首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of various microsomal enzyme inducers such as DDT, benzpyrene, 3-MC, TCDD or phenobarbital on liver microsomal mixed-function oxidases and cytochrome P450 content in mice genetically responsive (C57B1/6J) and resistant (DBA/2J) to induction of aryl hydrocarbon hydroxylase (AHH) was studied. 3-MC and benzpyrene administration stimulated liver AHH activity 6–8 fold in C57B1/6J mice but had no effect in DBA/2J mice. However, intraperitoneal administration of TCDD increased AHH activity in both C57BL/6J and DBA/2J mice. This increase was accompanied by shift in the peak of cytochrome P450 difference spectrum from 450 to 448 nm. It is concluded that genetic resistance to AHH stimulation in DBA/2J mice is influenced by the type of inducer used.  相似文献   

2.
The effects of cytochrome P-450 inducers on O2 toxicity were studied in mice. We first examined three cytochrome P-450 inducers, which differ by their specific tissue affinity: phenobarbital sodium (PB), essentially active in the liver, and 3-methylcholanthrene (3-MC) and beta-naphthoflavone (BNF), which are also active in the lung. Both BNF and 3-MC increased the survival rate and significantly decreased pulmonary edema (pulmonary water and wet-to-dry weight ratio) in C57BL/6J mice exposed to hyperoxia (O2 greater than or equal to 95%), whereas PB had no protective effect. In the second part of this study, we compared the action of BNF in two strains of mice. In one (C57BL/6J), cytochrome P-450 can be induced by aromatic hydrocarbons, whereas in the other (DBA/2J) cytochrome P-450 is not inducible by these compounds. Protection against O2 toxicity was assessed in terms of lethality and pulmonary edema and of lung lipid peroxidation (assessed by measuring malondialdehyde). BNF only protected against O2 toxicity in the inducible strain. This protective effect of BNF on O2 toxicity in C57BL/6J mice was associated mainly with a large increase in the components of the cytochrome P-450 system (cytochrome P-450 and cytochrome b5) in the lung. The activity of pulmonary superoxide dismutase was also slightly increased, but the enhancement was not statistically significant. In contrast, in DBA/2J mice neither the components of the cytochrome P-450 system nor the activity of superoxide dismutase showed any increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effects of coplanar+ 3,4,5,3′,4′,5′-hexachlorobiphenyl (HCB) and noncoplanar 2,4,5,2′,4′,5′-HCB, 2,3,5,2′,3′,5′-HCB, phenobarbitone (PB) and 3-methylcholanthrene (3-MC) on drug metabolizing enzymes have been studied 72 hr after dosing in male rat liver. 3-MC and 3,4,5,3′,4′,5′-HCB induced the activity of ethoxyresorufin deethylase dramatically. NADPH cytochrome P-450 reductase and benzphetamine N-demethylase were induced by PB and noncoplanar isomers and not by 3-MC or 3,4,5,3′,4′,5′-HCB. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the microsomes obtained from various groups showed that 3-MC and 3,4,5,3′,4′,5′-HCB induced the synthesis of a polypeptide of approximate 54,500 daltons which was absent in the microsomes obtained from control, PB or noncoplanar isomer treated animals. Noncoplanar isomers and PB induced the synthesis of a polypeptide of approximate 51,000 daltons. These results, along with the reduced, CO difference spectra, demonstrate that 3,4,5,3′,4′,5′-HCB induces the synthesis of cytochrome P-448 and resembled 3-MC in its mechanism of action, while noncoplanar isomers induced the synthesis of cytochrome P-450 and resembled PB in its mechanism of action. Further administration of various doses of 3,4,5,3′,4′,5′-HCB to genetically responsive mice (C57BL/6J), induced cytochrome P-450, caused one nm shift in the difference spectrum of reduced microsomes and induced the activity of ethoxyresorufin deethylase, whereas it did not induce the activity of ethoxyresorufin deethylase in non-responsive mice (DBA/2J) even at the highest dose studied. These studies indicate the fact that coplanar and noncoplanar isomers have differential interaction with Ah locus.  相似文献   

