首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of hen egg white lysozyme and the inorganic salt sodium thiocyanate on the integrity of Streptococcus mutans BHT were studied by transmission electron microscopy. Both control cells and cells exposed to NaSCN possessed thick outer cell walls and densely staining inner cell walls juxtaposed to the plasma membranes. In the presence of NaSCN, however, the S. mutans BHT nucleoid was coagulated into thick electron-dense filaments. Exposure of S. mutans BHT to 150 μg of hen egg white lysozyme per ml resulted in the progressive destruction of both the cell walls and the plasma membranes. The enzyme appeared to affect the region of the cell wall septum, and exposure to 150 μg of hen egg white lysozyme per ml for as short a time as 10 min resulted in visible morphological cell wall alterations. At 30 min, ultrastructural observations revealed that the majority of the cells were in the process of expelling a portion of their cytoplasmic contents from the septal and other regions of the cells at the time of fixation. After 3 h of incubation in the presence of this high lysozyme concentration, gelled protoplasmic masses, which were free from the cells, were evident. In addition, extensive damage to the outer and inner cell walls and to the plasma membranes was apparent, although the cells maintained their shape. On some areas of the cell surface, the outer cell wall and plasma membrane were completely absent, whereas at other locations the outer cell wall was either split away from the inner cell wall and plasma membrane or distended from an area free of inner cell wall and plasma membrane. Upon addition of NaSCN to the hen egg white lysozyme-treated cells, both the gelled protoplasmic masses and the damaged cells exhibited an exploded appearance and existed as membrane ghosts, cell wall fragments, or dense aggregates of cytoplasmic components. The effects of a low lysozyme concentration (22.5 μg/ml) on S. mutans morphology were less pronounced at short incubation times (i.e., 10 and 30 min) than those that were observed with a high enzyme concentration; however, breaks in the cell walls and dissolution of the plasma membranes with resulting cell lysis were visible after a prolonged (3-h) incubation and after subsequent addition of NaSCN.  相似文献   

2.
The pH dependences of electrokinetic potentials (EKP) of the cells of two Escherichia coli K-12 strains (D21 and JM 103) with known lipopolysaccharide (LPS) core composition have been determined by the method of microelectrophoresis. At pH 4.6–5.2, the negative surface charge of the cells with Re core LPS was reliably higher. It was shown that the interaction of bacteria with lysozyme results in a decrease of optical density of suspensions due to higher sensitivity of the cells with complete LPS core to hypotonic shock. LPS release from bacterial cell wall depended also on bacterial LPS core composition and increased with LPS core extension. Electrokinetic measurements and the study of the interaction of cells with lysozyme suggest that higher negative surface charge of E. coli JM 103 cells (Re type LPS) is associated with higher quantity and density of LPS packing in the cell wall as compared with the cells of E. coli D21 (Ra type LPS).  相似文献   

3.
Lysozyme fails to penetrate through the outer membrane of stationary phase cells of Escherichia coli when it is simply added to suspensions of plasmolyzed cells. Lysozyme penetrates the outer membrane only when these cells are exposed to a mild osmotic shock in the presence of EDTA and lysozyme.In the presence of Mg2+, the outer membrane is stabilized sufficiently so that there is no lysozyme penetration during osmotic shock. If Mg2+ is added after an osmotic shock has been used to cause lysozyme to penetrate a destabilized outer membrane, the outer membrane is stabilized once again. In this case however, cells are converted to spheroplasts by the lysozyme which has gained access to the murein layer prior to the addition of Mg2+. Mg2+ stabilizes the outer membranes of these spheroplasts sufficiently so that they remain immune to lysis even in the absence of osmotic stabilizers such as sucrose.These results are discussed in terms of current information on the structure of the murein layer and the outer membrane.  相似文献   

4.
Shewanella putrefaciens, a gram-negative, facultative anaerobe, is active in the cycling of iron through its interaction with Fe (hydr)oxides in natural environments. Fine-grained Fe precipitates that are attached to the outer membranes of many gram-negative bacteria have most often been attributed to precipitation and growth of the mineral at the cell surface. Our study of the sorption of nonbiogenic Fe (hydr)oxides revealed, however, that large quantities of nanometer-scale ferrihydrite (hydrous ferric oxide), goethite (α-FeOOH), and hematite (α-Fe2O3) adhered to the cell surface. Attempts to separate suspensions of cells and minerals with an 80% glycerin cushion proved that the sorbed minerals were tightly attached to the bacteria. The interaction between minerals and cells resulted in the formation of mineral-cell aggregates, which increased biomass density and provided better sedimentation of mineral Fe compared to suspensions of minerals alone. Transmission electron microscopy observations of cells prepared by whole-mount, conventional embedding, and freeze-substitution methods confirmed the close association between cells and minerals and suggested that in some instances, the mineral crystals had even penetrated the outer membrane and peptidoglycan layers. Given the abundance of these mineral types in natural environments, the data suggest that not all naturally occurring cell surface-associated minerals are necessarily formed de novo on the cell wall.  相似文献   

