共查询到20条相似文献,搜索用时 15 毫秒
1.
Yadav Ghimirey;Raju Acharya;Jeffrey Mintz; 《Ecology and evolution》2024,14(11):e70572
Species richness is an important metric used for undertaking conservation management decisions. However, species richness estimates are influenced by species detection probabilities, with potential to entirely overlook species during surveys. Occupancy models which account for imperfect detection provide unbiased estimates, ensuring accurate estimates of richness. We carried out a camera trap survey in the mountains of north-central Nepal during 2017 and documented a total of 21 mammal species. Here, we used multi-species occupancy models within a Bayesian hierarchical framework to reassess our initial species richness estimate and to understand the influence of environmental covariates on occupancy and species richness of mammals in the area. Our model estimated the mean species richness was ~26 species (95% CRI: 21–36 species), suggesting we might have missed ~5 species during the survey. The mean probability of occupancy and detection of mammal species were estimated to be 0.2895%CRI:0.08–0.46$$ 0.28 left(95%mathrm{CRI}:0.08hbox{--} 0.46right) $$ and 0.02 (95% CRI:0.01–0.03) respectively. Mammalian species richness of the area had an anticipated positive relationship with tree canopy cover β=1.908,95%CI=0.989–2.827,p=1.95e−04$$ left(beta =1.908,95%mathrm{CI}=0.989hbox{--} 2.827,p=1.95mathrm{e}-04right) $$ though its positive relationship with anthropogenic disturbance was surprising β=1.339,95%CI=0.334–2.344,p=0.012$$ left(beta =1.339,95%mathrm{CI}=0.334hbox{--} 2.344,p=0.012right) $$. Mammalian species richness had a quadratic relationship with elevation as is expected. This research contributes to baseline information of the mammal community ecology in north-central Nepal and supports the need for future multi-season surveys to understand the influence of temporal factors on mammalian community and species richness in the area. 相似文献
2.
3.
Anthony R. Rendall John G. White Raylene Cooke Desley A. Whisson Thomas Schneider Lisa Beilharz Eleanor Poelsma Julia Ryeland Michael A. Weston 《Ecological Management & Restoration》2021,22(1):72-79
Autonomously triggered cameras are a common wildlife survey technique. The use of attractants and surrounding microhabitats is likely to influence detection probabilities and survey outcomes; however, few studies consider these factors. We compared three attractants (peanut butter‐based, tuna‐based and a control) in a Latin square design through a coastal shrubland with high microhabitat variability at Cape Otway, Victoria, Australia (38º50?S, 143º30?E). Deployments involved 36 cameras for four days in each of five years. The percentage cover of each vegetation structural type (low [no or sparse cover], moderate [grass] or high [shrubs]) within 20 m of each camera was calculated and reduced to a single variable using PCA. Dynamic occupancy modelling, with lure type and vegetation structure as covariates of detection probability, found that peanut butter attracted the greatest diversity of species (24 of 35 species, 69%) and yielded the greatest number of detections (50% of 319) when compared with tuna oil (66% and 24%, respectively) and the control (43% and 26%, respectively). Peanut butter attracted more Macropodidae (wallabies) and Muridae (rats and mice); however, vegetation structural variables were the greatest influence on Corvidae/Artamidae (raven/currawong) detections with higher detectability in more open areas. Vegetation structure also influenced Muridae detections. This study reinforces the critical choice of appropriate attractants and camera placement when investigating vertebrate groups and highlights the role of microhabitat in the detection of small mammals and birds. We suggest future large‐scale camera surveys consider different bait types and microhabitats in their designs, to control for any biases and enable future advice on ‘optimal’ methods. 相似文献
4.
Daniel J. Twedt 《Journal of Field Ornithology》2015,86(4):352-368
Estimating the size of bird populations is central to effective conservation planning and prudent management. I updated estimated regional bird populations for the East Gulf Coastal Plain of Mississippi using data from 275 North American Breeding Bird Surveys from 2009 to 2013. However, regional bird populations estimated from count surveys of breeding birds may be biased due to lack of empirical knowledge of the distance at which a species is effectively detected and the probability of detecting a species if it is present. I used data recorded within two distance classes (0–50 m and >50–400 m) and three 1‐min time intervals on 130 Breeding Bird Surveys to estimate detection probability and effective detection distance for 77 species. Incorporating these empirical estimates of detection probability and detection distance resulted in estimated regional populations for these species that were markedly greater than regional populations estimated without species‐specific estimates of detection parameters. Using the same Breeding Bird Survey data, I also estimated probability of site occupancy for 66 species and extrapolated this to the proportion of area occupied in the East Gulf Coastal Plain of Mississippi. I combined the area occupied with the reported range of breeding territory size for 54 species to obtain independent estimates of regional bird populations. Although the true population of these species is unknown, estimated populations that incorporated empirical estimates of detection probability and detection distance were more likely to be within the range of independently estimated, occupancy‐based, regional population estimates than were population estimates that lacked empirical detection and distance information. 相似文献
5.