4.
Hepatic microsomal azoreductase activity with amaranth (3-hydroxy-4[(4-sulfo-1-naphthalenyl)azo]-2,7-naphthalenedisulfonic acid trisodium salt) as a substrate is proportional to the levels of microsomal cytochrome P-450 from control or phenobarbital-pretreated rats and mice or cytochrome P-448 from 3-methylchol-anthrene-pretreated animals. In the "inducible" C57B/6J strain of mice, 3-methylcholanthrene and phenobarbital pretreatment cause an increase in cytochrome P-448 and P-450 levels, respectively, which is directly proportional to the increase of azoreductase activity. However, in the "noninducible" DBA/2J strain of mice, only phenobarbital treatment causes the increase both in cytochrome P-450 levels and azoreductase activity, while 3-methylcholanthrene has no effect. These experiments suggest that the P-450 type cytochromes are responsible for azoreductase activity in liver microsomes.  相似文献   

5.
Cytochrome P-450 reductase and aryl hydrocarbon hydroxylase activities were investigated in hepatic microsomes from untreated C57BL/6J, DBA/2J, B6D2F1, and (B6D2) D2 mice. The dependence of the rate of P-450 reduction on the concentration of added pyridine nucleotide (NADPH or NADH) was biphasic in DBA/2J microsomes but monophasic in C57BL/6J microsomes. Analogous strain-specific patterns were observed when the dependence of the rate of benzpyrene hydroxylation on NADPH concentration was examined. In crosses between the two inbred strains and between B6D2F1 mice and DBA/2J mice, the biphasic pattern for both the reductase and the hydroxylase activities was found to co-segregate with the recessive allele for aromatic hydrocarbon responsiveness. These results might reflect an architectural difference between the microsomal electron transport systems of responsive and nonresponsive mice.  相似文献   

6.
Phenobarbital-induced coumarin 7-hydroxylase is high in DBA/2J and low in C57BL/6N inbred mice; this genetic difference is encoded by the Coh locus on chromosome 7. The aim of this study was to develop an antibody specific for this cytochrome P-450 polymorphism. P-450 fractions, highly specific for phenobarbital-inducible coumarin 7-hydroxylase activity, were purified from DBA/2J and C57BL/6N mouse liver microsomes. Both proteins are 49 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Soret peaks of the reduced cytochrome . CO complexes are 451 nm. Reconstituted DBA/2J coumarin 7-hydroxylase activity exhibits a V twice as high as, and a Km value 10-fold less than, the reconstituted C57BL/6N activity. Antibodies were raised in rabbit. By Ouchterlony immunodiffusion, both antibodies show 100% cross-reactivity with DBA/2J and C57BL/6N microsomes and purified antigens. Yet, DBA/2J but not C57BL/6N 7-hydroxylase activity is inhibited by the antibody to DBA/2J P-450. Both DBA/2J and C57BL/6N activities are blocked by the antibody to C57BL/6N P-450. Neither antibody has any effect on liver microsomal d-benzphetamine N-demethylase, ethylmorphine N-demethylase, aminopyrine N-demethylase, 7-ethoxycoumarin O-deethylase, acetanilide 4-hydroxylase, or aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity. The DBA/2J protein most specific for phenobarbital-induced coumarin 7-hydroxylation is designated 'P-450Coh'. Anti-(P-450Coh) precipitates a relatively minor 49-kDa protein from detergent-solubilized microsomes and from in vitro translation of poly(A+)-enriched total RNA of phenobarbital-treated DBA/2J mouse liver, whereas the major phenobarbital-induced P-450 proteins exhibit a molecular mass of about 51 kDa. The immunoprecipitated translation products correspond to a messenger RNA of 2100 +/- 100 nucleotides.  相似文献   

