12 hr after virus inoculation. A rapid increase in the rate of virus DNA synthesis was detected from 12 to 24 hr after virus inoculation. Amsacta entomopoxvirus protein biosynthesis in E. acrea cells was studied by [su35S]methionine incorporation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Extracellular virus and virus-containing occlusion bodies were first detected in virus-infected cell cultures 18 hr after virus inoculation. Thirty-seven virus structural proteins, ranging in molecular weight from 13,000 to 208,000 were detected in both occluded and nonoccluded forms of the virus. The biosynthesis of virus structural proteins increased rapidly from 18 to 34 hr after infection. A major viral-induced protein corresponding in molecular weight to viral occlusion body protein (110,000) was detected approximately 24 hr after virus inoculation.  相似文献   

8.
Mutants of Escherichia coli that are severely defective in the enzyme dUTPase (dut) accumulate short (4 to 5 S) Okazaki fragments following brief pulses with [3H]thymidine. The transient appearance of DNA fragments in these mutants is plausibly explained by the misincorporation of uracil in DNA as a result of an increase in available dUTP, followed by its rapid excision and repair. The evidence in support of this interpretation is the following: (1) accumulation of short DNA fragments can be partially suppressed by a mutation in dCTP deaminase, presumably by decreasing the intracellular level of dUTP relative to dTTP; (2) accumulation of the short DNA fragments can be almost completely suppressed by a mutation in uracil N-glycosidase, probably by preventing the introduction of nicks at the sites of uracil incorporation; (3) introduction of DNA polymerase I or DNA ligase mutations into dUTPase-defective strains results in the persistence of the 4 to 5 S fragments and rapid cessation of DNA synthesis. Uracil N-glycosidase, DNA polymerase I and DNA ligase must therefore be involved in the excision repair of uracil-containing DNA.  相似文献   

9.
Lymphocyte proliferation in culture was studied by combined [3H]TdR incorporation and sister chromatid differential staining. The majority of 1st division metaphases in a 72 h culture commenced DNA synthesis after 48 h and had a cell cycle of less than 24 h. A small proportion of cells from some donors commenced DNA synthesis between 24–30 h and had cell cycle times of up to 48 h. Although many cells entered DNA synthesis at the same time, they showed marked asynchrony in the length of their cell cycle, with some completing one, some two and others three cell cycles in the 72 h culture period. The time taken for cells to enter S following stimulation with PHA ranged from 24 to 48 h and there was considerable variation between donors in the number of fast and slow responding cells.  相似文献   

10.
Ethanolamine plasmalogens (1-alk-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamines) of many tissues contain high levels of arachidonate at their 2-position, and in certain tissues have been implicated as possible donors of arachidonate required in the synthesis of prostaglandins and thromboxanes. In the present study, [3H]arachidonate-labeled phospholipids of HSDM1C1 cells, a cell line derived from a mouse fibrosarcoma, were examined to determine the donor of the arachidonic acid released upon bradykinin stimulation of the synthesis of PGE2. HSDM1C1 cells labeled with [3H]arachidonic acid for 24 hr in serum-free medium were used in most of the experiments and had the following distribution of label among the cellular lipids; phosphatidylcholine (33%), phosphatidylinositol (20%), diacyl-sn-glycero-3-phosphoethanolamine (15%), ethanolamine plasmalogen (15%), and less polar lipids (16%). Bradykinin treatment stimulated a rapid hydrolysis of [3H]arachidonate from the cellular lipids and conversion of the released acid to PGE2, which was secreted into the medium. The label was released predominantly from phosphatidylinositol and possibly from phosphatidylcholine with no detectable change in the labeling of diacyl- or 1-alk-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamine. The ethanolamine plasmalogens, therefore, do not appear to be involved in the stimulated release of arachidonate in the HSDM1C1 cells. Indomethacin blocked the bradykinin-stimulated synthesis of PGE2 and to a lesser degree inhibited the release of [3H]-arachidonate from the cellular lipids into the medium.  相似文献   