Tamara J. Pandolfo Thomas J. Kwak W. Gregory Cope Ryan J. Heise Robert B. Nichols Krishna Pacifici 《Freshwater Biology》2016,61(10):1671-1684
- Conservation of freshwater unionid mussels presents unique challenges due to their distinctive life cycle, cryptic occurrence and imperilled status. Relevant ecological information is urgently needed to guide their management and conservation.
- We adopted a modelling approach, which is a novel application to freshwater mussels to enhance inference on rare species, by borrowing data among species in a hierarchical framework to conduct the most comprehensive occurrence analysis for freshwater mussels to date. We incorporated imperfect detection to more accurately examine effects of biotic and abiotic factors at multiple scales on the occurrence of 14 mussel species and the entire assemblage of the Tar River Basin of North Carolina, U.S.A.
- The single assemblage estimate of detection probability for all species was 0.42 (95% CI, 0.36–0.47) with no species‐ or site‐specific detection effects identified. We empirically observed 15 mussel species in the basin but estimated total species richness at 21 (95% CI, 16–24) when accounting for imperfect detection.
- Mean occurrence probability among species ranged from 0.04 (95% CI, 0.01–0.16) for Alasmidonta undulata, an undescribed Lampsilis sp., and Strophitus undulatus to 0.67 (95% CI, 0.42–0.86) for Elliptio icterina. Median occurrence probability among sites was <0.30 for all species with the exception of E. icterina. Site occurrence probability generally related to mussel conservation status, with reduced occurrence for endangered and threatened species.
- Catchment‐scale abiotic variables (stream power, agricultural land use) and species traits (brood time, host specificity, tribe) influenced the occurrence of mussel assemblages more than reach‐ or microhabitat‐scale features.
- Our findings reflect the complexity of mussel ecology and indicate that habitat restoration alone may not be adequate for mussel conservation. Catchment‐scale management can benefit an entire assemblage, but species‐specific strategies may be necessary for successful conservation. The hierarchical multispecies modelling approach revealed findings that could not be elucidated by other means, and the approach may be applied more broadly to other river basins and regions. Accurate measures of assemblage dynamics, such as occurrence and species richness, are required to create management plans for effective conservation.
6.
Multispecies occupancy models can estimate species richness from spatially replicated multispecies detection/non‐detection survey data, while accounting for imperfect detection. A model extension using data augmentation allows inferring the total number of species in the community, including those completely missed by sampling (i.e., not detected in any survey, at any site). Here we investigate the robustness of these estimates. We review key model assumptions and test performance via simulations, under a range of scenarios of species characteristics and sampling regimes, exploring sensitivity to the Bayesian priors used for model fitting. We run tests when assumptions are perfectly met and when violated. We apply the model to a real dataset and contrast estimates obtained with and without predictors, and for different subsets of data. We find that, even with model assumptions perfectly met, estimation of the total number of species can be poor in scenarios where many species are missed (>15%–20%) and that commonly used priors can accentuate overestimation. Our tests show that estimation can often be robust to violations of assumptions about the statistical distributions describing variation of occupancy and detectability among species, but lower‐tail deviations can result in large biases. We obtain substantially different estimates from alternative analyses of our real dataset, with results suggesting that missing relevant predictors in the model can result in richness underestimation. In summary, estimates of total richness are sensitive to model structure and often uncertain. Appropriate selection of priors, testing of assumptions, and model refinement are all important to enhance estimator performance. Yet, these do not guarantee accurate estimation, particularly when many species remain undetected. While statistical models can provide useful insights, expectations about accuracy in this challenging prediction task should be realistic. Where knowledge about species numbers is considered truly critical for management or policy, survey effort should ideally be such that the chances of missing species altogether are low. 相似文献
7.