7.
Mouse "cytochrome P2-450" is defined as that form of isosafrole-induced P-450 in DBA/2N liver most specifically correlated with isosafrole metabolism. Isosafrole pretreatment does not induce aryl hydrocarbon hydroxylase activity ("cytochrome P1-450") in C57BL/6N or DBA/2N mice, induces acetanilide 4-hydroxylase activity ("cytochrome P3-450") more than 3-fold in C57BL/6N but not in DBA/2N mice, and induces isosafrole metabolite formation more than 3-fold in both C57BL/6N and DBA/2N mice. P2-450 was, therefore, purified from isosafrole-treated DBA/2N liver microsomes having negligible amounts of contaminating P1-450 and P3-450. The apparent molecular weight of P2-450 is 55,000, and the protein appears homogeneous on sodium dodecyl sulfate-polyacrylamide gels. The Soret peak of the reduced purified cytochrome X CO complex is 448 nm. Purified P2-450, reconstituted in vitro, metabolizes acetanilide poorly and benzo[a]pyrene hardly at all. Anti-(P2-450) inhibits (90 to 100%) liver microsomal isosafrole metabolite formation, yet has no effect on aryl hydrocarbon hydroxylase, acetanilide 4-hydroxylase, biphenyl 2- or 4-hydroxylase, or 7-ethoxycoumarin O-de-ethylase activities. 3-Methylcholanthrene induces anti-(P2-450)-precipitable protein about 12-fold in C57BL/6N and 2-fold in DBA/2N liver; 2,3,7,8-tetrachlorodibenzo-p-dioxin (10 micrograms/kg), about 12-fold in both C57BL/6N and DBA/2N liver; isosafrole, more than 3-fold in both C57BL/6N and DBA/2N. Benzo[a]anthracene at maximal doses induces anti-(P2-450)-precipitable protein in C57BL/6N liver no more than 2-fold, yet is known to be a highly potent inducer of P1-450 mRNA in C57BL/6N liver. The sensitivity of the P2-450 induction process to isosafrole is inherited as an autosomal additive trait; studies of offspring from the C57BL/6N(DBA/N)F1 X DBA/2N backcross confirm involvement of the Ah locus or s closely segregating gene. In contrast, among crosses between C57BL/6N and DBA/2N, sensitivity of the P1-450 and P3-450 induction process to 3-methylcholanthrene or 2,3,7,8-tetrachlorodibenzo-p-dioxin is inherited as an autosomal dominant trait. These data suggest that, although P1-450, P2-450, and P3-450 proteins are controlled by the Ah locus, either a P-450 protein polymorphism exists between C57BL/6N and DBA/2N mice or subtle differences may exist in the interaction of various inducers with Ah receptor.  相似文献   

8.
The genetic trait of "responsiveness," which refers to the capacity for induction of cytochrome P-448 and numerous monooxygenase activities by certain aromatic hydrocarbons, is known to segregate almost exclusively as a single autosomal dominant gene among progeny of appropriate crosses originating from the responsive C57BL/6 and the nonresponsive DBA/2 inbred mouse strains. In this report the allele for responsiveness is shown to be associated with (a) increases in the apparent KS values for metyrapone bound to reduced P-450; (b) increases in the ethylisocyanide difference ratio (deltaA455-490/deltaA430-490);(c) increases in the deltaA455-490 per mg of microsomal protein but not in the deltaA430-490 per mg of protein from the reduced P-450-ethylisocyanide complex; (d) an approximately 2-nm hypsochromic shift in the spectral maximum in the 446 nm region for the reduced P-450-metyrapone complex; (e) an approximately 2-nm hypsochromic shift of the absorption maximum in the 455 nm region, but not of the maximum in the 430 nm region, for the reduced P-450-ethylisocyanide complex; and (f) larger increases in the deltaA455-490 than in the deltaA430-490 per mg of microsomal protein for the reduced P450-ethylisocyanide complex as a function of increasing pH. All of these phenomena are felt to be associated with the genetically regulated induction of liver microsomal cytochrome P-448 by polycyclic aromatic compounds. Whereas increases in the total hepatic P-450 content appear to be expressed almost exclusively as a single autosomal dominant trait, the increase in apparent KS value for metyrapone bound to reduced P-450 appears to be expressed additively. The reason for this finding is unclear. The increase in apparent KS value for metyrapone in 3-methylcholanthrene-treated rats is known to occur even when the induction process is presumably blocked by treating the rat concomitantly with cycloheximide. Several lines of evidence in this report indicate that, although total P-450 content does not increase in C57BL/6N mice treated with 3-methylcholanthrene plus cycloheximide, hepatic P-448 induction does occur; P-448 induction does not occur in DBA/2N mice under these same conditions. These results indicate that cytochrome P-448 induction is relatively resistant to the inhibition of protein synthesis and that a responsive animal treated with 3-methylcholanthrene plus cycloheximide cannot be considered experimentally the same as a genetically nonresponsive animal treated with 3-methylcholanthrene alone.  相似文献   

