首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fundamental goal of wetland restoration is to reinstate pre-disturbance hydrological conditions to degraded landscapes, facilitating recolonization by native species and the production of resilient, functional ecosystems. To evaluate restoration success, baseline conditions need to be determined and a reference target needs to be established that will serve as an ecological blueprint in the restoration process. During the summer wet seasons of 2010 and 2011, we used automated recording units to monitor a community of calling anuran amphibians in the Picayune Strand State Forest of Southwest Florida, USA. This area is undergoing hydrological restoration as part of the Comprehensive Everglades Restoration Plan. We compared occurrence of anurans at sites in the restoration area, to nearby locations in relatively undisturbed habitat (reference sites). We assessed the utility of the latter as restoration targets, using a hierarchical model of community species occupancy to estimate the probability of occurrence of anurans in restoration and reference locations. We detected 14 species, 13 of which were significantly more likely to occur in reference areas. All 14 species were estimated by our model to occur at these sites but, across both years, only 8–13 species were estimated to occur at restoration sites. The composition and structure of these habitats within and adjacent to the Picayune Strand State Forest indicate that they are suitable targets for habitat restoration, as measured by amphibian occurrence and species richness. These areas are important sources for recolonization of anuran amphibians as the hydrologically degraded Picayune Strand undergoes restoration to mitigate the effects of overdrainage and habitat loss.  相似文献   

2.
US federal conservation programs, including the National Resource Conservation Service’s Wetland Reserve Program (WRP) and the US Fish and Wildlife Service’s Partners for Fish and Wildlife Program (PFWP), partner with private landowners to conserve and restore wetland habitats. Despite the success of these programs in terms of wetland area enrolled, uncertainties exist as to whether they are meeting their stated goals, including the restoration of wildlife habitat. In the St. Lawrence Valley of New York State, we investigated two questions related to WRP and PFWP wetland restorations. First, was whether restorations provide habitat for wetland-associated wildlife, including Species of Greatest Conservation Need (SGCN) prioritized by the New York State Wildlife Action Plan (SWAP). Second, was whether restorations support wildlife assemblages that are comparable to natural reference wetlands. Bird, anuran, turtle, snake, and fish species assemblages were surveyed at 47 WRP and PFWP restorations, and 18 natural reference wetlands. We detected 31 SGCN at restorations, including SGCN from each assemblage surveyed. Assemblage metrics, including species richness and relative abundance, did not differ between restored and reference wetlands for any of the assemblages surveyed. These results indicate that restorations provide habitat for SGCN and other wetland-associated wildlife, and that assemblages at restorations are similar to those at natural reference wetlands. We conclude that WRP and PFWP wetland restorations in this region are meeting federal program-level goals related to the restoration of wildlife habitat, and are contributing to the recovery of SGCN.  相似文献   

3.
Reforestation of bottomland hardwood (BLH) forests has occurred within the Lower Mississippi Alluvial Valley (LMAV), USA, to support a wide range of ecosystem services, but especially wildlife habitat enhancement. As ecosystem restoration efforts proceed in BLH ecosystems, managers and policymakers are seeking criteria to evaluate wildlife habitat enhancement goals. Specialist wildlife that evolved within forest ecosystems can be sensitive to the composition, structure, and function of an ecosystem in relation to the system's natural or historical range of variation and thereby serve as indicators of habitat quality. The swamp rabbit (Sylvilagus aquaticus) is a specialist species of BLH forests throughout the LMAV and therefore may be an appropriate indicator species for this ecosystem. To address this, we reviewed peer-reviewed literature to evaluate the utility of swamp rabbits as an indicator species according to three commonly-used criteria: habitat factors defining swamp rabbit relationships to BLH forests, the importance of swamp rabbit habitat to other wildlife, and the efficiency of swamp rabbit monitoring. We conclude that the swamp rabbit is a suitable indicator of wildlife habitat quality in BLH ecosystems in the LMAV because they evolved and remain endemic to the ecosystem, use habitat that integrates desirable characteristics that positively influence wildlife biodiversity, and are easy to monitor routinely.  相似文献   

