首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.  相似文献   

2.
Loss of primary cilia is frequently observed in tumour cells, including glioblastoma cells, and proposed to benefit tumour growth, but a causal link has not been established. Here, we show that CCRK (cell cycle‐related kinase) and its substrate ICK (intestinal cell kinase) inhibit ciliogenesis. Depletion of CCRK leads to accumulation of ICK at ciliary tips, altered ciliary transport and inhibition of cell cycle re‐entry in NIH3T3 fibroblasts. In glioblastoma cells with deregulated high levels of CCRK, its depletion restores cilia through ICK and an ICK‐related kinase MAK, thereby inhibiting glioblastoma cell proliferation. These results indicate that inhibition of ciliogenesis might be a mechanism used by cancer cells to provide a growth advantage.  相似文献   

3.
Linear electron transport depends on balanced excitation of photosystem I and II. Far‐red light preferentially excites photosystem I (PSI) and can enhance the photosynthetic efficiency when combined with light that over‐excites photosystem II (PSII). The efficiency of different wavelengths of far‐red light exciting PSI was quantified by measuring the change in quantum yield of PSII (ΦPSII) of lettuce (Lactuca sativa) under red/blue light with narrowband far‐red light added (from 678 to 752 nm, obtained using laser diodes). The ΦPSII of lettuce increased with increasing wavelengths of added light from 678 to 703 nm, indicating longer wavelengths within this region are increasingly used more efficiently by PSI than by PSII. Adding 721 nm light resulted in similar ΦPSII as adding 703 nm light, but ΦPSII tended to decrease as wavelength increased from 721 to 731 nm, likely due to decreasing absorptance and low photon energy. Adding 752 nm light did not affect ΦPSII. Leaf chlorophyll fluorescence light response measurements showed lettuce had higher ΦPSII under halogen light (rich in far‐red) than under red/blue light (which over‐excites PSII). Far‐red light is more photosynthetically active than commonly believed, because of its synergistic interaction with light of shorter wavelengths.  相似文献   

4.
Retraction: The following article from Cell Biochemistry and Function, "Notch activation Is regulated by interaction between hCLP46 and the chaperone protein calnexin" by Xiaoqin Feng and Lixin Liu, published online on 3 April 2012 in Wiley Online Library (www.wileyonlinelibrary.com), has been retracted with agreement from the authors, the journal Editor, Nigel Loveridge, and John Wiley & Sons Ltd. The retraction has been agreed because the paper was submitted without approval from the co-author, Lixin Liu, and contains data that requires further experimentation in order to support the conclusions fully. Reference Feng, X. and Liu, L. (2012), Notch activation is regulated by an interaction between hCLP46 and chaperone protein calnexin. Cell Biochem. Funct. doi: 10.1002/cbf.2825.  相似文献   

5.
Genetic analysis of the Drosophila larval neuromuscular junction has identified some of the key molecules that regulate synaptic plasticity. Among these molecules, the expression level of Fasciclin II (FasII), a homophilic cell adhesion molecule, is critically important for determining the final form of the neuromuscular junction. Genetic reduction of FasII expression by 50% yields more elaborate nerve terminals, while a greater reduction in expression, to 10% of wild‐type, yields a substantial reduction in the nerve terminal morphology. Importantly, regulation of FasII expression seems to be the final output for several genetic manipulations that transform NMJ morphology. In an effort to understand the importance of this regulatory pathway in the normal animal, we have undertaken studies to identify environmental cues that might be important for initiating FasII‐dependent changes in synaptic plasticity. Here we report on the relationship between larval population density and synaptic morphology, synaptic strength, and FasII levels. We raised Drosophila larvae under conditions of increasing population density and found an inverse exponential relationship between population density and the number of synaptic boutons, the number of branches, and the length of branches. We also observed population‐dependent alteration in FasII levels, with lower densities having less FasII at the synapse. The correlation between density and morphological change was abrogated in larvae constitutively expressing FasII, and in wild‐type larvae grown on soft culture medium. Together these data show that environmental cues can induce regulation of FasII. Interestingly, however, the quantal content of synaptic transmission was not different among the different population densities, suggesting that other factors contribute to maintaining synaptic strength at a defined level. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