9.
We have examined the induction of drug metabolizing enzymes in rat liver microsomes by azo dye, 1-(p-phenylazophenylazo)-2-naphthol (Sudan III). Marked increases were observed in the levels of cytochrome P-448 as well as in p-nitroanisole O-demethylase (p-NAD), amaranth (AR) and neoprontosil reductases (NPR) and 7-ethoxycoumarin O-deethylase (ECD) activities. On the other hand, aminopyrene N-demethylase activity was not significantly increased. Further, induced ECD activity was inhibited 90% by a specific antibody against cytochrome P-448 while the inhibition observed with an antibody against cytochrome P-450 was less than 25%. Simultaneous administration of Sudan III and 3-methylcholanthene (3-MC) induced cytochrome P-448 up to a level brought about by either Sudan III or 3-MC treatment alone. In contrast, Sudan III did not induce cytochrome P-448 in the 3-MC insensitive DBA/2 mouse. Solubilized microsomes from Sudan III-treated rats showed an identical sodium dodecyl sulfate polyacrylamide gel electrophoretic (SDS-PAGE) pattern with those from 3-MC-treated animals. It is concluded that the cytochrome P-448 induced in liver by Sudan III is very similar to that induced by 3-MC. Sudan III also induced UDP-glucuronyltransferase activity towards 1-naphthol and estradiol. It did not induce NADPH-cytochrome c reductase, nor any of the enzymes which constitute the microsomal electron transport chain except for cytochrome P-448.  相似文献   

10.
Pulmonary and hepatic levels of aryl hydrocarbon hydroxylase (AHH) were studied in inbred strains of mice following intratracheal (i.t.) instillation of 3-methylcholanthrene (MCA). I.t. instillation of 188 mug MCA in sterile 0.2% gelatin in saline resulted in preferential induction of pulmonary AHH. After treatment with this dose of MCA, the pulmonary AHH levels of strains C57BL/6Cum, C57BL/6J, BALB/cMai, C3H/fMai, and C57L/J were observed to be induced within 24 h after treatment. Strains DBA/2Cum, AKR/J, SJL/J, DBA/2J and RF/J expressed no such increase. At a dose of 500 mug MCA, the pulmonary tissue of DBA/2 mice did express a 4-fold increase. This increase in AHH was determined to be quite different from the increase observed in C57BL/6 mice by: (1) specific activity of the enzymes, (2) genetic regulation, (3) susceptibility to inhibition by 7,8-benzoflavone, and (4) spectral properties of the associated cytochromes. It was of major importance that induction of pulmonary AHH was observed to be regulated by a single dominant gene in crosses involving the C57BL/6Cum and DBA/2Cum strains of mice. Results were discussed with the view in mind that these genetically regulated levels of AHH may play a role in susceptibility to cancers induced by polycyclic aromatic hydrocarbon carcinogens.  相似文献   

11.
The metabolism of the polycyclic aromatic hydrocarbon (PAH) carcinogen benzo[a]pyrene (BaP) was studied using microsomes prepared from the skin of the mouse and rat. Topical application of the polychlorinated biphenyl (PCB) Aroclor 1254 or the PAH 3-methylcholanthrene (3-MC) to the skin of the C57BL/6N and DBA/2N mouse and the Sprague-Dawley rat caused statistically significant enhancement of cutaneous microsomal aryl hydrocarbon hydroxylase (AHH) activity in each animal. PCB was a more potent inducer of the enzyme than was 3-MC. BaP metabolism by skin microsomes from the same animals was assessed using high performance liquid chromatography (HPLC). The skin of untreated animals metabolized BaP into 9,10-, 7,8- and 4,5-dihydrodiols, phenols and quinones. Skin application of PCB caused greater than 16–18-fold enhancement of BaP metabolism in the C57BL/6N mouse and the rat and 2–5-fold enhancement in the DBA/2N mouse. Skin application of 3-MC enhanced BaP metabolism 2–8-fold in the C57BL/6N mouse and 5–10-fold in the rat and had no effect in the DBA/2N mouse. The formation of procarcinogenic metabolite BaP-7, 8-diol was greatly enhanced (4–12-fold) by treatment with the PCB and 3-MC in the tumor susceptible C57BL/6N mouse and in the tumor-resistant neonatal Sprague-Dawley rat. In contrast, the formation of BaP-7,8-diol was either slightly enhanced (2-fold) or unaffected by treatment with the PCB or 3-MC in the tumor-resistant DBA/2N mouse. Our data indicate that neither the patterns of metabolism nor the amount of BaP-7,8-diol formation in the skin are reliable predictors of tumor susceptibility to the PAH in rodent skin.  相似文献   