4.
In the last century, bottomland hardwood (BLH) forests throughout the Lower Mississippi Alluvial Valley in the United States declined >80% and have been degraded because of habitat loss, fragmentation, and altered hydrology. To better understand how current conditions in BLH forest systems influence wildlife and to better manage land use and vegetation, we characterized winter (Dec–Mar) multi-scale habitat selection of 75 radio-marked swamp rabbits (Sylvilagus aquaticus) based on 850 locations in southern Illinois, USA, during 2010–2016. We investigated habitat selection by fitting resource selection functions with generalized linear mixed models based on Euclidean distances (km) to 8 cover types that described hydrogeomorphic conditions. At the second-order scale of selection (home range selection), swamp rabbits were closer to deciduous forest and low-elevation BLH and farther from agriculture, permanent water, shallow BLH, and woody wetland. At the third-order scale of selection (habitat selection within the home range), swamp rabbits selected areas closer to deciduous forest, low BLH, and shallow BLH, and farther from woody wetlands. For the swamp rabbit in Illinois, a BLH specialist at the northern extent of their range, habitat selection is limited to available terrestrial habitat that provides vegetation for food and hiding cover within linear and flood-prone BLH corridors surrounded by agricultural cover types that are largely unsuitable as habitat. Because hydrologic conditions are spatially and temporally dynamic, wildlife managers should focus on providing diverse habitat conditions across elevations that ensure the continuous availability of terrestrial habitat regardless of water level and flooding extent across the BLH landscape. Further reforestation efforts in BLH ecosystems should target current agricultural land on higher elevations adjacent to characteristically flood-prone forest remnants that escaped agricultural clearing due to frequent flooding. © 2021 The Wildlife Society.  相似文献   

5.
Wetland restoration aims to recreate or enhance valuable ecosystem services lost during wetland destruction. Regaining wetland ecosystem services depends on restarting basic wetland functions, like carbon (C) storage, which are unmeasured in many Wetlands Reserve Program (WRP) restoration sites. We collected soil and plant data from 17 WRP sites in western New York that were used for tillage or non-tillage agriculture and then actively restored as isolated depressional wetlands by excavating basins and disabling drainage systems. Sites had been restored for 0–15 years when sampled in August-October 2010. We analyzed data as chronosequences and tested whether soil and vegetation parameters in restored wetlands, over time, (1) departed from pre-restoration baselines, estimated using active agricultural fields paired to each WRP site, and (2) converged towards “natural” benchmarks, estimated from four naturally-occurring wetlands. Restored WRP soils remained similar to agricultural soils in organic matter, density, moisture, and belowground plant biomass across chronosequences, indicating negligible C storage and belowground development for 15 years following restoration. Soil changes were limited in sites restored after both tillage and non-tillage agriculture and throughout the upland meadow, emergent shoreline, and open-water habitat zones that characterize these sites. Many plant metrics like aboveground biomass matched natural wetlands within 15 years, but recovered inconsistently among tilled and untilled sites and across all habitat zones, suggesting land-use history impacts and/or zonation effects. Disparities in recovery times exists between vegetation, which can respond quickly to wetland restoration, and underlying soils, which show limited signs of recovery 15 years after being restored.  相似文献   