6.
7.
8.
Activation of the serine/threonine kinase Akt/PKB positively impacts on three cellular processes relevant to tumor progression: proliferation, survival, and cell size/growth. Using a three-dimensional culture model of MCF-10A mammary cells, we have examined how Akt influences the morphogenesis of polarized epithelial structures. Activation of a conditionally active variant of Akt elicits large, misshapen structures, which primarily arise from the combined effects of Akt on proliferation and cell size. Importantly, Akt activation amplifies proliferation during the early stages of morphogenesis, but cannot overcome signals suppressing proliferation in late-stage cultures. Akt also cooperates with oncoproteins such as cyclin D1 or HPV E7 to promote proliferation and morphogenesis in the absence of growth factors. Pharmacological inhibition of the Akt effector, mammalian target of rapamycin (mTOR), with rapamycin prevents the morphological disruption elicited by Akt activation, including its effect on cell size and number, and the cooperative effect of Akt on oncogene-driven proliferation, indicating that mTOR function is required for the multiple biological effects of Akt activation during morphogenesis.  相似文献   

9.
SIRT1, a nicotinamide adenine dinucleotide (NAD+)‐dependent histone/protein deacetylase, has been extensively studied recently for its critical role in the regulation of physiology, calorie restriction and aging. Studies on laboratory mice showed that expression of SIRT1 can be induced by starvation in a p53‐dependent manner and requires the p53‐binding sites present in the Sirt1 promoter. However, it remains to be determined whether these findings based on rodents apply to human beings. In this paper, we characterized a putative p53‐binding element in the human SIRT1 promoter that might be required for the up‐regulation of SIRT1 in response to nutritional stress. The p53‐binding site in the promoter of human SIRT1 is more deviant from the consensus sequence than the corresponding sequence in the mouse Sirt1. There is a C to A change at the second half site in human SIRT1, thus disrupting the core‐binding element CWWG in the canonical RRRCWWGYYY. To test whether such sequence change would affect its binding with p53 and the SIRT1 expression under stress, we studied various human cell lines with different p53 status and cells with ectopic expression of functionally distinct p53. We found that serum withdrawal also up‐regulates human SIRT1 gene expression in a p53‐dependent manner and that the p53‐binding element in SIRT1 is required for the up‐regulation. Thus, the mechanism responsible for the regulation of SIRT1 expression by p53 is conserved between mice and human beings.  相似文献   

10.
11.
p63 belongs to a member of the tumor suppressor protein p53 family. Due to alternative promoter usage, two types of p63 proteins are produced. The ΔNp63 isoform lacks the N‐terminal transactivation domain and is thought to antagonize TAp63 and p53 in target gene regulation. ΔNp63 has been found to be overexpressed in numerous human squamous cell carcinomas, including nasopharyngeal carcinoma (NPC). However, the role of ΔNp63 overexpression in NPC pathogenesis has not been clear. In this study, we use a ΔNp63 overexpressing human NPC cell line (NPC‐076) to explore the possible roles of ΔNp63 in cell proliferation and cell‐cycle regulation. We found that the proliferation of NPC‐076 cell is greatly suppressed when the overexpressed ΔNp63 is silenced by specific ΔNp63 siRNA. Further studies show that ΔNp63 silencing results in the upregulation of CKIs, including p27kip1 and p57kip2 in both mRNA and protein levels. Cell‐cycle analysis shows that ΔNp63 silencing also results in an increased G1 phase cell and apoptotic cell population. Our findings indicate that ΔNp63 plays important roles in the regulation of NPC‐076 cell‐cycle progression, and may play a role in the maintenance of NPC‐076 tumor cell phenotype. J. Cell. Physiol. 219: 117–122, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Klebsiella pneumoniae is an important cause of community‐acquired and nosocomial pneumonia. Subversion of inflammation is essential for pathogen survival during infection. Evidence indicates that K. pneumoniae infections are characterized by lacking an early inflammatory response although the molecular bases are currently unknown. Here we unveil a novel strategy employed by a pathogen to counteract the activation of inflammatory responses. K. pneumoniae attenuates pro‐inflammatory mediators‐induced IL‐8 secretion. Klebsiella antagonizes the activation of NF‐κB via the deubiquitinase CYLD and blocks the phosphorylation of mitogen‐activated protein kinases (MAPKs) via the MAPK phosphatase MKP‐1. Our studies demonstrate that K. pneumoniae has evolved the capacity to manipulate host systems dedicated to control the immune balance. To exert this anti‐inflammatory effect, Klebsiella engages NOD1. In NOD1 knock‐down cells, Klebsiella neither induces the expression of CYLD and MKP‐1 nor blocks the activation of NF‐κB and MAPKs. Klebsiella inhibits Rac1 activation; and inhibition of Rac1 activity triggers a NOD1‐mediated CYLD and MKP‐1 expression which in turn attenuates IL‐1β‐induced IL‐8 secretion. A capsule (CPS) mutant does not attenuate the inflammatory response. However, purified CPS neither reduces IL‐1β‐induced IL‐8 secretion nor induces the expression of CYLD and MKP‐1 thereby indicating that CPS is necessary but not sufficient to attenuate inflammation.  相似文献   