12.
Using antibodies against electrophoretically homogeneous cytochrome P-448 from rat liver microsomes induced by 3-methylcholanthrene, the changes in the immunologic identity and contents by cytochrome P-448 induced by 3-methylcholanthrene, 3.4-benzpyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were studied. No cytochrome P-448 was detected in the liver microsomes of control or phenobarbital-induced rats. This form of the cytochrome makes up to about 35% of the total content of the CO-binding hemoprotein during TCDD induction and up to 90% during 3-methylcholanthrene and 3,4-benzpyrene induction. On the other hand, 3-methylcholanthrene, 3,4-benzpyrene and TCDD significantly and equally activates the cytochrome P-448-dependent benzpyrene hydroxylase, since the antibodies against cytochrome P-448 inhibit benzpyrene metabolism in the microsomes by 85-90%. The possible reasons for the TCDD-induced increase in the catalytic activity of cytochrome P-448 as compared to the immunologically identical cytochrome P-448 induced by 3-methylcholanthrene and 3,4-benzpyrene, are discussed.  相似文献   

13.
The administration of polycyclic aromatic compounds such as beta-naphthoflavone or 3-methylcholanthrene is known to cause the induction of many liver microsomal monoxygenase activities and the appearance of a distinct cytochrome called P-448 in genetically responsive, but not in nonresponsive, inbred mouse strains. However, the administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin induces these activities and cytochrome P-448 formation to the same extent in both responsive and nonresponsive inbred strains. In contrast, phenobarbital or pregnenolone-16 alpha-carbonitrile induces in both responsive and nonresponsive strains a different profile of enzyme activities and the appearance of cytochrome P-450 (rather than cytochrome P-448). In the present studies, electrophoresis of liver microsomal proteins from inbred C57BL/6N and DBA/2N and recombinant inbred AKXL-38 and AKXL-38A mouse strains revealed the presence of four polypeptides whose relative staining intensity could be correlated with the induction state of the microsomes as determined by enzymatic and spectral methods. Of these four bands, Band 4 (55,000 daltons) was increased whenever spectral measurements revealed an increase in the cytochrome P-448 content due to administration of beta-naphthoflavone or 2,3,7,8-tetrachlorodibenzo-p-dioxin. Administration of pregnenolone-16alpha-carbonitrile caused an increase in Band 3 (54,000 daltons), whereas administration of phenobarbital caused an increase primarily in Band 2 (51,000 daltons) but also smaller increases in Band 1 (49,000 daltons) and Band 4. The changes observed for phenobarbital and pregnenolone-16alpha-carbonitrile were the same for both responsive and nonresponsive strains. The same electrophoretic technique was used to measure the incorporation of radioactive leucine into microsomal proteins. Microsomes were prepared from liver combined from responsive mice (C57BL/6N) treated with beta-naphthoflavone and L-[14C]leucine and nonresponsive mice (DBA/2N) treated with beta-naphthoflavone and L-[3H-4,5]leucine. A significant increase in the 14C/3H ratio was observed for Band 4, and decreases were seen for Bands 1 and 2. In similar experiments with other mice and phenobarbital as the inducing agent with L-[14C]leucine and the vehicle alone with L-[3H-4,5]leucine, the 14C/3H ratio was markedly increased for Band 2, and smaller increases were observed for Bands 1 and 4. These results and other data presented indicate that the increased formation of cytochrome P-448 and P-450 by beta-naphthoflavone and phenobarbital, respectively, is primarily the result of an increased rate of de novo protein synthesis rather than a decreased degradation rate or a conversion of pre-existing polypeptides.  相似文献   

14.
Metabolism of propranolol in liver microsomes was markedly induced in rats and C57BL6J mice treated with 3-methylcholanthrene (3-MC) or sudan III, inducers of cytochrome P-448. 7,8 Benzoflavone inhibited propranolol metabolism in microsomes from treated rats. 3-MC did not induce propranolol metabolism in genetically nonresponsive DBA2 mice. High-performance liquid chromatographical analysis of propranolol metabolites revealed a 6-fold increase in propranolol N-desisopropylase activities in liver microsomes from sudan III- or 3-methylcholanthrene-treated rats. It is concluded that propranolol N-desisopropylation is predominantly catalyzed by cytochrome P-448.  相似文献   