6.
Aim We explored whether the anuran amphibian faunas differed among landscapes that are relatively intact (largely covered in forests and woodlands) and others that are completely converted to agriculture. We also used historical data sets to assess the current condition of the anuran fauna in a region predicted to experience, and experiencing, severe drying and warming. Location Five pairs of landscapes (each of c. 20 km2) – one in each pair being almost completely wooded and the other cleared for agriculture – across a 30,000 km2 region of northern Victoria, Australia. Methods Sites were repeatedly surveyed in the austral winter–spring breeding seasons of 2006 and 2007, with records collected of numbers of calling males and the presence of egg masses and tadpoles. We characterized the sites using static (e.g. dimensions, surrounding physiognomic characteristics such as tree cover) and labile (e.g. pH, dissolved oxygen) variables. Data were analysed using hierarchical Bayesian models. Results For calling males, landscape type did not affect densities or species richness measures. The availability of a grassy verge around water bodies was an important predictor for most species, but other labile and static variables seemed not to be important. Fewer than half of the species historically known from the region were recorded. There were no important predictors of occurrence of egg masses or tadpoles. Reproduction effectively may have failed over the period, with fewer than one in four sites showing evidence of egg masses or tadpoles. Main conclusions The proportion of sites at which some well‐studied species (e.g. Crinia signifera, Limnodynastes dumerilii) were recorded has dropped substantially since the 1970s, as have average densities of calling males of Crinia spp. The remnant anuran fauna appears to be dominated by resilient and hardy species with low current diversity. The on‐going (12+ years) drought in these landscapes suggests a bleak long‐term prognosis for the few remaining species of anuran amphibians.  相似文献   

7.
Mycorrhizae are important in the functioning of forest ecosystems worldwide, and play a critical role in water uptake, nutrient acquisition, and prevention of feeder root disease. The majority of mycorrhizal research has been conducted on upland sites, especially in coniferous ecosystems and in commercial agricultural production. However, the maintenance and restoration of bottomland hardwood (BLH) forest ecosystems in the southern United States is of increasing concern. Both ectomycorrhizae and endomycorrhizae are present in BLH forests, although the dominance of one or the other type depends primarily on both the tree species and the hydrologic regime. Ectomycorrhizae tend to be more sensitive to flooding, while endomycorrhizal infection can be present even in permanently flooded soils. The mycorrhizae of sweetgum (Liquidambar styraciflua), green ash (Fraxinus pennsylvanica), and the oaks (Quercus spp.) have been studied most due to their economic importance.Considerable work is still needed to better understand mycorrhizal relationships in BLH ecosystems and associated trees, both with respect to infectivity and nutrient cycling. Such information may be necessary for restoration of BLH forests on old agricultural fields, or to maintain the productivity of BLH forests after harvest. This paper summarizes studies on mycorrhizae relationships in BLH forests and suggests future work necessary for understanding the role mycorrhizae can have in managing these ecosystems.  相似文献   

8.
The present contribution is the first report of parasitosis by a chytrid fungus in wild anuran amphibians in Argentina, as well as the first case of amphibian mortality documented to date in Argentina. We report the presence of the chytrid fungus in dead adult Leptodactylus ocellatus. It has been suggested that chytridiomycosis is the main cause of death in several amphibian populations worldwide. Our study demonstrates that chytridiomycosis afflicts L. ocellatus, a common widespread amphibian species, and is the first report of chytridiomycosis in the Argentinian lowlands. The occurrence at this latitude would indicate an extended distribution of this fungus in wildlife populations. It is also the first report of amphibian mortality due to chytrid fungus in our country. It is noteworthy that the site of collection is situated very close to sea level in a temperate climate zone and that this represents the southern most record for South American wild amphibians.  相似文献   