5.
The dye methylene blue can be taken up by dead or severely damaged cells, but not by living cells. Based on this fact, a method was devised which permits quantitative determinations of injured cells in populations of microorganisms such asSaccharomyces cerevisiae, Rhodotorula glutinis, andEuglena gracilis. The percentage of damaged cells was determined by measuring, at 664 nm, the optical density of cell suspensions pretreated with 0.15 mM methylene blue for 6 min, a condition that does not affect cell integrity as determined by oxygen consumption and release of potassium ions. This technique is faster and simpler than the classical dye-exclusion and plate-counting methods.  相似文献   

6.
Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. We characterized enzymes that can digest the cell wall and weaken this defense for the purpose of protoplasting or lipid extraction. A growth inhibition screen demonstrated that chitinase, lysozyme, pectinase, sulfatase, β-glucuronidase, and laminarinase had the broadest effect across the various Chlorella strains tested and also inhibited Nannochloropsis and Nannochloris strains. Chlorella is typically most sensitive to chitinases and lysozymes, both enzymes that degrade polymers containing N-acetylglucosamine. Using a fluorescent DNA stain, we developed rapid methodology to quantify changes in permeability in response to enzyme digestion and found that treatment with lysozyme in conjunction with other enzymes has a drastic effect on cell permeability. Transmission electron microscopy of enzymatically treated Chlorella vulgaris indicates that lysozyme degrades the outer surface of the cell wall and removes hair-like fibers protruding from the surface, which differs from the activity of chitinase. This action on the outer surface of the cell causes visible protuberances on the cell surface and presumably leads to the increased settling rate when cells are treated with lysozyme. We demonstrate radical ultrastructural changes to the cell wall in response to treatment with various enzyme combinations which, in some cases, causes a greater than twofold increase in the thickness of the cell wall. The enzymes characterized in this study should prove useful in the engineering and extraction of oils from microalgae.  相似文献   

7.
Infections with Gram-negative bacteria form an increasing risk for human health due to antibiotic resistance. Our immune system contains various antimicrobial proteins that can degrade the bacterial cell envelope. However, many of these proteins do not function on Gram-negative bacteria, because the impermeable outer membrane of these bacteria prevents such components from reaching their targets. Here we show that complement-dependent formation of Membrane Attack Complex (MAC) pores permeabilizes this barrier, allowing antimicrobial proteins to cross the outer membrane and exert their antimicrobial function. Specifically, we demonstrate that MAC-dependent outer membrane damage enables human lysozyme to degrade the cell wall of E. coli. Using flow cytometry and confocal microscopy, we show that the combination of MAC pores and lysozyme triggers effective E. coli cell wall degradation in human serum, thereby altering the bacterial cell morphology from rod-shaped to spherical. Completely assembled MAC pores are required to sensitize E. coli to the antimicrobial actions of lysozyme and other immune factors, such as Human Group IIA-secreted Phospholipase A2. Next to these effects in a serum environment, we observed that the MAC also sensitizes E. coli to more efficient degradation and killing inside human neutrophils. Altogether, this study serves as a proof of principle on how different players of the human immune system can work together to degrade the complex cell envelope of Gram-negative bacteria. This knowledge may facilitate the development of new antimicrobials that could stimulate or work synergistically with the immune system.  相似文献   

8.
Helveticin-M, a novel Class III bacteriocin produced by Lactobacillus crispatus exhibited an antimicrobial activity against Staphylococcus aureus, S. saprophyticus, and Enterobacter cloacae. To understand how Helveticin-M injured target cells, Helveticin-M was cloned and heterologously expressed in Escherichia coli. Subsequently, the cell wall organization and cell membrane integrity of target cells were determined. The mechanism of cellular damage differed according to bacterial species. Based on morphology analysis, Helveticin-M disrupted the cell wall of Gram-positive bacteria and disorganized the outer membrane of Gram-negative bacteria, therefore, altering surface structure. Helveticin-M also disrupted the inner membrane, as confirmed by leakage of intracellular ATP from cells and depolarization of membrane potential of target bacteria. Based on cell population analysis, Helveticin-M treatment caused the increase of cell membrane permeability, but the cytosolic enzymes were not influenced, indicating that it was the sublethal injury. Therefore, the mode of Helveticin-M action is bacteriostatic rather than bactericidal.  相似文献   