15.
Isosafrole induction of cytochrome P-450 was compared in congenic strains of C57BL/6J mice, one of which expresses normal levels of the Ah receptor [B6(Ahb)], and another that does not contain a measurable receptor concentration [B6(Ahd)]. Using sucrose gradient analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) binding, an Ah receptor concentration of 69.1 +/- 3.8 fmol/mg protein was measured in the hepatic cytosol from B6(Ahb) mice, while no receptor could be detected in the cytosol from B6(Ahd) mice. Isosafrole treatment (75 mg/kg X 3 days) increased the total hepatic microsomal cytochrome P-450 content to the same extent in the two congenic strains. The level of microsomal monooxygenase induction in the isosafrole-treated B6(Ahd) mice was greater than that of B6(Ahb) mice for ethylmorphine N-demethylase and isosafrole metabolite-complex formation, the latter a measure of cytochrome P2-450. In the case of 7-ethoxycoumarin O-deethylase only the isosafrole-treated B6(Ahd) mice had elevated microsomal activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) also revealed a similar induction pattern for the two congenic strains, following isosafrole treatment. Thus, the isosafrole treated B6(Ahd) mice produced an equivalent or slightly larger induction of cytochrome P-450 than the B6(Ahb) mice, suggesting that there is no direct role for the Ah receptor in the regulation of these cytochrome P-450 monooxygenase activities by isosafrole.  相似文献   

16.
Hexachlorobenzene (HCB) differs markedly from other chlorinated benzenes (CBs) as an inducer of cytochrome P-450 (P-450) isozymes as determined by radioimmunoassay and immunoblotting. At greater than 99% pure, HCB induced both the phenobarbital-inducible forms, cytochromes P-450b + e (70 chi), and the 3-methylcholanthrene-inducible forms, cytochromes P-450c (58 chi) and P-450d (8 chi), in rat liver microsomes. The concentration of P-450d was considerably greater than that of P-450c in HCB-induced rat liver. In contrast to HCB, all lower chlorinated benzenes tested were PB-type inducers. Hexachlorobenzene increased the amounts of translatable messenger RNAs (mRNAs) for P-450b, P-450c, and P-450d in rat liver polysomes, suggesting that it increases the synthesis of these proteins. Evidence that HCB interacted with the putative Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was equivocal. Western blots of liver microsomes from Ah-responsive C57BL/6J (B6) and nonresponsive DBA/2J (D2) mice demonstrated that HCB produced a large increase in P3-450 and a very small increase in P1-450 in the responsive strain. The increase in P1-450 was not observed after HCB administration to nonresponsive mice, but a small increase in P3-450 was noted. These findings suggested that HCB may act through the Ah receptor. However, HCB was at best a very weak competitor for specific binding of [3H]-TCDD to the putative receptor in rat or mouse hepatic cytosol in vitro, producing decreases in binding of [3H]-TCDD only at very high concentrations (10(-6) to 10(-5) M).  相似文献   

17.
Nine distinct monoclonal antibodies raised against purified rat liver cytochrome P-450c react with six different epitopes on the antigen, and one of these epitopes is shared by cytochrome P-450d. None of these monoclonal antibodies recognize seven other purified rat liver isozymes (cytochromes P-450a, b, and e-i) or other proteins in the cytochrome P-450 region of "Western blots" of liver microsomes. Each of the monoclonal antibodies was used to probe "Western blots" of liver microsomes from untreated, or 3-methylcholanthrene-, or isosafrole-treated animals to determine if laboratory animals other than rats possess isozymes immunochemically related to cytochromes P-450c and P-450d. Two protein-staining bands immunorelated to cytochromes P-450c and P-450d were observed in all animals treated with 3-methylcholanthrene (rabbit, hamster, guinea pig, and C57BL/6J mouse) except the DBA/2J mouse, where no polypeptide immunorelated to cytochrome P-450c was detected. The conservation of the number of rat cytochrome P-450c epitopes among these species varied from as few as two (guinea pig) to as many as five epitopes (C57BL/6J mouse and rabbit). The relative mobility in sodium dodecyl sulfate-gels of polypeptides immunorelated to cytochromes P-450c and P-450d was similar in all species examined except the guinea pig, where the polypeptide related to cytochrome P-450c had a smaller Mr than cytochrome P-450d. With the use of both monoclonal and polyclonal antibodies, we were able to establish that purified rabbit cytochromes P-450 LM4 and P-450 LM6 are immunorelated to rat cytochromes P-450d and P-450c, respectively.  相似文献   

