首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOLECULAR changes that occur in the membrane of nerve during depolarization are important to explain the mechanism of excitation and conduction. During an action potential in nerve the electrical field strength across the membrane undergoes a change of about 105 V cm?1 which could influence the conformation of membrane molecules possessing a flexible dipole1. Several methods have been reported for detecting changes with excitation in nerve, muscle and electroplaque2–11, but have been difficult to interpret. We have therefore used an adaptation of the method of modulation spectroscopy12, which is based on changes in the absorption spectrum as a result of perturbing the molecular structure13–16. Our method was based on absorption in the infrared, which occurs for molecular vibrations accompanied by changes in dipole moment.  相似文献   

2.
Resonance Raman spectra of bacteriorhodopsin are compared to the spectra of this protein modified in the following ways: (1) selective deuteration at the C-15 carbon atom of retinal, (2) full deuteration of the retinal, (3) the addition of a conjugated double bond in the β-ionone ring (3-dehydroretinal), (4) full deuteration of the protein and lipid components, (5) 15N enrichment of the entire membrane and (6) deuteration of the entire membrane (including the retinal). A detailed comparison of the 15N-enriched membrane and naturally occurring purple membrane from 800 cm?1 to 1700 cm?1 reveals that 15N enrichment affects the frequency of only two vibrational modes. These occur at 1642 cm?1 and 1620 cm?1 in naturally occurring purple membrane and at 1628 cm?1 and 1615 cm?1 in the 15N-enriched samples. Therefore, this pair of bands reflects the states of protonation of the Schiff base. However, our data also indicate that neither of these modes are simple, localized C=?H or C=N stretching vibrations. In the case of the 1642 cm?1 band motions of the retinal chain beyond C-15 are not significantly involved. On the other hand, in the 1620 cm?1 band atomic motions in the isoprenoid chain beyond C-15 are involved.  相似文献   

3.
One of the most versatile methods for monitoring the structure of proteins, either in solution or in the solid state, is Fourier transform infrared spectroscopy. Also known as mid-range infrared, which covers the frequency range from 4000 to 400 cm-1, this wavelength region includes bands that arise from three conformationally sensitive vibrations within the peptide backbone (amide I, II and III). Of these vibrations, amide I is the most widely used and can provide information on secondary structure composition and structural stability. One of the advantages of infrared spectroscopy is that it can be used with proteins that are either in solution or in the solid state. The use of infrared to monitor protein structure and stability is summarized herein. In addition, specialized infrared methods are presented, such as techniques for the study of membrane proteins and oriented samples. In addition, there is a growing body of literature on the use of infrared to follow reaction kinetics and ligand binding in proteins, as well as a number of infrared studies on protein dynamics. Finally, the potential for using near-infrared spectroscopy to study protein structure is introduced.  相似文献   

4.
Raman spectroscopy and X-ray diffraction are used to investigate the influence of surface charges on the structure of ionizable lipid membranes of dimyristoylmethylphosphatidic acid. The membrane surface charge density is regulated by varying the pH of the aqueous phase. Changes of the conformational order of the lipid chains are determined from the intensity of the CC stretch chain vibrations around 1100 cm?1 in a lipid Raman spectrum. In going from an electrical neutral to a negatively charged membrane, the conformational order is reduced by 5% in the ordered and by 9% in the fluid membrane phase, corresponding to 0.6 and 0.8 CC bonds, respectively, which change from a trans to a gauche conformation. The electrostatically induced conformational change is mainly concentrated at the lipid chain ends as indicated by the spectral variations of the 890 cm?1 CH3 rocking band of the chain termini. The X-ray diffraction experiments show that increasing the surface charge density in the ordered membrane phase leads to a lateral expansion of the packing of the lipid polar groups, whereas the packing of the lipid chains in a plane perpendicular to the chain axes remains constant, indicating an increase of the tilt of the lipid chains from δ = 10° (pH 3) to δ = 27° (pH 9).  相似文献   

