首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In late third instar larvae and prepupae of Drosophila melanogaster there is a complex change in puffing patterns in the salivary gland chromosomes. There are two peaks of activity in this period. The first, in larvae, is known to be under the control of the moulting hormone ecdysone. The second, in prepupae, is now shown by the in vitro culture of prepupal glands to be under the specific control of β-ecdysone in a manner similar to the first. A new class of puffs, active between these two peaks, whose induction is inhibited by ecdysone in vitro, is described. The behaviour of these puffs, exemplified by 75CD and 63E, suggests a period of very low ecdysone titre in vivo. The developmental significance of the role of ecdysone during prepupal development is discussed.  相似文献   

2.
In the salivary gland chromosomes of late-third instar larvae and in late (8- to 12-hr) prepupae of Drosophila melanogaster, there are ecdysone-induced sequences of puffing patterns which can be reproduced in vitro. These two sequences are separated by a period when the glands are thought to be exposed to a low titer of β-ecdysone and during which they acquire the competence to respond to ecdysone at the late prepupal puff sites. Attempts to modify either the late larval or the late prepupal responses to ecdysone in vitro by the simultaneous addition of juvenile hormone (JH) with ecdysone, to larval or prepupal glands, respectively, are unsuccessful. If, however, JH (ca. 10?6M) is added to larval glands cultured 6 hr in ecdysone and then 3 hr in JH alone, the subsequent induction of prepupal ecdysone puffs is inhibited. Thus the role of JH appears to lie in modifying the acquisition of competence to respond to ecdysone rather than in a direct antagonism between the two hormones.  相似文献   

3.
A technique for the short term organ culture of larval salivary glands of D. melanogaster is described. Cultured Puff Stage 1 glands respond to 20-OH ecdysone by initiating the cycle of puffing activity characteristic of late larval development and puparium formation. This puffing cycle involves the sequential activation of at least 125 puffs. Their response to ecdysone allows these puffs to be divided into 3 main classes: a) PS1 puffs that regress (e.g. 25AC); b) puffs activated very rapidly (within 5 min) (e.g. 23E, 74EF, 75B) and c) puffs activated only after longer periods (>4 h) (e.g. 62E, 78D, 22C, 63E and 82F). The detailed behaviour of representatives of each class is described. These data support Clever's distinction of ‘early’ and ‘late’ ecdysone responsive sites.  相似文献   

4.
Puffing patterns have been studied both in homozygotes t10/t10, a gene located in the area of the early ecdysone puff 2B5, and in a yellow (y) control stock, at the end of the third instar and during prepupal development. In mutants t10 at the end of the third instar puffing develops normally in general, however, 21 puffs (5 early and 16 late ones) underdevelop or do not develop at all, some larval intermoult puffs regressing slower. The next cycle of puffs (mid prepupal) in mutants t10 proceeds normally, but in the late prepupal cycle 21 puffs underdevelop again or are not formed at all. A model for the induction of early ecdysone puffs is proposed, assigning a key role to the 2B5 puff product in stimulating other early puffs. It is suggested that defects in the activity of early puffs in the mutant t10 may cause underdevelopment of late puffs.Dedicated to Professor W. Beermann on the occasion of his 60th birthday  相似文献   

5.
The response of the three major classes of puff in salivary gland chromosomes of larval Drosophila melanogaster to varying β-ecdysone concentrations has been studied in in vitro cultured glands. Two (25AC and 68C) of the intermolt puffs regress at a rate dependent upon the hormone concentration. Three rapidly reacting puffs (23E, 74EF and 75B) respond in a graded way to β-ecdysone concentrations over a range of at least 600 ×. In contrast, five late-reacting puffs (62E, 78D, 22C, 63E, and 82F) do not respond below 5 × 10?8M and at 2.5 × 10?7M react maximally. The 50% response of the early puff sites 74EF and 75B and of the late puff sites occurs at 1 × 10?7M. Two points are discussed in detail: whether ecdysone is necessary as a sustained stimulus or only as a trigger for the sequential puffing response and an evaluation of the absolute ecdysone concentration necessary for induction.  相似文献   

