首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Hypoxia/reoxygenation (H/R)‐induced injury is the key factor associated with islet graft dysfunction. This study aims to examine the effect of mesenchymal stem cells (MSCs) on islet survival and insulin secretion under H/R conditions. Islets from rats were isolated, purified, cultured with or without MSCs, and exposed to hypoxia (O2 ≤ 1%) for 8 h and reoxygenation for 24 and 48 h, respectively. Islet function was evaluated by measuring basal and glucose‐stimulated insulin secretion (GSIS). Apoptotic islet cells were quantified using Annexin V‐FITC. Anti‐apoptotic effects were confirmed by mRNA expression analysis of hypoxia‐resistant molecules, HIF‐1α, HO‐1, and COX‐2, using semi‐quantitative retrieval polymerase chain reaction (RT‐PCR). Insulin expression in the implanted islets was detected by immunohistological analysis. The main results show that the stimulation index (SI) of GSIS was maintained at higher levels in islets co‐cultured with MSCs. The MSCs protected the islets from H/R‐induced injury by decreasing the apoptotic cell ratio and increasing HIF‐1α, HO‐1, and COX‐2 mRNA expression. Seven days after islet transplantation, insulin expression in the MSC‐islets group significantly differed from that of the islets‐alone group. We proposed that MSCs could promote anti‐apoptotic gene expression by enhancing their resistance to H/R‐induced apoptosis and dysfunction. This study provides an experimental basis for therapeutic strategies based on enhancing islet function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Autophagy, a type II programmed cell death, is essential for cell survival under stress, e.g. lung injury, and bone marrow‐derived mesenchymal stem cells (BM‐MSCs) have great potential for cell therapy. However, the mechanisms underlying the BM‐MSC activation of autophagy to provide a therapeutic effect in ischaemia/reperfusion‐induced lung injury (IRI) remain unclear. Thus, we investigate the activation of autophagy in IRI following transplantation with BM‐MSCs. Seventy mice were pre‐treated with BM‐MSCs before they underwent lung IRI surgery in vivo. Human pulmonary micro‐vascular endothelial cells (HPMVECs) were pre‐conditioned with BM‐MSCs by oxygen‐glucose deprivation/reoxygenation (OGD) in vitro. Expression markers for autophagy and the phosphoinositide 3‐kinase/protein kinase B (PI3K/Akt) signalling pathway were analysed. In IRI‐treated mice, administration of BM‐MSCs significantly attenuated lung injury and inflammation, and increased the level of autophagy. In OGD‐treated HPMVECs, co‐culture with BM‐MSCs attenuated endothelial permeability by decreasing the level of cell death and enhanced autophagic activation. Moreover, administration of BM‐MSCs decreased the level of PI3K class I and p‐Akt while the expression of PI3K class III was increased. Finally, BM‐MSCs‐induced autophagic activity was prevented using the inhibitor LY294002. Administration of BM‐MSCs attenuated lung injury by improving the autophagy level via the PI3K/Akt signalling pathway. These findings provide further understanding of the mechanisms related to BM‐MSCs and will help to develop new cell‐based therapeutic strategies in lung injury.  相似文献   

4.
Myocardial infarction (MI) is a major cause of death and disability worldwide. In the last decade, mesenchymal stem cells (MSCs) based cell therapy has emerged as a promising therapeutic strategy. Although great advance have been made using MSCs to treat MI, the low viability of transplanted MSCs severely limits the efficiency of MSCs therapy. Here, we show evidence that ex vivo pre‐treatment with melatonin, an endogenous hormone with newly found anti‐oxidative activity, could improve survival and function of adipose tissue derived MSCs (ADSCs) in vitro as well as in vivo. ADSCs with 5 μM melatonin pre‐treatment for 24 hrs showed increased expression of the antioxidant enzyme catalase and Cu/Zn superoxide dismutase (SOD‐1), as well as pro‐angiogenic and mitogenic factors like insulin‐like growth factor 1, basic fibroblast growth factor, hepatocyte growth factor (HGF), epidermal growth factor. Furthermore, melatonin pre‐treatment protected MSCs from reactive oxygen species (ROS) induced apoptosis both directly by promoting anti‐apoptosis kinases like p‐Akt as well as blocking caspase cascade, and indirectly by restoring the ROS impaired cell adhesion. Using a rat model of MI, we found that melatonin pre‐treatment enhanced the viability of engrafted ADSCs, and promoted their therapeutic potency. Hopefully, our results may shed light on the design of more effective therapeutic strategies treating MI by MSCs in clinic.  相似文献   