9.
Wetlands provide key functions in the landscape from improving water quality, to regulating flows, to providing wildlife habitat. Over half of the wetlands in the contiguous United States (CONUS) have been converted to agricultural and urban land uses. However, over the last several decades, research has shown the benefits of wetlands to hydrologic, chemical, biological processes, spurring the creation of government programs and private initiatives to restore wetlands. Initiatives tend to focus on individual wetland creation, yet the greatest benefits are achieved when strategic restoration planning occurs across a watershed or multiple watersheds. For watershed-level wetland restoration planning to occur, informative data layers on potential wetland areas are needed. We created an indicator of potential wetland areas (PWA), using nationally available datasets to identify characteristics that could support wetland ecosystems, including: poorly drained soils and low-relief landscape positions as indicated by a derived topographic data layer. We compared our PWA with the National Wetlands Inventory (NWI) from 11 states throughout the CONUS to evaluate their alignment. The state-level percentage of NWI-designated wetlands directly overlapping the PWA ranged from 39 to 95%. When we included NWI that was immediately adjacent to the overlapping NWI, our range of correspondence to NWI ranged from 60 to 99%. Wetland restoration is more likely on certain landscapes (e.g., agriculture) than others due to the lack of substantive infrastructure and the potential for the restoration of hydrology; therefore, we combined the National Land Cover Dataset (NLCD) with the PWA to identify potentially restorable wetlands on agricultural land (PRW-Ag). The PRW-Ag identified a total of over 46 million ha with the potential to support wetlands. The largest concentrations of PRW-Ag occurred in the glaciated corn belt of the upper Mississippi River from Ohio to the Dakotas and in the Mississippi Alluvial Valley. The PRW-Ag layer could assist land managers in identifying sites that may qualify for enrollment in conservation programs, where planners can coordinate restoration efforts, or where decision makers can target resources to optimize the services provided across a watershed or multiple watersheds.  相似文献   

10.
There are two reasons for strategic planning in passive wildlife restoration: first, to maximize the potential for colonization of restoration sites in challenged landscapes, and second, to maximize the contribution of each restoration project to regional, management area, ecosystem, or target species goals. Landscape configuration and the demographic/dispersal characteristics of target species can govern the level of wildlife response to habitat restoration projects. This is particularly true for fragmented habitats in rapidly suburbanizing areas, where the widely held notion that wildlife can colonize any restored habitat is challenged by barriers to dispersal. Because habitat restoration is a passive means of restoring wildlife populations, equal weight needs to be given to the context (likelihood of site colonization by target species) as well as the content (habitat) of restoration projects. Defining spatial patterns of demography, dispersion, and dispersal allows restorationists to place projects where they can have the greatest impact on the threats and sensitivities of target species, and the greatest contribution to the persistence and/or recovery of populations. Further, it provides a means of evaluating the relative potential worth of different restoration sites. If passive wildlife restoration is to be successful, the constraints to colonization need to be interpreted with regional goals of ecosystem and species management in mind.  相似文献   

11.
The 1993 flood of the Missouri River led to the abandonment of agriculture on considerable land in the floodplain. This abandonment led to a restoration opportunity for the U.S. Federal Government, purchasing those lands being sold by farmers. Restoration of this floodplain is complicated, however, by an imperfect understanding of its past environmental and vegetative conditions. We examined environmental conditions associated with the current placement of young forests and wet prairies as a guide to the potential successional trajectory for abandoned agricultural land subject to flooding. We used Bayesian mixed-effects logistic regression to examine the effects of flood frequency, soil drainage, distance from the main channel, and elevation on whether a site was in wet prairie or in forest. Study site was included as a random effect, controlling for site-specific differences not measured in our study. We found, after controlling for the effect of site, that early-successional forest sites were closer to the river and at a lower elevation but occurred on drier soils than wet prairie. In a regulated river such as the lower Missouri River, wet prairie sites are relatively isolated from the main channel compared to early-successional forest, despite occurring on relatively moister soils. The modeled results from this study may be used to predict the potential successional fate of the acquired agricultural lands, and along with information on wildlife assemblages associated with wet prairie and forest can be used to predict potential benefit of these acquisitions to wildlife conservation.  相似文献   