5.
We present an approach to the analysis of low-frequency (0-200 cm?1) α-helix vibrations in molecular dynamics simulation. The approach employs the P-Curves algorithm [H. Sklenar, C. Etchebest, and R. Lavery, (1989) Proteins: Structure, Function and Genetics, Vol. 6. pp. 46–60] to determine the helical axis and a set of helicoidal parameters describing the axis curvature and the position of the repealing units with respect to the axis and each other. The vibrations are analyzed in terms of time correlation functions of the fluctuations of P-Curves parameters and their Fourier transforms. Simulations of polyalanine and myoglobin are analyzed. For polyalanine, global twisting, bending, and stretching vibrations are found at 11, 20, and 40 cm?1, respectively. In myoglobin, the spectra of the global helix vibrations are qualitatively different from those of polyalanine and considerably more complicated. Local vibrations of individual amino acid units in the helix backbones are also analyzed with P-Curves and compared. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Coarse-grained molecular dynamics simulations of the E. coli outer membrane proteins FhuA, LamB, NanC, OmpA and OmpF in a POPE/POPG (3∶1) bilayer were performed to characterise the diffusive nature of each component of the membrane. At small observation times (<10 ns) particle vibrations dominate phospholipid diffusion elevating the calculated values from the longer time-scale bulk value (>50 ns) of 8.5×10−7 cm2 s−1. The phospholipid diffusion around each protein was found to vary based on distance from protein. An asymmetry in the diffusion of annular lipids in the inner and outer leaflets was observed and correlated with an asymmetry in charged residues in the vicinity of the inner and outer leaflet head-groups. Protein rotational and translational diffusion were also found to vary with observation time and were inversely correlated with the radius of gyration of the protein in the plane of the bilayer. As the concentration of protein within the bilayer was increased, the overall mobility of the membrane decreased reflected in reduced lipid diffusion coefficients for both lipid and protein components. The increase in protein concentration also resulted in a decrease in the anomalous diffusion exponent α of the lipid. Formation of extended clusters and networks of proteins led to compartmentalisation of lipids in extreme cases.  相似文献   

7.
Pre-resonance Raman spectra have been obtained for aqueous solutions of adriamycin. All bands are attributable to the anthracycline chromophore and are vibrations coupled to the first (20,800 cm?1) electronic transition of the molecule. Both ring modes and vibrations of the carbonyl, hydroxy and methoxy substituents are observed.  相似文献   

8.
The structure of sodium salts of arabinogalactan (AG) sulfates obtained by sulfating AG of larch wood with a sulfamic acid–urea mixture in 1,4-dioxane was studied by the methods of Raman spectroscopy, X-ray diffraction (XRD) phase analysis, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The introduction of sulfate groups into the structure of arabinogalactan was confirmed by the appearance in the Raman spectra of new absorption bands related to the deformation vibrations δ (SO3) at 420 cm–1 and δ (О=S=O) at 588 cm–1, stretching vibrations ν (C–O–S) at 822 cm–1, symmetrical stretching vibrations νs (O=S=O) at 1076 cm–1, and asymmetric stretching vibrations of νas (O=S=O) at 1269 cm–1. According to the XRD data, the amorphization of arabinogalactan structure occurs during the sulfation process. The SEM method revealed a significant difference in the morphology of the sulfated and starting arabinogalactan. The starting AG consists of particles of predominantly globular shape with a size of 10 to 90 μm; arabinogalactan sulfates, of particles of various shapes with sizes of 1–8 μm. According to the AFM, the surface of sulfated arabinogalactan film consists of rather homogeneous spherical particles about 70 nm in size. The root-mean-square value of the surface roughness is 33 nm. The surface of sulfated AG film does not contain impurities.  相似文献   

9.
An abnormality in the wing vibration pattern in males of the ENc homeotic mutant of Bombyx mori was investigated. The wild-type (+/+) males show a switching of the rhythmic wing vibrations from a sequential pattern to an intermittent pattern during mating, whereas the ENc mutants show a sequential pattern both before and during mating. Wing motions in +/+ males became small during mating, but those in +/ENc males did not. Ablation of the head ganglia of +/+ and +/ENc males during mating caused no change in the motor patterns of wing vibrations. Ablation or cooling of the posterior abdomen in the +/+ males during mating caused sequential wing vibrations, suggesting that the change in wing vibrations is induced by signals from the posterior abdomen. The pterothoracic ganglion in the +/ENc males is separated into two ganglia, in contrast to the complete ganglionic fusion in the +/+ males. The neurons in the pterothoracic ganglion stained from abdominal nerve cords are homologus in +/+ and +/ENc males, but many of these in +/ENc males are elongated along the anteroposterior axis. These results suggest that the wing vibration pattern is restricted by genetic factors through reconstruction of the thoracic nervous system during metamorphosis.  相似文献   

10.
Poly(l-histidine) and imidazole in the presence of copper cations have been investigated by means of Fourier transform infrared (IR) spectroscopy in the mid- and far-IR spectral range to establish specific marker bands of the copper-coordination site in metalloproteins as a function of pH as well as the effect of the coordination on the amino acid contributions. Whereas the well-known mid-IR region was specific for the secondary structure of the protein mimics, the far-IR region included contributions from the metal–ligand vibrations. The addition of copper led to secondary structure changes of poly(l-histidine) at neutral and basic pD and to specific shifts of ring vibrations. At pD 9.5 the addition of copper deprotonated the nitrogen atoms of the imidazole ring and the backbone. At neutral pD the copper cations were coordinated by the N3 atom of the imidazole ring. Copper–imidazole vibrations at neutral pD were observed at 154 and 128 cm−1. Signals observed at 313 and 162 cm−1 were assigned to metal–ligand vibrations arising from copper–poly(l-histidine) complexes with a negatively charged imidazole ring.  相似文献   