Maud Petitot Nicolas Manceau Philippe Geniez Aurélien Besnard 《Ecology and evolution》2014,4(18):3538-3549
- Setting up effective conservation strategies requires the precise determination of the targeted species’ distribution area and, if possible, its local abundance. However, detection issues make these objectives complex for most vertebrates. The detection probability is usually <1 and is highly dependent on species phenology and other environmental variables. The aim of this study was to define an optimized survey protocol for the Mediterranean amphibian community, that is, to determine the most favorable periods and the most effective sampling techniques for detecting all species present on a site in a minimum number of field sessions and a minimum amount of prospecting effort. We visited 49 ponds located in the Languedoc region of southern France on four occasions between February and June 2011. Amphibians were detected using three methods: nighttime call count, nighttime visual encounter, and daytime netting. The detection nondetection data obtained was then modeled using site‐occupancy models. The detection probability of amphibians sharply differed between species, the survey method used and the date of the survey. These three covariates also interacted. Thus, a minimum of three visits spread over the breeding season, using a combination of all three survey methods, is needed to reach a 95% detection level for all species in the Mediterranean region. Synthesis and applications: detection nondetection surveys combined to site occupancy modeling approach are powerful methods that can be used to estimate the detection probability and to determine the prospecting effort necessary to assert that a species is absent from a site.
8.
Detecting all species in a given survey is challenging, regardless of sampling effort. This issue, more commonly known as imperfect detection, can have negative impacts on data quality and interpretation, most notably leading to false absences for rare or difficult‐to‐detect species. It is important that this issue be addressed, as estimates of species richness are critical to many areas of ecological research and management. In this study, we set out to determine the impacts of imperfect detection, and decisions about thresholds for inclusion in occupancy, on estimates of species richness and community structure. We collected data from a stream fish assemblage in Algonquin Provincial Park to be used as a representation of ecological communities. We then used multispecies occupancy modeling to estimate species‐specific occurrence probabilities while accounting for imperfect detection, thus creating a more informed dataset. This dataset was then compared to the original to see where differences occurred. In our analyses, we demonstrated that imperfect detection can lead to large changes in estimates of species richness at the site level and summarized differences in the community structure and sampling locations, represented through correspondence analyses. 相似文献
9.
Michael J. Smith Laura Ruykys Bryony Palmer Nicola Palmer Georgia Volck Adele Thomasz Noel Riessen 《Restoration Ecology》2020,28(2):468-474
Introduced predators are a serious threat to Australian vertebrates. However, the consequences of predation for an area's avifauna have rarely been quantified. We took advantage of the establishment of a 7,832 ha fox‐ and cat‐free safe haven at Mt Gibson, in Western Australia, to assess the consequences of excluding introduced mammal predators on the bird fauna. Bird surveys were conducted over 6 years, before and after the establishment of the introduced predator‐free safe haven. After 3 years, half the sites were enclosed by the fence that excluded introduced predators, while the remainder of sites remained outside the fence and were exposed to fox and cat activity. The sites were stratified by four major vegetation types. A total of 91 bird species were variously detectable with the survey approach, but were typically more detectable during morning surveys. Site occupancy varied considerably among species, but overall, occupancy by all species was most likely to be either not impacted or positively impacted by the safe haven. The most notable change was that avifaunal richness appeared to increase in woodland and shrubland habitats within, as compared to outside, the safe haven. We conclude that: (1) the safe haven had an overall positive impact on bird occupancy; and (2) there were no consistent trends with respect to the kinds of species whose occupancy was positively impacted, beyond them all being small‐ to medium‐sized birds and mostly insectivorous. However, these conclusions must be tempered by the poor detection probability of many species. 相似文献
10.
Janna R. Willoughby Bhagya K. Wijayawardena Mekala Sundaram Robert K. Swihart J. Andrew DeWoody 《Molecular ecology resources》2016,16(4):837-844
Environmental DNA (eDNA) is DNA that has been isolated from field samples, and it is increasingly used to infer the presence or absence of particular species in an ecosystem. However, the combination of sampling procedures and subsequent molecular amplification of eDNA can lead to spurious results. As such, it is imperative that eDNA studies include a statistical framework for interpreting eDNA presence/absence data. We reviewed published literature for studies that utilized eDNA where the species density was known and compared the probability of detecting the focal species to the sampling and analysis protocols. Although biomass of the target species and the volume per sample did not impact detectability, the number of field replicates and number of samples from each replicate were positively related to detection. Additionally, increased number of PCR replicates and increased primer specificity significantly increased detectability. Accordingly, we advocate for increased use of occupancy modelling as a method to incorporate effects of sampling effort and PCR sensitivity in eDNA study design. Based on simulation results and the hierarchical nature of occupancy models, we suggest that field replicates, as opposed to molecular replicates, result in better detection probabilities of target species. 相似文献
11.
12.