5.
The cardiac protection of mesenchymal stem cell (MSC) transplantation for myocardial infarction (MI) is largely hampered by low cell survival. Haem oxygenase 1 (HO‐1) plays a critical role in regulation of cell survival under many stress conditions. This study aimed to investigate whether pre‐treatment with haemin, a potent HO‐1 inducer, would promote the survival of MSCs under serum deprivation and hypoxia (SD/H) and enhance the cardioprotective effects of MSCs in MI. Bone marrow (BM)‐MSCs were pretreated with or without haemin and then exposed to SD/H. The mitochondrial morphology of MSCs was determined by MitoTracker staining. BM‐MSCs and haemin‐pretreated BM‐MSCs were transplanted into the peri‐infarct region in MI mice. SD/H induced mitochondrial fragmentation, as shown by increased mitochondrial fission and apoptosis of BM‐MSCs. Pre‐treatment with haemin greatly inhibited SD/H‐induced mitochondrial fragmentation and apoptosis of BM‐MSCs. These effects were partially abrogated by knocking down HO‐1. At 4 weeks after transplantation, compared with BM‐MSCs, haemin‐pretreated BM‐MSCs had greatly improved the heart function of mice with MI. These cardioprotective effects were associated with increased cell survival, decreased cardiomyocytes apoptosis and enhanced angiogenesis. Collectively, our study identifies haemin as a regulator of MSC survival and suggests a novel strategy for improving MSC‐based therapy for MI.  相似文献   

6.
Mesenchymal stromal cells (MSCs) are promising candidates for the treatment of graft‐versus‐host and autoimmune diseases. Here, by virtue of their immunosuppressive effects, they are discussed to exhibit inhibitory actions on various immune effector cells, including T lymphocytes that promote the underlying pathology. While it becomes apparent that MSCs exhibit their therapeutic effect in a transient manner, they are usually transplanted from third party donors into heavily immunocompromised patients. However, little is known about potential late complications of persisting third party MSCs in these patients. We therefore analysed the effect of gamma irradiation on the potency and proliferation of MSCs to elucidate an irradiation dose, which would allow inhibition of MSC proliferation while at the same time preserving their immunosuppressive function. Bone marrow‐derived MSCs (BM‐MSCs) were gamma‐irradiated at increasing doses of 5, 10 and 30 Gy and subsequently assessed by colony formation unit (CFU)‐assay, Annexin V‐staining and in a mixed lymphocyte reaction, to assess colony growth, apoptosis and the immunosuppressive capacity, respectively. Complete loss of proliferative capacity measured by colony formation was observed after irradiation with a dose equal to or greater than 10 Gy. No significant decrease of viable cells was detected, as compared to non‐irradiated BM‐MSCs. Notably, irradiated BM‐MSCs remained highly immunosuppressive in vitro for at least 5 days after irradiation. Gamma irradiation does not impair the immunosuppressive capacity of BM‐MSCs in vitro and thus might increase the safety of MSC‐based cell products in clinical applications.  相似文献   

7.
Allogeneic mesenchymal stem cell (MSC) transplantation improves cardiac function, but cellular differentiation results in loss of immunoprivilege and rejection. To explore the mechanism involved in this immune rejection, we investigated the influence of interleukin‐6 (IL‐6), a factor secreted by MSCs, on immune privilege after myogenic, endothelial and smooth muscle cell differentiation induced by 5‐azacytidine, VEGF, and transforming growth factor‐β (TGF‐β), respectively. Both RT‐PCR and ELISA showed that myogenic differentiation of MSCs was associated with significant downregulation of IL‐6 expression (P < 0.01), which was also observed following endothelial (P < 0.01) and smooth muscle cell differentiation (P < 0.05), indicating that IL‐6 downregulation was dependent on differentiation but not cell phenotype. Flow cytometry demonstrated that IL‐6 downregulation as a result of myogenic differentiation was associated with increased leucocyte‐mediated cell death in an allogeneic leucocyte co‐culture study (P < 0.01). The allogeneic reactivity associated with IL‐6 downregulation was also observed following MSC differentiation to endothelial and smooth muscle cells (P < 0.01), demonstrating that leucocyte‐mediated cytotoxicity was also dependent on differentiation but not cell phenotype. Restoration of IL‐6 partially rescued the differentiated cells from leucocyte‐mediated cell death. These findings suggest that rejection of allogeneic MSCs after implantation may be because of a reduction in cellular IL‐6 levels, and restoration of IL‐6 may be a new target to retain MSC immunoprivilege.  相似文献   