11.
The relative intensities of the CH stretching vibrations are used to study the interaction of lecithin liposomes with valinomycin, a mobile carrier for alkali ions. In the case of dipalmitoyl lecithin liposomes, the lipid phase transition is not significantly affected by valinomycin. However, in dimyristoylphosphatidylcholine liposomes, the phase transition is broadened by the addition of 1 mol% valinomycin even at low K+ concentrations. This indicates that the carrier interacts with the hydrophobic core of the bilayer. In addition, these experiments showed that the lipid phase transitions which are reflected by the methylene groups and the terminal methyl groups are nearly equivalent. Therefore a reevaluation of the assignment of the CH stretching bands seemed necessary. Our Raman spectroscopic investigation of ω-deuterated dipalmitoyl lecithin liposomes improves the assignment of CH stretch vibrations to methylene and methyl groups. The deuteration displaces the methyl group vibrations to the 2050–2250 cm?1 region and produces gross intensity changes of the bands at 2883 and 2936 cm?1. These changes lead to the conclusion that both bands arise from vibrations which can be attributed simultaneously to the methylene and methyl groups of the fatty acid chains. The displacement of the CH3 group vibrations from their original positions enhances the intensity ratios (per centimeter), 28832847 and 29362847, for the CH2- groups which are used to monitor the lipid phase transition, and implies that the contributions of the CH3 groups to the phase transition curves are unimportant. Our finding that the -CD3 groups reflect no phase transition supports this statement.  相似文献   

12.
Small conformational changes in a molecule of sperm-whale myoglobin in its native solid state for different pH values at room temperature as well as during heat denaturation in alkali medium at different stages of unfolding of the globule were observed by using far-infrared spectroscopy in the region from 30 to 600 cm?1. The changes appeared in the absorption bands near 420 and 470 cm?1 ascribed to the side-chain vibrations of helical segments of the myoglobin molecule. For the first time the high structural sensitivity of the far-infrared region of the skeletal vibrations has been confirmed experimentally and the applicability of this technique to globular proteins demonstrated.  相似文献   

13.
C. P. Beetz  G. Ascarelli 《Biopolymers》1982,21(8):1569-1586
We have measured the ir absorption of 5′CMP, 5′IMP, and poly(I)·poly(C) from ~25 to ~500 cm?1. From a comparison of the data with the previously measured absorption of the corresponding nucleosides and bases we can identify several “lines” associated with the deformation of the ribose ring. Out-of-plane deformation of the bases contributes strongly to vibrations near 200 cm?1. The same ribose vibrations observed in the nucleotides are found in poly(I)·poly(C). They sharpen with increasing water absorption. A study of the spectra of poly(I)·poly(C) as a function of the adsorbed water indicates that water does not contribute in a purely additive fashion to the polynucleotide spectrum but depends on the conformation of the helix. However, the only spectral feature that shifts drastically with conformation is near 45 cm?1. Measurements at cryogenic temperatures indicate some sharpening of the spectrum of poly(I)·poly(C). Instead, no sharpening is observed in the spectrum of the nucleotides. Shear degradation of poly(I)·poly(C) produces significant spectral changes in the 200-cm?1 region and sharpening of the features assigned to the low-frequency ribose-ring vibrations.  相似文献   

14.
Raman spectroscopy was used to study the low-frequency (?200?cm?1) vibrations in crystalline samples of six naturally occurring nucleosides: deoxythymidine (dT), deoxycytidine (dC), deoxyadenosine (dA), uridine (rU), cytidine (rC), and adenosine (rA). Such low-frequency vibrations are important for biological processes in which the conformation of a nucleic acid molecule changes. These experiments also provide a test for the low-frequency vibrational modes of dT, dC, and dA predicted by Shishkin et al.  相似文献   

15.
16.
《Inorganica chimica acta》1986,125(3):173-182
The pre-resonance Raman spectra of 2-formylpyridine thiosemicarbazone have been measured at three pH values corresponding to the fully protonated (H2FPT+), half protonated (HFPT) and deprotonated (FPT) forms of the ligand. Assignments of the vibrations coupled with the π→π* transition have been made by comparison with the spectrum of the deuterated form (DFPT). The pre-resonance Raman spectra of the Zn(II) and Cu(II) complexes, [ZnFPT]+, [CuFPT]+ and [CuHFPT]2+, have also been measured. The spectral pattern of the Cu(II) complexes shows resonance enhancement of vibrations coupled with the π→π*, as well as with the ligand to metal charge transfer transitions. In addition, it is consistent with coordination through thiolate sulfur in [CuFPT]+ and thione sulfur in [CuHFPT]2+.  相似文献   