Sarah M. Laske Trevor B. Haynes Amanda E. Rosenberger Joshua C. Koch Mark S. Wipfli Matthew Whitman Christian E. Zimmerman 《Freshwater Biology》2016,61(7):1090-1104
- Surface water connectivity can influence the richness and composition of fish assemblages, particularly in harsh environments where colonisation factors and access to seasonal refugia are required for species persistence.
- Studies regarding influence of connectivity on Arctic fish distributions are limited and are rarely applied to whole assemblage patterns. To increase our understanding of how surface water connectivity and related hydrologic variables influence assemblage patterns, we investigated species richness and composition of Arctic lake fishes over a large region, 8500 km2, of the central Arctic Coastal Plain, Alaska.
- We collected fish presence/non‐detection data from 102 lakes and used a hierarchical multispecies occupancy framework to derive species richness and inform species composition patterns. Our mean estimate of regional richness was 12.3 (SD 0.5) species. Presence of a permanent channel connection was an overriding factor affecting species richness (mean 3.6, 95% CI 3.1–4.9), presumably driving lake colonisation potential. In lakes without a permanent channel connection, data suggest richness (mean 2.0, 95% CI 1.7–3.3) increased with the availability of in‐lake winter refugia and with the potential of ephemeral connections during spring floods.
- Fish species functional traits and environmental faunal filters contributed to patterns of richness and assemblage composition. Composition corresponded with richness in a coherent manner, where each successive level of richness contained several discrete assemblages that showed similar responses to the environment. Lakes with permanent channel connections contained both widespread and restricted species, while the species‐poor lakes that lacked a connection contained mainly widespread species.
- This work provides useful baseline information on the processes that drive the relations between patch connectivity and fish species richness and assemblage composition. The environmental processes that organise fish assemblages in Arctic lakes are likely to change in a warming climate.
13.
Jamie McCallum 《Mammal Review》2013,43(3):196-206
- Camera traps are automated cameras, triggered by movements, used to collect photographic evidence of the presence of animals in field research. I asked whether the use of camera traps in mammalian field research is distributed evenly and increasing equally in a range of habitats, taxa and study types. I aimed to understand where camera traps are used and for what purposes.
- I identified the population of papers published since 1994 in which camera trap methodology was used. I then explored the population for defined habitats, taxa and study types. I tested the derived data for growth and distribution. Over 96% of the population of camera trap papers identified were focused on mammalian species.
- Between 1994 and 2011, the use of camera traps for mammalian research increased: 73% of 414 studies were published after 2005. Over time, equipment has become more sophisticated, reliable, flexible, cost‐effective and easy to deploy, and there have been other methodological advances.
- Growth in the number of mammal‐related camera trap studies was matched by an expansion in the taxa studied and in study types. The most studied taxon is the order Carnivora; forests are the most studied habitat. No single study type dominates, although there are more population density studies than any other. Camera trap studies are focused on a limited number of habitats and taxa due to their particular strengths and the characteristics of the species that they are used to investigate.
- Developments such as infrared illumination and triggering, greater battery life, improved lenses, digital storage capacity, miniaturization, video and real‐time links will enable camera traps to be used for an increasing range of habitats, taxa and study types and will reinforce their growing value in the areas in which they currently predominate.
14.
Will we catch fish today? Our grandfathers’ responses were usually something along the lines of, ‘Probably. I've caught them here before’. One of the foundations of ecology is identifying which species are present, and where. This informs our understanding of species richness patterns, spread of invasive species, and loss of threatened and endangered species due to environmental change. However, our understanding is often lacking, particularly in aquatic environments where biodiversity remains hidden below the water's surface. The emerging field of metagenetic species surveillance is aiding our ability to rapidly determine which aquatic species are present, and where. In this issue of Molecular Ecology Resources, Ficetola et al. ( 2015 ) provide a framework for metagenetic environmental DNA surveillance to foster the confidence of our grandfathers’ fishing prowess by more rigorously evaluating the replication levels necessary to quantify detection errors and ultimately improving our confidence in aquatic species presence. 相似文献
15.
16.