6.
Changes in puffing activity of fat body (FB) and midgut (MG) chromosomes of Drosophila auraria during late larval and white prepupal development as well as after in vitro culture with or without ecdysterone were studied and compared with those of the salivary gland (SG). The Balbiani Rings characteristic of the SG chromosomes of D. auraria, are not formed in FB and MG. Most of the inverted tandem chromosomal duplications that have been found to be common to all three tissues showed differentiation of puffing activity of the bands considered to be homologous. The major early ecdysone puffs 73A and 73B (considered to be homologues of D. melanogaster puffs 74EF and 75B, respectively), together with other early ecdysone puffs were present in all three tissues. Clear intermoult and postintermoult puffs were not evident in FB and MG chromosomes. However, a small set of late ecdysone puffs could be scored in FB, while no late ecdysone puffs were abserved in MG. Other tissue-specific puffs were identified, but a very small number of them were limited to MG.by W. Beermann  相似文献   

7.
8.
Titers of ecdysone and 20-OH ecdysone were measured separately in both hemolymph and salivary glands of metamorphosing Rhynchosciara larvae. Gland titers were consistently higher than hemolymph titers. Although 20-OH ecdysone was the most prominent form of the hormone, measurable quantities of ecdysone were also observed throughout development in both tissues. Changes in salivary gland replication and puffing activity could be correlated with changes in gland 20-OH ecdysone titers. This was true for both developmentally changing RNA puffs and DNA puffs, which occur during the prepupal period. The DNA puffs are tied to the final DNA replication cycle, and both this cycle and the period of amplification can be correlated with increases in gland 20-OH ecdysone content. Various aspects and possible interpretations of the above correlations are discussed.This work is dedicated to the memory of Prof. Hans D. Berendes  相似文献   

9.
Mutation t467, belonging to the swi complementation group, and causing death in late prepupa, is located in the interval from 2B6 to the left part of 2B7-8. In this region puffing is absent in salivary gland chromosomes. In t467/t467 homozygotes intermoult early and early-late larval 20-OH ecdysone puffs do not differ from the controls. Mid-prepupal puffs are normal too with a few exceptions. However, all late larval and prepupal puffs are reduced or absent in the mutant. Both, hormone incubation of t467 glands in vitro and hormone injection have shown: i) 20-OH ecdysone in vitro does not restore the normal larval puffing pattern. ii) Withdrawal of the hormone from glands at PS6 causes premature appearance of late larval puffs, which, however, do not reach control sizes. It is concluded that the swi gene product is necessary for induction of late puffs. Thus in the 2B3-4—2B7-8 region three genes, affecting 20-OH ecdysone induction processes, have become known.  相似文献   

10.
11.
Analysis of Ca2+ signals obtained in various cell types (i.e., cardiomyocytes) is always a tradeoff between acquisition speed and signal/noise ratio of the fluorescence signal. This becomes especially apparent during fast two- or three-dimensional confocal imaging when local intracellular fluorescence signals originating from Ca2+ release from intracellular Ca2+ stores (e.g., sarcoplasmic reticulum) need to be examined. Mathematical methods have been developed to remedy a high noise level by fitting each pixel with a transient function to “denoise” the image. So far, current available analytical approaches have been impaired by a number of constraints (e.g., inability to fit local, concurrent, and consecutive events) and the limited ability to customize implementation. Here, we suggest a, to our knowledge, novel approach for detailed analysis of subcellular micro-Ca2+ events based on pixel-by-pixel denoising of confocal frame- and line-scan images. The algorithm enables spatiotemporally overlapping events (e.g., a Ca2+ spark occurring during the decaying phase of a Ca2+ wave) to be extracted so that various types of Ca2+ events can be detected at a pixel time level of precision. The method allows a nonconstant baseline to be estimated for each pixel, foregoing the need to subtract fluorescence background or apply self-ratio methods before image analysis. Furthermore, by using a clustering algorithm, identified single-pixel events are grouped into “physiologically relevant” Ca2+ signaling events spanning multiple pixels (sparks, waves, puffs, transients, etc.), from which spatiotemporal event parameters (e.g., full duration at half maximal amplitude, full width at half maximal amplitude, amplitude, wave speed, rise, and decay times) can be easily extracted. The method was implemented with cross-platform open source software, providing a comprehensive and easy-to-use graphical user interface enabling rapid line-scan images and rapid frame-scan image sequences (up to 150 frames/s) to be analyzed and repetitive Ca2+ events (Ca2+ sparks and Ca2+ puffs) originating from clusters of Ca2+ release channels located in the sarcoplasmic reticulum membrane (ryanodine receptors and inositol 1,4,5-trisphosphate receptors) of isolated cardiomyocytes to be examined with a high level of precision.  相似文献   