18.
The induction by phenobarbital (PB) of aldrin epoxidase (AE) and aryl hydrocarbon hydroxylase (AHH), markers of cytochrome P-450- and cytochrome P-448-dependent monooxygenases, was studied in cell lines derived from Reuber H35 rat hepatoma which differ widely in their degree of differentiation. The following results were obtained: (1) PB induced AE 2-6-fold and AHH 2-4-fold in the differentiated clones, Fao, 2sFou, and C2Rev7 during an exposure period of 72 h. The barbiturate increased AHH but not AE in the dedifferentiated clone H5, the poorly differentiated line H4IIEC3/T, and in the well differentiated line H4IIEC3/G-. (2) Continuous presence of the barbiturate was required for maintaining the induction of the two monooxygenase activities in C2Rev7 cells. (3) Maximum induction of AE was observed at a PB concentration of 1.5-3.0 mM. (4) The effects of 7,8-benzoflavone on AHH-activities induced by phenobarbital in C2Rev7 and H5 cells suggested that they are mediated by cytochrome P-450- and cytochrome P-448-dependent monooxygenase forms, respectively. Thus, the flavonoid had only a slight inhibitory effect on PB-induced AHH in C2Rev7 cells, but strongly inhibited PB-induced AHH in H5 cells. The induction of AE and of 7,8-benzoflavone-inhibitable AHH in 2sFou cells indicated that PB is capable of inducing cytochromes P-450 and cytochrome P-448 in the same cell.  相似文献   

19.
Ueng YF  Kuo YH  Wang SY  Lin YL  Chen CF 《Life sciences》2004,74(7):885-896
Effects of tanshinone IIA, an active diterpene quinone of the herbal medicine Salvia miltiorrhiza (Danshen), on cytochrome P450 (CYP), UDP-glucuronosyl transferase (UGT), and glutathione S-transferase (GST) were studied in the arylhydrocarbon (Ah)-responsive C57BL/6J (B6) and nonresponsive DBA/2J (D2) mice. Oral treatment of tanshinone IIA caused a dose-dependent increase of liver microsomal 7-methoxyresorufin O-demethylation (MROD) activity in B6 but not in D2 mice. In B6 mice, tanshinone IIA increased hepatic benzo(a)pyrene hydroxylation (AHH), 7-ethoxyresorufin O-deethylation, MROD, and 7-ethoxycoumarin O-deethylation activities. The levels of Cyp1A2 protein and mRNA were elevated. On the contrary, in D2 mice, tanshinone IIA decreased hepatic AHH and nifedipine oxidation activities and the CYP3A protein level without affecting other activities determined. Cyp1A2 protein and mRNA levels were not affected by tanshinone IIA in D2 mice. Tanshinone IIA had no effects on UGT and GST activities in both B6 and D2 mice. These results demonstrated that induction of CYP1A2 by tanshinone IIA depended on the Ah-responsiveness and occurred at pre-translational level.  相似文献   

20.
Twenty-one inbred strains of mice were surveyed for inducibility of hepatic aryl hydrocarbon hydroxylase (AHH) activity by the carcinogen 3-methylcholanthrene (MC). In 11 strains given MC, AHH activity increased 1.3- to 5-fold (inducible), whereas ten strains responded with a less than 0.5-fold increase (noninducible). Neither the inducible nor the noninducible class was homogeneous, and in each considerable variation was found in both the basal activity of AHH and the response to MC. Strains DBA/2J and C57BL/6J were chosen to represent the noninducible and inducible classes, respectively. In the crosses (C57BL/6 × DBA/2)F1 × DBA/2 and (C57BL/6 × DBA/2)F2, inducibility segregated as a single autosomal dominant gene. The gene symbols Ahh i and Ahh n are proposed for the alleles present in C57BL/6J and DBA/2J, respectively. No genetic linkage was found between the Ahh locus and the following loci: b, d, Es-1, Es-3, Gpd-1, Hbb, Id-1, Pgm-1, and sex. Some implications of this work in the study of mammalian enzyme induction and chemically induced carcinogenesis are discussed. There is a positive correlation between AHH inducibility and the development of an inflammatory response to the topical application of the carcinogen 7,12-dimethylbenzanthracene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号