8.
9.
Toll‐like receptor (TLR)‐mediated signalling plays a role in cerebral ischaemia/reperfusion (I/R) injury. Modulation of TLRs has been reported to protect against cerebral I/R injury. This study examined whether modulation of TLR3 with poly (I:C) will induce protection against cerebral I/R injury. Mice were treated with or without Poly (I:C) (n = 8/group) 1 hr prior to cerebral ischaemia (60 min.) followed by reperfusion (24 hrs). Poly (I:C) pre‐treatment significantly reduced the infarct volume by 57.2% compared with untreated I/R mice. Therapeutic administration of Poly (I:C), administered 30 min. after cerebral ischaemia, markedly decreased infarct volume by 34.9%. However, Poly (I:C)‐induced protection was lost in TLR3 knockout mice. In poly (I:C)‐treated mice, there was less neuronal damage in the hippocampus compared with untreated I/R mice. Poly (I:C) treatment induced IRF3 phosphorylation, but it inhibited NF‐κB activation in the brain. Poly (I:C) also decreased I/R‐induced apoptosis by attenuation of Fas/FasL‐mediated apoptotic signalling. In addition, Poly (I:C) treatment decreased microglial cell caspase‐3 activity. In vitro data showed that Poly (I:C) prevented hypoxia/reoxygenation (H/R)‐induced interaction between Fas and FADD as well as caspase‐3 and ‐8 activation in microglial cells. Importantly, Poly (I:C) treatment induced co‐association between TLR3 and Fas. Our data suggest that Poly (I:C) decreases in cerebral I/R injury via TLR3 which associates with Fas, thereby preventing the interaction of Fas and FADD, as well as microglial cell caspase‐3 and ‐8 activities. We conclude that TLR3 modulation by Poly (I:C) could be a potential approach for protection against ischaemic stroke.  相似文献   

10.
Mesenchymal stem cells (MSCs) have emerged as a potential cell‐based therapy for pulmonary emphysema in animal models. Our previous study demonstrated that human induced pluripotent stem cell–derived MSCs (iPSC‐MSCs) were superior over bone marrow–derived MSCs (BM‐MSCs) in attenuating cigarette smoke (CS)‐induced airspace enlargement possibly through mitochondrial transfer. This study further investigated the effects of iPSC‐MSCs on inflammation, apoptosis, and proliferation in a CS‐exposed rat model and examined the effects of the secreted paracrine factor from MSCs as another possible mechanism in an in vitro model of bronchial epithelial cells. Rats were exposed to 4% CS for 1 hr daily for 56 days. At days 29 and 43, human iPSC‐MSCs or BM‐MSCs were administered intravenously. We observed significant attenuation of CS‐induced elevation of circulating 8‐isoprostane and cytokine‐induced neutrophil chemoattractant‐1 after iPSC‐MSC treatment. In line, a superior capacity of iPSC‐MSCs was also observed in ameliorating CS‐induced infiltration of macrophages and neutrophils and apoptosis/proliferation imbalance in lung sections over BM‐MSCs. In support, the conditioned medium (CdM) from iPSC‐MSCs ameliorated CS medium‐induced apoptosis/proliferation imbalance of bronchial epithelial cells in vitro. Conditioned medium from iPSC‐MSCs contained higher level of stem cell factor (SCF) than that from BM‐MSCs. Deprivation of SCF from iPSC‐MSC‐derived CdM led to a reduction in anti‐apoptotic and pro‐proliferative capacity. Taken together, our data suggest that iPSC‐MSCs may possess anti‐apoptotic/pro‐proliferative capacity in the in vivo and in vitro models of CS‐induced airway cell injury partly through paracrine secretion of SCF.  相似文献   