12.
13.
Larvae homozygous or hemizygous for the l(l) t435 mutation located within the early ecdysteroid puff 2B5, or carrying a deletion of the 2B5 band, die at the end of the third larval instar. In the salivary gland chromosomes of these larvae only intermoult puffs are detected. If these salivary glands are incubated in vitro with 20-OH ecdysone for 6 h the intermoult puff 68 C remains large, some early puffs (74EF and 75B) are induced to 30–40% of their normal size, other early (63F) and all late puffs (62E, 78D, 82F and 63E) are not induced at all. Puff 2B5 reaches its normal size but does not regress after 6h incubation with 20-OH ecdysone, as it does in normal stocks. The data obtained in this study show the existence of a locus (or loci) in the band (puff) 2B5 which is necessary for the normal response of the salivary gland chromosomes to the hormone 20-OH ecdysone.  相似文献   

14.
15.
16.
The autosomal salivary gland chromosome puffing patterns of Drosophila simulans are described and compared with the puffing patterns of the sibling species D. melanogaster. During the late third larval instar and the prepupal period the patterns of puffing activity of these two species are similar — approximately 50% of the puffs common to both species showing identical activities. The remaining puffs differ in their timing of activity, or in their mean sizes, or in both of these parameters. A number of puffs (14) found in D. simulans have not been regularly observed in the Oregon stock of D. melanogaster but are active in other D. melanogaster strains. One puff (46 A) of D. melanogaster was absent from D. simulans and forms a heterozygous puff in hybrids, when the homologous chromosomes are synapsed. When the homologues are asynapsed a puff at 46 A is restricted to the melanogaster homologue. The puff at 63E on chromosome arm 3L is considerably smaller in D. simulans than in D. melanogaster and this size difference is autonomous in hybrids. Other puffs not common to both species behave non-autonomously in the species hybrid, even when the homologous chromosomes are asynapsed.  相似文献   

17.
In salivary glands of yellow control stock the puffing pattern in the ecdysone-added artificial C46P medium was on the whole similar to that observed during larval development in vivo. However, underdevelopment of a series of late puffs and a delay in the regression of early puffs were observed. In addition a set of medium puffs not visible in vivo appeared. Late puffs differed from those developing in Grace medium.When salivary glands of homozygotes for the lethal dor lt187, a mutation that causes death in the third instar with no signs of ecdysone induction were incubated with ecdysterone, the development of puffs was restored, i.e., the puffing pattern of mutant cells in vitro practically did not differ from that in cells of the control stock. This implies that the dor lt187 lethal allele belongs to the class of ecdysone-deficient mutations.  相似文献   