17.
The organ of Corti (OC) is the auditory epithelium of the mammalian cochlea comprising sensory hair cells and supporting cells riding on the basilar membrane. The outer hair cells (OHCs) are cellular actuators that amplify small sound-induced vibrations for transmission to the inner hair cells. We developed a finite element model of the OC that incorporates the complex OC geometry and force generation by OHCs originating from active hair bundle motion due to gating of the transducer channels and somatic contractility due to the membrane protein prestin. The model also incorporates realistic OHC electrical properties. It explains the complex vibration modes of the OC and reproduces recent measurements of the phase difference between the top and the bottom surface vibrations of the OC. Simulations of an individual OHC show that the OHC somatic motility lags the hair bundle displacement by ∼90 degrees. Prestin-driven contractions of the OHCs cause the top and bottom surfaces of the OC to move in opposite directions. Combined with the OC mechanics, this results in ∼90 degrees phase difference between the OC top and bottom surface vibration. An appropriate electrical time constant for the OHC membrane is necessary to achieve the phase relationship between OC vibrations and OHC actuations. When the OHC electrical frequency characteristics are too high or too low, the OHCs do not exert force with the correct phase to the OC mechanics so that they cannot amplify. We conclude that the components of OHC forward and reverse transduction are crucial for setting the phase relations needed for amplification.  相似文献   

18.
Far-infrared spectra in the region from 700 to 60 cm?1 have been measured for the α-helix structures of poly(L -α-amino-n-butyric acid), poly-L -norvaline, poly-L -norleucine, and poly-L -leucine and for the β-form structures of poly(L -α-amino-n-butyric acid), poly-L -valine, poly(DL -amino-n-butyric acid), poly-DL -norvaline, and poly-DL -norleucine. The changes of the spectra on N-deuteration have been measured in the region between 700 and 400 cm?1. It is concluded that, the α-helix has characteristic bauds near 690, 650, 610, 380, 150, and 100 cm?1, and that the β-form has characteristic bands near 700, 240, and 120 cm?1. The main-chain vibrations in the region from 600 to 200 cm?1 are strongly coupled with the side-chain deformation vibrations.  相似文献   

19.
Possibility of energy of low frequency electromagnetic waves transformation into the energy of multimodules mechanical vibrations of the biological membrane is proved for spherical and cylindrical models of the cell. Formula for calculating the membrane displacement from equilibrium position is derived.  相似文献   

20.
1.  Responses of 73 fibers to dorso-ventral vibration were recorded in the saccular and utricular branchlets of Rana pipiens pipiens using a ventral approach. The saccular branchlet contained nearly exclusively vibration-sensitive fibers (33 out of 36) with best frequencies (BFs) between 10 and 70 Hz, whereas none of the 37 fibers encountered in the utricular branchlet responded to dorso-ventral vibrations.
2.  Using a dorsal approach we recorded from the VIIIth nerve near its entry in the brainstem and analyzed responses to both sound and vibration stimuli for 65 fibers in R. pipiens pipiens and 25 fibers in Leptodactylus albilabris. The fibers were classified as amphibian papilla (AP), basilar papilla (BP), saccular or vestibular fibers based on their location in the nerve. Only AP and saccular fibers responded to vibrations. The AP-fibers responded to vibrations from 0.01 cm/s2 and to sound from 40 dB SPL by increasing their spike rate. Best frequencies (BFs) ranged from 60 to 900 Hz, and only fibers with BFs below 500 Hz responded to vibrations. The fibers had identical BF's for sound and vibration. The saccular fibers had BFs ranging from 10 to 80 Hz with 22 fibers having BFs at 40–50 Hz. The fibers responded to sound from 70 dB SPL and'to vibrations from 0.01 cm/s2.
3.  No differences in sensitivity, tuning or phase-locking were found between the two species, except that most BP-fibers in R. pipiens pipiens had BFs from 1.2 to 1.4 kHz, whereas those in L. albilabris had BFs from 2.0 to 2.2 kHz (matching the energy peak of L. albilabris' mating call).
4.  The finding that the low-frequency amphibian papilla fibers are extremely sensitive to vibrations raises questions regarding their function in the behaving animal. They may be substrate vibration receptors, respond to sound-induced vibrations or bone-conducted sound.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号