11.
Hepatic ischaemia/reperfusion (HIR) induces severe damage on hepatocyte cell membrane, which leads to hepatocyte death and the subsequent HIR injury. In this study, we investigated the role and the mechanism of mitsugumin‐53 (MG53), a novel cell membrane repair protein, in protecting the liver against HIR injury. Rats were subjected to sham operation or 70% warm HIR with or without recombined MG53 (rhMG53), caudal vein‐injected 2 hrs before inducing HIR. In vitro, cultured hepatocyte AML12 cells were subjected to hypoxia/reoxygenation (H/R) in the presence of rhMG53 and/or dysferlin gene shRNAs or adenovirus transfection. HIR resulted in severe liver injury manifested as severe liver histological changes and increased AST and ALT release. Post‐ischaemic hepatic oxidative stress was significantly enhanced demonstrated by elevated dihydroethidium level, increased 4‐hydroxynonenal, enhanced 15‐F2t‐isoprostane and decreased SOD activity. rhMG53 administration attenuated post‐HIR liver injury, decreased liver oxidative stress and further enhanced dysferlin protein expression and its colocalization with MG53. Similarly, H/R induced AML12 cell injury and oxidative stress, which were abolished by either rhMG53 or dysferlin overexpression but were exacerbated by dysferlin gene knockdown. Dysferlin overexpression further increased H/R‐induced increased colocalization of MG53 and dysferlin. In conclusion, MG53 was anchored by dysferlin to reduce oxidative stress and cell death and attenuate HIR injury.  相似文献   

12.
Glycation of extracellular matrix proteins has been demonstrated to contribute to the pathogenesis of vascular complications. However, no previous report has shown the role of glycated fibronectin (FN) in vascular endothelial growth factor (VEGF)‐induced angiogenesis. Thus, this study aimed to investigate the effects of glycated FN on VEGF signalling and to clarify the molecular mechanisms involved. FN was incubated with methylglyoxal (MGO) in vitro to synthesize glycated FN, and human umbilical vein endothelial cells (HUVECs) were seeded onto unmodified and MGO‐glycated FN. Then, VEGF‐induced angiogenesis and VEGF‐induced VEGF receptor‐2 (VEGFR‐2) signalling activation were measured. The results demonstrated that normal FN‐positive bands (260 kD) vanished and advanced glycation end products (AGEs) appeared in MGO‐glycated FN and glycated FN clearly changed to a higher molecular mass. The glycation of FN inhibited VEGF‐induced VEGF receptor‐2 (VEGFR‐2), Akt and ERK1/2 activation and VEGF‐induced cell migration, proliferation and tube formation. The glycation of FN also inhibited the recruitment of c‐Src to VEGFR‐2 by sequestering c‐Src through receptor for AGEs (RAGE) and the anti‐RAGE antibody restored VEGF‐induced VEGFR‐2, Akt and ERK1/2 phosphorylation, endothelial cell migration, proliferation and tube formation. Furthermore, the glycation of FN significantly inhibited VEGF‐induced neovascularization in the Matrigel plugs implanted into subcutaneous tissue of mice. Taken together, these data suggest that the glycation of FN may inhibit VEGF signalling and VEGF‐induced angiogenesis by uncoupling VEGFR‐2‐c‐Src interaction. This may provide a novel mechanism for the impaired angiogenesis in diabetic ischaemic diseases.  相似文献   

13.
Mesenchymal stem cells (MSCs) are an attractive candidate for autologous cell therapy, but their ability to repair damaged myocardium is severely compromised with advanced age. Development of viable autologous cell therapy for treatment of heart failure in the elderly requires the need to address MSC ageing. In this study, MSCs from young (2 months) and aged (24 months) C57BL/6 mice were characterized for gene expression of IGF‐1, FGF‐2, VEGF, SIRT‐1, AKT, p16INK4a, p21 and p53 along with measurements of population doubling (PD), superoxide dismutase (SOD) activity and apoptosis. Aged MSCs displayed senescent features compared with cells isolated from young animals and therefore were pre‐conditioned with glucose depletion to enhance age affected function. Pre‐conditioning of aged MSCs led to an increase in expression of IGF‐1, AKT and SIRT‐1 concomitant with enhanced viability, proliferation and delayed senescence. To determine the myocardial repair capability of pre‐conditioned aged MSCs, myocardial infarction (MI) was induced in 24 months old C57BL/6 wild type mice and GFP expressing untreated and pre‐conditioned aged MSCs were transplanted. Hearts transplanted with pre‐conditioned aged MSCs showed increased expression of paracrine factors, such as IGF‐1, FGF‐2, VEGF and SDF‐1α. This was associated with significantly improved cardiac performance as measured by dp/dtmax, dp/dtmin, LVEDP and LVDP, declined left ventricle (LV) fibrosis and apoptosis as measured by Masson's Trichrome and TUNEL assays, respectively, after 30 days of transplantation. In conclusion, pre‐conditioning of aged MSCs with glucose depletion can enhance proliferation, delay senescence and restore the ability of aged cells to repair senescent infarcted myocardium.  相似文献   