18.
This study shows that homozygotes for different alleles of the lethal mutant, l(2)gl, differing in the time of death also vary in the state of their endocrine system and the puffing patterns of their salivary gland chromosomes. Homozygotes which die at the larval stage have underdeveloped prothoracic glands and normal corpora allata (CA); in those dying at the prepupal stage both the prothoracic glands and the CA are equally underdeveloped. — All the early third instar larval puffs (96–110 h., PS 1–2) develop in homozygotes; however, the reduction of some early larval puffs, normally occurring before pupariation or at puparium formation, is delayed. Some puffs are more developed than normal. — The differences in puffing patterns chiefly concerned puffs which normally appear 4–5 h before puparium formation and at puparium formation. In homozygotes lethal as larvae some of the puffs normally active at this time did not develop. However, along with some of the late larval puffs, there appeared many puffs characteristic of prepupae. — In homozygotes lethal as prepupae only the time and sequence of puff appearance was altered. Many late larval puffs were active in prepupae rather than in larvae, whereas some of the puffs, normally appearing in prepupae, were active in the larval stage.Accordingly, we propose to distinguish two groups of puff loci. 1) Hormone dependent puffs: These do not develop in larval lethals and are active only after puparium formation in pupariated lethals. 2) Autonomous puffs: Their appearance depends more on the time of development, than on hormonal background. It is suggested that the induction of hormone dependent puffs and of puparium formation is possible at low ecdysone levels, provided that the juvenile hormone level is also low.  相似文献   

19.
H. D. Berendes 《Chromosoma》1967,22(3):274-293
The hormone ecdysone induces a large number of changes in the puffing pattern of mid third instar larvae of Drosophila hydei. The pattern of changes occurring after experimental administration of the hormone are identical with those observed in normal development during a 6 hour period before puparium formation. After administration of the hormone a considerable number of puffs react with a change in activity within 15–20 min. During this period 3 puffs arise newly, 12 puffs show a strong increase in activity, 6 puffs show a less pronounced increase in activity and 12 puffs show a decrease in activity. At a period of 4–6 hours after administration of the hormone another 5 puffs arise newly. The effect of the hormone was identical in both in vivo and in vitro experiments. — Diameter measurements on several puffs reacting within 30 min with an increase in diameter showed that these puffs reacted simultaneously. Most of the puffs that showed a decrease in activity reacted with some delay. — A study of the effect of different hormone concentrations revealed that the kinetics of 4 puffs with respect to the relationship between concentration and puff size was identical over a range of concentrations from 33·10–5 to 33CU/l. Three of these puffs showed a reaction with even lower concentrations. Maximum puff size is attained by all puffs at a concentration of 33·10–4CU/l. Among the puffs studied no difference in their reaction threshold was found. — A study of the behavior of 5 puffs of the group reacting within 15–20 min and one of the group reacting after 4–6 hours in midintestine and Malpighian tubules revealed that these puffs showed the same reaction after injection of the hormone as observed in the salivary glands. — All puffs activated by administration of the hormone showed particularly strong uptake of tritiated uridine and accumulation of acidic protein. — It is concluded that the hormone ecdysone induces a pattern of changes in gene activity that is far more complex in Drosophila hydei than in Chironomus tentans.  相似文献   

20.
The patterns of puffing activity have been studied during the late larval and prepupal stages of Drosophila melanogaster. On the major salivary gland autosomes (chromosomes 2 and 3) 108 loci form puffs at some time during these developmental stages. The timing and pattern of activity of 83 of these puffs is found to be strictly dependent upon the age of the animals. Two major peaks in puffing activity occur. The first of these is at the time of puparium formation and the second in 8 hr. old prepupae. Both of these puffing peaks precede a moult by 4 hrs. 30 puffs are active before or at the time of both of these two moults. However, the sequence of appearance and regression of many of this group of puffs is different at the prepupal moult than at the pupal moult. 12 puffs occur only before or at the time of the prepupal moult and 13 puffs only before or at the time of the pupal moult. The functional significance of these periods of puffing activity is discussed and it is concluded that one function of this genetic activity in the salivary glands of metamorphosing Drosophila is the production of substances to be utilised during the histogenesis of the adult tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号