11.
The addition of serum to density-inhibited human fibroblast cultures induced a wave of DNA synthesis, measured as [3H] thymidine incorporation into acid-precipitable material, beginning after 8–12 hr and reaching maximum levels at 16–24 hr. Addition of dibutyryl-3′ : 5′-cyclic AMP (DBcAMP) together with serum inhibited [3H] thymidine incorporation by 75–95%. When DBcAMP was added for the first 4 hr of serum stimulation and then removed, the wave of DNA synthesis was not delayed. This suggested that serum could induce DNA synthesis even though cyclic AMP concentrations were maintained at high levels by DBcAMP during this initial period. These results are inconsistent with the hypothesis that it is the immediate transient reduction in 3′ : 5′-cyclic AMP concentration following the addition of serum that triggers DNA synthesis. By contrast, DBcAMP added 8 hr after serum inhibited [3H] thymidine incorporation to the same extent as DBcAMP added at the same time as serum. This indicated that a step essential for DNA synthesis and occurring late in G1 was inhibited by high concentrations of 3′ : 5′-cyclic AMP.  相似文献   

12.
N-Methyl-4-aminoazobenzene (MAB) is believed to be metabolized in the liver to an electrophilic N-sulfonyloxy ester which binds covalently to cellular macromolecules, resulting in the induction of hepatic neoplasia. Previous in vivo studies in the rat detected only two hepatic MAB-DNA adducts, 3-(deoxyguanosin-N2-yl)-MAB(N2-dG) and N-(deoxyguanosin-8-yl)-MAB(C8-dG), which respectively accounted for 25% and 70% of the total MAB bound to DNA at 8 h after a single dose of the carcinogen. Subsequently, the C8-dG adduct was shown to be rapidly lost from the DNA while the N2-dG adduct was a persistent lesion. Since a single dose of MAB is not sufficient for complete carcinogenic activity, we sought to identify the MAB-DNA adducts present in rat liver after multiple oral doses of [3H]MAB. The MAB was administered by intubation at a level of 0.2 mmol/kg for 1, 3 or 4 doses and animals were sacrificed at 8 h after the last dose. Hepatic DNA was isolated by extraction and hydroxylapatite chromatography and was enzymatically hydrolyzed to MAB-mononucleoside adducts, which were quantitated by high pressure liquid chromatography (HPLC). After 3 doses, N2-dG, C8-dG, and an unknown adduct were detected. By 4 doses, these accounted for 51%, 25% and 23% of the total adducts. This data is consistent with rapid removal of the C8-dG derivative and the relative persistence of the N2-dG and the unknown adduct. The latter was shown to exhibit chromatographic and pH-dependent solvent partitioning properties that were identical to a product also present in DNA treated with the synthetic ultimate carcinogen, N-benzoyloxy-MAB. Analysis of this adduct by field desorption mass spectrometry (M+ = 460) and, after perdeuteromethylation, by electron impact mass spectrometry (M+ = 528; M-N(CH3)(CD3) = 481) indicated the structure to be a deoxyadenosin-N6-yl derivative substituted through an aromatic ring of MAB. Further analysis by 270 MHz 1H-NMR spectroscopy allowed complete assignment of the MAB and adenyl resonances and was uniquely consistent with a 3-(deoxyadenosin-N6-yl)-MAB structure. Since this persistent adduct is potentially mutagenic due to possible tautomeric equilibria between the N6-amino and N6-imino structures, it may represent an initiating lesion in MAB hepatocarcinogenesis.  相似文献   

13.
Mechanisms of DNA Utilization by Estuarine Microbial Populations   总被引:9,自引:6,他引:3       下载免费PDF全文
The mechanisms of utilization of DNA by estuarine microbial populations were investigated by competition experiments and DNA uptake studies. Deoxyribonucleoside monophosphates, thymidine, thymine, and RNA all competed with the uptake of radioactivity from [3H]DNA in 4-h incubations. In 15-min incubations, deoxyribonucleoside monophosphates had no effect or stimulated [3H]DNA binding, depending on the concentration. The uptake of radioactivity from [3H]DNA resulted in little accumulation of trichloroacetic acid-soluble intracellular radioactivity and was inhibited by the DNA synthesis inhibitor novobiocin. Molecular fractionation studies indicated that some radioactivity from [3H]DNA appeared in the RNA (10 and 30% at 4 and 24 h, respectively) and protein (approximately 3%) fractions. The ability of estuarine microbial assemblages to transport gene sequences was investigated by plasmid uptake studies, followed by molecular probing. Although plasmid DNA was detected on filters after filtration of plasmid-amended incubations, DNase treatment of filters removed this DNA, indicating that there was little transport of intact gene sequences. These observations led to the following model for DNA utilization by estuarine microbial populations. (i) DNA is rapidly bound to the cell surface and (ii) hydrolyzed by cell-associated and extracellular nonspecific nucleases. (iii) DNA hydrolysis products are transported, and (iv) the products are rapidly salvaged into nucleic acids, with little accumulation into intracellular nucleotide pools.  相似文献   