12.
We used data from the Finnish wildlife triangle censuses (1989-92) to test the prediction that the reproductive success of ground-nesting bird species is lowered in forest landscapes fragmented by the occurrence of agricultural land, presumably as a consequence of increased densities of generalist predators Our study was based on 201 wildlife triangles located in central Finland (total length 2412 km) As expected, the proportion of black grouse hens with a brood in August decreased relative to the increasing proportion of agricultural land in a landscape (100 km2) However, on a smaller spatial scale (10 8 km2), the probability of an observed hen being with a brood was higher in the vicinity of fields This finding may be explained by differences in habitat selection between hens with a brood and those without a brood We did not find any negative effect of landscape composition on brood size We conclude that increased predation pressure in forest landscapes fragmented by agriculture affects nesting success, but not the survival of black grouse chicks after hatching Our results also emphasize the importance of spatial scale in studies of landscape ecology  相似文献   

13.
14.
Ecological restoration is increasingly called on to provide ecosystem services (ES) valuable to humans, as well as to benefit biodiversity and improve wildlife habitat. Where mechanisms to pay for ES exist, they may serve as incentives to embark on habitat restoration projects. We evaluated the potential of newly established carbon markets in the United States to incentivize afforestation along riparian corridors, by comparing the income earnable by carbon offset credits with the costs of planting, maintaining, and registering such a restoration project in California. We used a 20‐year chronosequence of riparian forest sites along the Sacramento River as our model project. We found that carbon credits can repay more than 100% of costs after two decades of regrowth, if sufficient effort is put into sampling intensity in the first post‐restoration decade. However, carbon credits alone are unlikely to entice landowners currently engaged in agricultural activities to switch from farming crops to farming habitat.  相似文献   

15.
There has been little discussion of how and when to integrate wildlife science into ecological restoration projects. The recent emergence of wetland ecosystem restoration offers an opportunity to use wildlife science to increase the probability of a project being successful. This paper traces the evolution of wetland ecosystem restoration in North America and proposes three roles for wildlife science in wetland ecosystem restoration: (1) contribute to conceptual ecosystem models, (2) develop quantitative performance measures and restoration targets that track the progress of restoration, and (3) achieve social feasibility by sustaining long-term public support for a project. The extensive knowledge base for many species of wildlife makes them especially useful for contributing to conceptual ecosystem models. Wildlife species are often the subject of long-term monitoring and research because they have commercial value, are conspicuous, or have aesthetic appeal. Wildlife parameters can be good performance measures for large-scale restoration projects because some species integrate information over large spatial scales and are long-lived. Parameters associated with threatened or endangered wildlife species should get special consideration as performance measures because the information will meet multiple needs rather than just those of the conceptual ecosystem model. Finally, wetland ecosystem restoration projects need to sustain funding over decades to ensure the restored system is self-sustaining. Wildlife are a valued resource that can help achieve the social feasibility of a project by providing a way to communicate complex science in terms that society understands and values.  相似文献   

16.
Conversion of tropical forests to agriculture affects vertebrate assemblages, but we do not know how fast or to what extent these assemblages recover after field abandonment. We addressed this question by examining amphibians and reptiles in secondary forests in southeastern Mexico. We used chronosequence data (12 secondary forests fallow for 1–23 yr and 3 old‐growth forest sites) to analyze successional trajectories and estimate recovery times of assemblage attributes for amphibians and reptiles. We conducted 6 surveys at each site over 14 mo (1200 person‐hours) and recorded 1552 individuals, including 25 species of amphibians and 36 of reptiles, representing 96 and 74 percent of the expected regional number of species, respectively. Abundance, species richness, and species diversity of amphibians increased rapidly with successional age, approaching old‐growth forest values in < 30 yr. Species richness and species diversity of reptiles reached old‐growth forest values in < 20 yr. By contrast, the abundance of reptiles and the assemblage composition of amphibians and reptiles recovered more slowly. Along the chronosequence, we observed more species replacement in reptile assemblages than in amphibian assemblages. Several species in the old‐growth forest were absent from secondary forests. Dispersal limitation and harsh conditions prevailing in open sites and early successional environments appear to preclude colonization by old‐growth forest species. Furthermore, short fallow periods and isolation of forest remnants lead to the formation of new assemblages dominated by species favored by human disturbances.  相似文献   