14.
AMP‐kinase (AMPK) activation reduces cardiac hypertrophy, although underlying molecular mechanisms remain unclear. In this study, we elucidated the anti‐hypertrophic action of metformin, specifically, the role of the AMPK/eNOS/p53 pathway. H9c2 rat cardiomyocytes were treated with angiotensin II (AngII) for 24 hrs in the presence or absence of metformin (AMPK agonist), losartan [AngII type 1 receptor (AT1R) blocker], Nω‐nitro‐L‐arginine methyl ester (L‐NAME, pan‐NOS inhibitor), splitomicin (SIRT1 inhibitor) or pifithrin‐α (p53 inhibitor). Results showed that treatment with metformin significantly attenuated AngII‐induced cell hypertrophy and death. Metformin attenuated AngII‐induced activation (cleavage) of caspase 3, Bcl‐2 down‐regulation and p53 up‐regulation. It also reduced AngII‐induced AT1R up‐regulation by 30% (P < 0.05) and enhanced AMPK phosphorylation by 99% (P < 0.01) and P‐eNOS levels by 3.3‐fold (P < 0.01). Likewise, losartan reduced AT1R up‐regulation and enhanced AMPK phosphorylation by 54% (P < 0.05). The AMPK inhibitor, compound C, prevented AT1R down‐regulation, indicating that metformin mediated its effects via AMPK activation. Beneficial effects of metformin and losartan converged on mitochondria that demonstrated high membrane potential (Δψm) and low permeability transition pore opening. Thus, this study demonstrates that the anti‐hypertrophic effects of metformin are associated with AMPK‐induced AT1R down‐regulation and prevention of mitochondrial dysfunction through the SIRT1/eNOS/p53 pathway.  相似文献   

15.
Cardiac microvascular endothelial cells (CMECs) are important angiogenic components and are injured rapidly after cardiac ischaemia and anoxia. Cardioprotective effects of Qiliqiangxin (QL), a traditional Chinese medicine, have been displayed recently. This study aims to investigate whether QL could protect CMECs against anoxic injury and to explore related signalling mechanisms. CMECs were successfully cultured from Sprague‐Dawley rats and exposed to anoxia for 12 hrs in the absence and presence of QL. Cell migration assay and capillary‐like tube formation assay on Matrigel were performed, and cell apoptosis was determined by TUNEL assay and caspase‐3 activity. Neuregulin‐1 (NRG‐1) siRNA and LY294002 were administrated to block NRG‐1/ErbB and PI3K/Akt signalling, respectively. As a result, anoxia inhibited cell migration, capillary‐like tube formation and angiogenesis, and increased cell apoptosis. QL significantly reversed these anoxia‐induced injuries and up‐regulated expressions of NRG‐1, phospho‐ErbB2, phospho‐ErbB4, phospho‐Akt, phospho‐mammalian target of rapamycin (mTOR), hypoxia‐inducible factor‐1α (HIF‐1α) and vascular endothelial growth factor (VEGF) in CMECs, while NRG‐1 knockdown abolished the protective effects of QL with suppressed NRG‐1, phospho‐ErbB2, phospho‐ErbB4, phospho‐Akt, phospho‐mTOR, HIF‐1α and VEGF expressions. Similarly, LY294002 interrupted the beneficial effects of QL with down‐regulated phospho‐Akt, phospho‐mTOR, HIF‐1α and VEGF expressions. However, it had no impact on NRG‐1/ErbB signalling. Our data indicated that QL could attenuate anoxia‐induced injuries in CMECs via NRG‐1/ErbB signalling which was most probably dependent on PI3K/Akt/mTOR pathway.  相似文献   