14.
Methods for determining the chemical dose of ethyl methanesulfonate (EMS) to the DNA of mouse spermatozoa in the vasa deferentia and epididymides have been developed. These include procedures for the removal of contaminating protamine, which, like DNA, possesses nucleophilic sites that can be ethylated by EMS. At least 99% of all sperm protamine (at a 95% confidence level), as well as any other cellular contaminants, is removed during purification of the DNA. The purified DNA recovered from spermatozoa gives no indication of a preferential recovery of either (G+C)-rich or (A+T)-rich regions of the mouse genome: the [14C]dT/[3H]dC ratios for whole sperm and sperm DNA were the same for each animal tested.The spermatozoa of males used in the dosimetry studies were labeled with [14C]thymidine, and then the animals were given various [3H]EMS doses intraperitoneally. A constant exposure time of 4 h was used. The ratios of 3H and 14C activities in whole sperm and purified sperm DNA were used to measure the percentage of the total sperm ethylation occurring in the DNA. The maximum percentage found was about 18% in the dose range of 100–400 mg/kg. Values for the ethylations per nucleotide (E/N) ranged from ~ 10?7 at 3.3 mg/kg up to ~ 10?4 at 400 mg/kg, and the data indicated that E/N increased with the 1.5 power of the dose. E/N was also measured in testicular DNA, and the values obtained were close to those found for spermatozoan DNA.The results of such chemical dosimetry studies will be far-reaching in the interpretation of molecular events responsible for genetic alterations. As an example, dominant lethal studies by others, using EMS in the dose range considered in the present paper, have shown little or no effect until two or more days after injection of the mutagen into male mice. Since many sperm DNA ethylations are found after a 4-h exposure to EMS it appears that most of these DNA ethylations are not genetically important, at least in the production of dominant lethals, and that perhaps genetic damage occurs only at rarely ethylated DNA sites.  相似文献   

15.
This report describes synthesis and evaluation of cationic complexes, [99mTc(CO)3(L)]+ (L = N-methoxyethyl-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L1), N-[(15-crown-5)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L2) and N-[(18-crown-6)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L3)) as potential radiotracers for heart imaging. Preliminary results from biodistribution studies in female adult BALB-c mice indicated that the cationic 99mTc(I)-tricarbonyl complex, [99mTc(CO)3(L2)]+, has a significant localization in the heart at 60 min post-injection. To understand the coordination chemistry of these bisphosphine ligands with the 99mTc(I)-tricarbonyl core, we prepared [Re(CO)3(L4)]Br (L4: N,N-bis[(2-diphenylphosphino)ethyl]methoxyethylamine) as a model compound. [Re(CO)3(L4)]Br has been characterized by elemental analysis, IR, ESI-MS, NMR (1H, 13C, 1H-1H COSY, and 1H-13C HMQC) methods, and X-ray crystallography. In solid state, [Re(CO)3(L4)]+ has a distorted octahedron coordination geometry with PNP occupying one facial plane. The chelator backbone adopts a “chair” conformation with phosphine-P atoms at equatorial positions and the amine-N at the apical site. In solution, [Re(CO)3(L4)]+ is able to maintain its cationic nature with no dissociation of carbonyl ligands or any of the three PNP donors.  相似文献   