17.
18.
As a group amphibians are the vertebrates most affected by anthropic activity, particularly by agriculture. The rapid advance of the agricultural frontier makes it important to identify the role of agroecosystems as habitat supply for amphibians. We analyzed the differences in amphibian assemblages and populations between habitats with different plant covers and different degrees of human intervention in northwestern Argentina. For three years we conducted 114 high frequency trap samplings to quantify abundance, specific composition and species richness of amphibian assemblages in three habitat types (lemon and sugarcane crops and secondary forest) of a piedmont agroecosystem of Tucumán province. Crops hosted more species and individuals than secondary forests, but the specific composition of forest was different from that of crops suggesting that they could be complementary. Although the assemblage abundance of every observation responded to climate, the strong effect of sampling year was not related to climatic factors suggesting that there might be long term fluctuations that were not analyzed. We also found that responses to agricultural practices were species specific, so no generalizations about these practices should be done. Our study shows that cultivated areas are not hostile environments for amphibians since they can lodge huge amphibian populations and that the occurrence of disturbances associated to agricultural practices is not necessarily reflected in a decrease in the abundance and richness of amphibians in the short term. However, our results also show that forested lands are necessary to lodge some specialist species which are very rare in the croplands. This suggests that environmental heterogeneity generated by the combination of natural and cultivated patches can increase biodiversity at landscape scale because this allows the coexistence of species related to either kind of environment.  相似文献   

19.
In the Mississippi River Alluvial Valley (MAV), complete alteration of river‐floodplain hydrology allowed for widespread conversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs have attempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (afforestation) and local hydrologic enhancement on reclaimed croplands. Early assessments identified factors that influenced whether planting plus tree colonization could establish an overstory community similar to natural bottomland forests. The extent to which afforested sites develop typical understory vegetation has not been evaluated, yet understory composition may be indicative of restored site conditions. As part of a broad study quantifying the ecosystem services gained from restoration efforts, understory vegetation was compared between 37 afforested sites and 26 mature forest sites. Differences in vegetation attributes for species growth forms, wetland indicator classes, and native status were tested with univariate analyses; floristic composition data were analyzed by multivariate techniques. Understory vegetation of restoration sites was generally hydrophytic, but species composition differed from that of mature bottomland forest because of young successional age and differing responses of plant growth forms. Attribute and floristic variation among restoration sites was related to variation in canopy development and local wetness conditions, which in turn reflected both intrinsic site features and outcomes of restoration practices. Thus, understory vegetation is a useful indicator of functional progress in floodplain forest restoration.  相似文献   

20.
Invasive predators have been widely regarded as one of the principle drivers of the global decline of amphibians, which are among the most threatened vertebrate taxon on Earth. The American bullfrog(Lithobates catesbeianus) is identified as one of the most successful vertebrate invaders and has caused the decline or extinction of some native amphibians in many regions and countries including China. Based on field surveys and stomach content analyses, we examined the diet composition of the invasive bullfrog for the first time in two invaded populations in Yunnan Province, southwestern China, a region of global conservation priority, during the breeding season from 2008 to 2014. Additionally, we conducted the first quantitative study on the prey selection of this global invader among their invaded ranges after controlling for the local anuran assemblage and other aquatic preys in the environment. Our results showed that the range of food items in the stomachs of bullfrogs spanned more than 30 species belonging to ten taxonomic classes. Both of post-metamorphosis individuals and juveniles preyed upon native frogs, independent of the bullfrog's body size and mouth width. Importantly, Jacobs' selection index showed a bullfrog preference for the Yunnan pond frog(Babina pleuraden), one native endemic anuran with population decline, in terms of both food volume and occurrence. We therefore provided direct evidence on the predation impact of the invasive bullfrog on an endemic anuran and urged further efforts to prevent the dispersal of this invader into more fragile habitats to reduce their negative impacts on native amphibians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号