13.
Vascular endothelial cell (VEC) senescence is considered an early event in the development of atherosclerotic lesions. Stressful stimuli, in particular oxidative stress, have been linked to premature senescence in the vasculature. Foam cells are a major source of reactive oxygen species and may play a role in the induction of VEC senescence; hence, we investigated their involvement in the induction of VEC senescence in a co‐culture transwell system. Primary bovine aortic endothelial cells, exposed to the secretome of THP‐1 monocyte‐derived foam cells, were analysed for the induction of senescence. Senescence associated β‐galactosidase activity and the expression of p16 and p21 were increased, whereas phosphorylated retinoblastoma protein was reduced. This senescent phenotype was mediated by 4‐hydroxnonenal (4‐HNE), a lipid peroxidation product secreted from foam cells; scavenging of 4‐HNE in the co‐culture medium blunted this effect. Furthermore, both foam cells and 4‐HNE increased the expression of the pro‐oxidant thioredoxin‐interacting protein (TXNIP). Molecular manipulation of TXNIP expression confirmed its involvement in foam cell‐induced senescence. Previous studies showed that peroxisome proliferator‐activated receptor (PPAR)δ was activated by 4‐hydroalkenals, such as 4‐HNE. Pharmacological interventions supported the involvement of the 4‐HNE‐PPARδ axis in the induction of TXNIP and VEC senescence. The association of TXNIP with VEC senescence was further supported by immunofluorescent staining of human carotid plaques in which the expression of both TXNIP and p21 was augmented in endothelial cells. Collectively, these findings suggest that foam cell‐released 4‐HNE activates PPARδ in VEC, leading to increased TXNIP expression and consequently to senescence.  相似文献   

14.
Changes in mitochondrial function with age vary between different muscle types, and mechanisms underlying this variation remain poorly defined. We examined whether the rate of mitochondrial protein turnover contributes to this variation. Using heavy label proteomics, we measured mitochondrial protein turnover and abundance in slow‐twitch soleus (SOL) and fast‐twitch extensor digitorum longus (EDL) from young and aged mice. We found that mitochondrial proteins were longer lived in EDL than SOL at both ages. Proteomic analyses revealed that age‐induced changes in protein abundance differed between EDL and SOL with the largest change being increased mitochondrial respiratory protein content in EDL. To determine how altered mitochondrial proteomics affect function, we measured respiratory capacity in permeabilized SOL and EDL. The increased mitochondrial protein content in aged EDL resulted in reduced complex I respiratory efficiency in addition to increased complex I‐derived H2O2 production. In contrast, SOL maintained mitochondrial quality, but demonstrated reduced respiratory capacity with age. Thus, the decline in mitochondrial quality with age in EDL was associated with slower protein turnover throughout life that may contribute to the greater decline in mitochondrial dysfunction in this muscle. Furthermore, mitochondrial‐targeted catalase protected respiratory function with age suggesting a causal role of oxidative stress. Our data clearly indicate divergent effects of age between different skeletal muscles on mitochondrial protein homeostasis and function with the greatest differences related to complex I. These results show the importance of tissue‐specific changes in the interaction between dysregulation of respiratory protein expression, oxidative stress, and mitochondrial function with age.  相似文献   