16.
Haemorrhagic shock and resuscitation (HS/R) may cause global ischaemia‐reperfusion injury, which can result in systemic inflammation, multiorgan failure (particularly liver failure) and high mortality. Hinokitiol, a bioactive tropolone‐related compound, exhibits antiplatelet and anti‐inflammatory activities. Targeting inflammatory responses is a potential strategy for ameliorating hepatic injury during HS/R. Whether hinokitiol prevents hepatic injury during HS/R remains unclear. In the present study, we determined the role of hinokitiol following HS/R. The in vivo assays revealed that hinokitiol markedly attenuated HS/R‐induced hepatic injury. Hinokitiol could inhibited NF‐κB activation and IL‐6 and TNF‐α upregulation in liver tissues. Moreover, hinokitiol reduced caspase‐3 activation, upregulated Bax and downregulated Bcl‐2. These findings suggest that hinokitiol can ameliorate liver injury following HS/R, partly through suppression of inflammation and apoptosis. Furthermore, the in vitro data revealed that hinokitiol significantly reversed hypoxia/reoxygenation (H/R)‐induced cell death and apoptosis in the primary hepatocytes. Hinokitiol prevented H/R‐induced caspase‐3 activation, PPAR cleavage, Bax overexpression and Bcl‐2 downregulation. Moreover, hinokitiol attenuated H/R‐stimulated NF‐κB activation and reduced the levels of IL‐6 and TNF‐α mRNAs, suggesting that hinokitiol can protect hepatocytes from H/R injury. Collectively, our data suggest that hinokitiol attenuates liver injury following HS/R, partly through the inhibition of NF‐κB activation.  相似文献   

17.
ASPP2 is a pro‐apoptotic member of the p53 binding protein family. ASPP2 has been shown to inhibit autophagy, which maintains energy balance in nutritional deprivation. We attempted to identify the role of ASPP2 in the pathogenesis of non‐alcoholic fatty liver disease (NAFLD). In a NAFLD cell model, control treated and untreated HepG2 cells were pre‐incubated with GFP‐adenovirus (GFP‐ad) for 12 hrs and then treated with oleic acid (OA) for 24 hrs. In the experimental groups, the HepG2 cells were pre‐treated with ASPP2‐adenovirus (ASPP2‐ad) or ASPP2‐siRNA for 12 hrs and then treated with OA for 24 hrs. BALB/c mice fed a methionine‐ and choline‐deficient (MCD) diet were used to generate a mouse model of NAFLD. The mice with fatty livers in the control group were pre‐treated with injections of GFP‐ad for 10 days. In the experimental group, the mice that had been pre‐treated with ASPP2‐ad were fed an MCD diet for 10 days. ASPP2‐ad or GFP‐ad was administered once every 5 days. Liver tissue from fatty liver patients and healthy controls were used to analyse the role of ASPP2. Autophagy, apoptosis markers and lipid metabolism mediators, were assessed with confocal fluorescence microscopy, immunohistochemistry, western blot and biochemical assays. ASPP2 overexpression decreased the triglyceride content and inhibited autophagy and apoptosis in the HepG2 cells. ASPP2‐ad administration suppressed the MCD diet‐induced autophagy, steatosis and apoptosis and decreased the previously elevated alanine aminotransferase levels. In conclusion, ASPP2 may participate in the lipid metabolism of non‐alcoholic steatohepatitis and attenuate liver failure.  相似文献   

18.
19.
20.
Intercellular communication between mesenchymal stem cells (MSCs) and their target cells in the perivascular environment is modulated by exosomes derived from MSCs. However, the potential role of exosome‐mediated microRNA transfer in neointimal hyperplasia remains to be investigated. To evaluate the effects of MSC‐derived exosomes (MSC‐Exo) on neointimal hyperplasia, their effects upon vascular smooth muscle cell (VSMC) growth in vitro and neointimal hyperplasia in vivo were assessed in a model of balloon‐induced vascular injury. Our results showed that MSC‐Exo were internalised by VSMCs and inhibited proliferation and migration in vitro. Further analysis revealed that miR‐125b was enriched in MSC‐Exo, and repressed the expression of myosin 1E (Myo1e) by targeting its 3? untranslated region. Additionally, MSC‐Exo and exosomally transferred miR‐125b repressed Myo1e expression and suppressed VSMC proliferation and migration and neointimal hyperplasia in vivo. In summary, our findings revealed that MSC‐Exo can transfer miR‐125b to VSMCs and inhibit VSMC proliferation and migration in vitro and neointimal hyperplasia in vivo by repressing Myo1e, indicating that miR‐125b may be a therapeutic target in the treatment of vascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号