16.
Maria Grazia Galli 《Planta》1984,160(3):193-199
Excised watermelon cotyledons were grown in water and benzyladenine, which greatly promotes growth, breakdown of reserves and development of organelles. In order to investigate the involvement of DNA synthesis in these benzyladenine-induced effects, [3H]thymidine was applied continuously (for 3 d) or administered briefly (5 h) to excised cotyledons at various stages of development. Autoradiographic analysis of squashed and sectioned cotyledons showed that both the cytoplasm (mainly in the region of the plastids) and most of the nuclei were labelled. Both types of labelling were promoted by benzyladenine treatment. The highest percentage of labelled nuclei was found in the early stages of growth (first day after excision of cotyledons), long before the burst of enzymatic activities involved in the germination processes. The possible meaning of the increase of nuclear DNA, apart from the normal replicative synthesis preceding cell division, is discussed.Abbreviations BA N6-benzyladenine - DNase deoxyribonuclease - EtBr ethidium bromide - FUdR fluorodeoxyuridine - [3H]T [methyl-3H]thymidine  相似文献   

17.
In this article the structural analysis of the persistently bound form of the carcinogen N-acetyl-2-aminofluorene (AAF) to rat liver DNA in vivo is described. This compound appears to result from the formation of a covalent bond between carbon-3 of the aromatic ring and the amino group of guanine. Experimental evidence from three different approaches has led to the identification of the structure of the persistently DNA-bound AAF moity. First, [3-3H, 9-14C]N-acetoxy-AAF was reacted with DNA in vitro. As reported previously, a minor product was isolated from enzymatic digests of the reacted DNA, which had chemical and chromatographic properties identical to those of the persistent—AAF moiety in DNA in vivo. The ration 3H/14C of this product had diminished to the same extent as 3-CH3S-AAF resulting from the reaction of methionine with [3-3H, 9-14C]N-acetoxy-AAF.Secondly, reaction of [9-14C]N-acetoxy-AAF with DNA, which was tritiated in the C-8 positions of the purines, did not result in removal of tritium in the persistent fraction obtained after acid hydrolysis, thus excluding substitution at C-8 and N-7 of guanine. Finally, by reacting N-OSO3-K-AAF with deoxyguanosine in dimethylsulfoxide-triethylamine, a compound could be isolated, which was identified as 3-(deoxyguanosin-N2-yl)-AAF based on its NMR spectrum and on the mass spectrum of the corresponding guanine derivative obtained after removing deoxyribose by acid hydrolysis. This compound appeared to be identical with the persistently bound form present in DNA hydrolysates from rat liver after injection of [2′-3H]N-hydroxy-AAF.  相似文献   

18.
19.
Mitochondrial DNA (m-DNA) content and factors which might control its concentration were investigated in the renoprival kidney at various times after unilateral nephrectomy. On the basis of mitochondrial protein, m-DNA increased 30% in the renoprival kidney at 24 hr and returned to normal by 48 hr. The total tissue content of m-DNA was also increased at 24 hr. The specific activity of [3H]thymidine incorporated into m-DNA in vivo was decreased markedly at 24 hr after mononephrectomy; at the same time there was a threefold increase of [3H]thymidine incorporation into total cellular DNA. The incorporation into m-DNA was above normal at 48 hr. The mitochondrial specific DNase was decreased 60% at 24 and 36 hr post-mononephrectomy. There was no significant difference in the total radioactivity or total optical density at 260 nm of the acid soluble extract from mitochondria isolated at various times after mononephrectomy. The incorporation of [3H]thymidine into TMP and TDP in the renoprival kidney was not different from normal but there was a decrease in the incorporation into TTP. It is suggested that the increase in mitochondrial DNA could be due to a decrease in the rate of degradation rather than an increase in synthesis.  相似文献   

20.
郑燕  侯海军  秦红灵  朱亦君  魏文学 《生态学报》2012,32(11):3386-3393
以紫潮泥和红黄泥两种不同质地的水稻土壤作为研究对象,通过室内培养试验,分析施用硝态氮肥对N2O释放和反硝化基因(narG/nosZ)丰度的影响,并探讨反硝化基因丰度与N2O释放之间的关系。结果表明,施用硝态氮显著增加两种水稻土的N2O释放量。在72h培养过程中,施氮改变了紫潮泥反硝化基因(narG/nosZ)的丰度,但并未明显影响红黄泥反硝化基因(narG/nosZ)丰度。通过双变量相关分析发现,除了紫潮泥narG基因外,其它的反硝化基因丰度和N2O释放之间并没有显著相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号