15.
Insulin is a peptide hormone produced by beta cells of the pancreas. The roles of insulin in energy metabolism have been well studied, with most of the attention focused on glucose utilization, but the roles of insulin in cell proliferation and differentiation remain unclear. In this study, we observed for the first time that 10 nmol/L insulin treatment induces cell proliferation and cardiac differentiation of P19CL6 cells, whereas 50 and 100 nmol/L insulin treatment induces P19CL6 cell apoptosis and blocks cardiac differentiation of P19CL6 cells. By using real‐time polymerase chain reaction (PCR) and Western blotting analysis, we found that the mRNA levels of cyclin D1 and α myosin heavy chain (α‐MHC) are induced upon 10 nmol/L insulin stimulation and inhibited upon 50/100 nmol/L insulin treatment, whereas the mRNA levels of BCL‐2‐antagonist of cell death (BAD) exists a reverse trend. The similar results were observed in P19CL6 cells expressing GATA‐6 or peroxisome proliferator‐activated receptor α (PPARα). Our results identified the downstream targets of insulin, cyclin D1, BAD, α‐MHC, and GATA‐4, elucidate a novel molecular mechanism of insulin in promoting cell proliferation and differentiation.  相似文献   

16.
p63, more specifically its ΔNp63α isoform, plays essential roles in squamous cell carcinomas (SCCs), yet the mechanisms controlling its nuclear transport remain unknown. Nucleoporins (NUPs) are a family of proteins building nuclear pore complexes (NPC) and mediating nuclear transport across the nuclear envelope. Recent evidence suggests a cell type‐specific function for certain NUPs; however, the significance of NUPs in SCC biology remains unknown. In this study, we show that nucleoporin 62 (NUP62) is highly expressed in stratified squamous epithelia and is further elevated in SCCs. Depletion of NUP62 inhibits proliferation and augments differentiation of SCC cells. The impaired ability to maintain the undifferentiated status is associated with defects in ΔNp63α nuclear transport. We further find that differentiation‐inducible Rho kinase reduces the interaction between NUP62 and ΔNp63α by phosphorylation of phenylalanine–glycine regions of NUP62, attenuating ΔNp63α nuclear import. Our results characterize NUP62 as a gatekeeper for ΔNp63α and uncover its role in the control of cell fate through regulation of ΔNp63α nuclear transport in SCC.  相似文献   

17.
Activation of the sympatho‐β‐adrenergic receptors (β‐ARs) system is a hallmark of heart failure, leading to fibrosis and arrhythmias. Connexin 43 (Cx43) is the most abundant gap junctional protein in the myocardium. Current knowledge is limited regarding Cx43 remodelling in diverse cell types in the diseased myocardium and the underlying mechanism. We studied cell type‐dependent changes in Cx43 remodelling due to β‐AR overactivation and molecular mechanisms involved. Mouse models of isoproterenol stimulation or transgenic cardiomyocyte overexpression of β2‐AR were used, which exhibited cardiac fibrosis and up‐regulated total Cx43 abundance. In both models, whereas Cx43 expression in cardiomyocytes was reduced and more laterally distributed, fibroblasts exhibited elevated Cx43 expression and enhanced gap junction communication. Mechanistically, activation of β2‐AR in fibroblasts in vitro elevated Cx43 expression, which was abolished by the β2‐antagonist ICI‐118551 or protein kinase A inhibitor H‐89, but simulated by the adenylyl cyclase activator forskolin. Our in vitro and in vivo data showed that β‐AR activation‐induced production of IL‐18 sequentially stimulated Cx43 expression in fibroblasts in a paracrine fashion. In summary, our findings demonstrate a pivotal role of β‐AR in mediating distinct and cell type‐dependent changes in the expression and distribution of Cx43, leading to pathological gap junction remodelling in the myocardium.  相似文献   

18.
19.
Monocyte fusion into osteoclasts, bone resorbing cells, plays a key role in bone remodeling and homeostasis; therefore, aberrant cell fusion may be involved in a variety of debilitating bone diseases. Research in the last decade has led to the discovery of genes that regulate osteoclast fusion, but the basic molecular and cellular regulatory mechanisms underlying the fusion process are not completely understood. Here, we reveal a role for Dyrk2 in osteoclast fusion. We demonstrate that Dyrk2 down regulation promotes osteoclast fusion, whereas its overexpression inhibits fusion. Moreover, Dyrk2 also promotes the fusion of foreign‐body giant cells, indicating that Dyrk2 plays a more general role in cell fusion. In an earlier study, we showed that fusion is a cell heterotypic process initiated by fusion‐founder cells that fuse to fusion‐follower cells, the latter of which are unable to initiate fusion. Here, we show that Dyrk2 limits the expansion of multinucleated founder cells through the suppression of the fusion competency of follower cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号