Krishna Pacifici Elise F. Zipkin Jaime A. Collazo Julissa I. Irizarry Amielle DeWan 《Ecology and evolution》2014,4(7):877-888
Recent methodological advances permit the estimation of species richness and occurrences for rare species by linking species‐level occurrence models at the community level. The value of such methods is underscored by the ability to examine the influence of landscape heterogeneity on species assemblages at large spatial scales. A salient advantage of community‐level approaches is that parameter estimates for data‐poor species are more precise as the estimation process “borrows” from data‐rich species. However, this analytical benefit raises a question about the degree to which inferences are dependent on the implicit assumption of relatedness among species. Here, we assess the sensitivity of community/group‐level metrics, and individual‐level species inferences given various classification schemes for grouping species assemblages using multispecies occurrence models. We explore the implications of these groupings on parameter estimates for avian communities in two ecosystems: tropical forests in Puerto Rico and temperate forests in northeastern United States. We report on the classification performance and extent of variability in occurrence probabilities and species richness estimates that can be observed depending on the classification scheme used. We found estimates of species richness to be most precise and to have the best predictive performance when all of the data were grouped at a single community level. Community/group‐level parameters appear to be heavily influenced by the grouping criteria, but were not driven strictly by total number of detections for species. We found different grouping schemes can provide an opportunity to identify unique assemblage responses that would not have been found if all of the species were analyzed together. We suggest three guidelines: (1) classification schemes should be determined based on study objectives; (2) model selection should be used to quantitatively compare different classification approaches; and (3) sensitivity of results to different classification approaches should be assessed. These guidelines should help researchers apply hierarchical community models in the most effective manner. 相似文献
17.
- The estimation of abundance and distribution and factors governing patterns in these parameters is central to the field of ecology. The continued development of hierarchical models that best utilize available information to inform these processes is a key goal of quantitative ecologists. However, much remains to be learned about simultaneously modeling true abundance, presence, and trajectories of ecological communities.
- Simultaneous modeling of the population dynamics of multiple species provides an interesting mechanism to examine patterns in community processes and, as we emphasize herein, to improve species‐specific estimates by leveraging detection information among species. Here, we demonstrate a simple but effective approach to share information about observation parameters among species in hierarchical community abundance and occupancy models, where we use shared random effects among species to account for spatiotemporal heterogeneity in detection probability.
- We demonstrate the efficacy of our modeling approach using simulated abundance data, where we recover well our simulated parameters using N‐mixture models. Our approach substantially increases precision in estimates of abundance compared with models that do not share detection information among species. We then expand this model and apply it to repeated detection/non‐detection data collected on six species of tits (Paridae) breeding at 119 1 km2 sampling sites across a P. montanus hybrid zone in northern Switzerland (2004–2020). We find strong impacts of forest cover and elevation on population persistence and colonization in all species. We also demonstrate evidence for interspecific competition on population persistence and colonization probabilities, where the presence of marsh tits reduces population persistence and colonization probability of sympatric willow tits, potentially decreasing gene flow among willow tit subspecies.
- While conceptually simple, our results have important implications for the future modeling of population abundance, colonization, persistence, and trajectories in community frameworks. We suggest potential extensions of our modeling in this paper and discuss how leveraging data from multiple species can improve model performance and sharpen ecological inference.
18.
19.
Brett T. Mcclintock Larissa L. Bailey Kenneth H. Pollock Theodore R. Simons 《The Journal of wildlife management》2010,74(8):1882-1893
ABSTRACT Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presence—absence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5% of all positive detections, with individual observers exhibiting false-positive rates between 0.5% and 14%. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys. 相似文献
20.
David C. Pavlacky Jr. Jennifer A. Blakesley GARY C. WHITE David J. Hanni Paul M. Lukacs 《The Journal of wildlife management》2012,76(1):154-162
Occupancy estimation is an effective analytic framework, but requires repeated surveys of a sample unit to estimate the probability of detection. Detection rates can be estimated from spatially replicated rather than temporally replicated surveys, but this may violate the closure assumption and result in biased estimates of occupancy. We present a new application of a multi-scale occupancy model that permits the simultaneous use of presence–absence data collected at 2 spatial scales and uses a removal design to estimate the probability of detection. Occupancy at the small scale corresponds to local territory occupancy, whereas occupancy at the large scale corresponds to regional occupancy of the sample units. Small-scale occupancy also corresponds to a spatial availability or coverage parameter where a species may be unavailable for sampling at a fraction of the survey stations. We applied the multi-scale occupancy model to a hierarchical sample design for 2 bird species in the Black Hills National Forest: brown creeper (Certhia americana) and lark sparrow (Chondestes grammacus). Our application of the multi-scale occupancy model is particularly well suited for hierarchical sample designs, such as spatially replicated survey stations within sample units that are typical of avian monitoring programs. The model appropriately accounts for the non-independence of the spatially replicated survey stations, addresses the closure assumption for the spatially replicated survey stations, and is useful for decomposing the observation process into detection and availability parameters. This analytic approach is likely to be useful for monitoring at local and regional scales, modeling multi-scale habitat relationships, and estimating population state variables for rare species of conservation concern. © 2011 The Wildlife Society. 相似文献