9.
When cells of a marine pseudomonad were washed and suspended in 0.5 m sucrose, they retained their rod shape, but thin sections, when examined in an electron microscope, revealed that the outer layer of the cell wall had separated a considerable distance from the cytoplasmic membrane. Treatment of such cells with lysozyme alone produced no obvious change, but treatment with ethylenediaminetetraacetic acid (EDTA) alone caused the outer wall to disappear. A combination of EDTA and lysozyme resulted in the rapid formation of spheres essentially free from hexosamine and indistinguishable from protoplasts of gram-positive bacteria. When cells were washed with 0.5 m NaCl and then suspended in 0.5 m sucrose, they also retained their rod shape, but in this case the outer layer separated from the cells completely and could be recovered from the suspending medium. Such cells were converted to protoplasts by the action of lysozyme alone. Cells washed and finally suspended in 0.5 m NaCl, when treated with EDTA and lysozyme, slowly became spherical. Thin sections revealed typical spheroplasts of gram-negative bacteria in which the outer wall remained intact. Protoplasts took up alpha-aminoisobutyric acid by a Na(+)-dependent process.  相似文献   

10.
At the position of insertion of the flagellum into the Gram-negative bacterial cell envelope, a specialized membrane differentiation has been observed by electron microscopy. This structure, termed concentric membrane rings, is harboured on the under-side of the outer membrane of Spirillum serpens, and forms a plate-like array of up to seven rings (diameter 90 nm) and an interior supporting collar. The concentric membrane rings are sensitive to proteolytic digestion, but are lysozyme and phospholipase resistant. The structures are disrupted by ionic detergents, yet resistant to the action of non-ionic detergents. A model integrating the basal organelle of the bacterial flagellum and the outer membrane of the cell wall is presented.  相似文献   

11.
George C. Papageorgiou 《BBA》1977,461(3):379-391
On treating the blue-green alga Anacystis nidulans with dimethylsuberimidate up to 70% of the free NH2 of the photosynthetic membrane is amidinated, and presumably inter- and intramolecular cross-links are established in the membrane proteins. Amidination destroys the ability of A. nidulans to photoreduce HCO3? but leaves the photochemical activities of Photosystems II and I nearly intact. With added electron acceptors, photosynthetic O2 evolution can be demonstrated both with permeable cells (permeaplasts) prepared by digestion of the cell wall of dimethylsuberimidate-reacted A. nidulans with lysozyme, as well as with heavy membrane particles (36 000 × g) prepared from dimethylsuberimidate-reacted cells.Permeaplasts prepared from dimethylsuberimidate-reacted cells resist damage in hypoosmotic medium, whereas those prepared from unreacted cells are induced to release C-phycocyanin. On the other hand, the former are inactivated more easily by heat stress than the latter. On this basis, it is concluded that cross-linking with dimethylsuberimidate confers functional instability to photosynthetic membranes.  相似文献   

12.
The pH dependences of electrokinetic potentials (EKP) of the cells of two Escherichia coli K-12 strains (D21 and JM 103) with known lipopolysaccharide (LPS) core composition have been determined by the method of microelectrophoresis. At pH 4.6-5.2, the negative surface charge of the cells with Re core LPS was reliably higher. It was shown that the interaction of bacteria with lysozyme results in a decrease of optical density of suspensions due to higher sensitivity of the cells with complete LPS core to hypotonic shock. LPS release from bacterial cell wall depended also on bacterial LPS core composition and increased with LPS core extension. Electrokinetic measurements and the study of the interaction of cells with lysozyme suggest that higher negative surface charge of E. coli JM 103 cells (Re type LPS) is associated with higher quantity and density of LPS packing in the cell wall as compared with the cells of E. coli D21 (Ra type LPS).  相似文献   

13.
The quantification of metabolite leakage from damaged mammalian cells to the surrounding medium is of high interest for the processing of samples for metabolomic analysis. It is also of relevance to know the typical time span which is required for a promoted metabolite release through a selectively permeabilized cell membrane. The real-time observation of such a process is difficult since small metabolites cannot be observed directly by optical methods and other more indirect assays can disturb the metabolite concentration itself. However, the diffusion based loss of metabolites from the cytoplasm can be predicted on the basis of reference measurements taken from an easy-to-detect molecule with known diffusion coefficient. In this work, we use green fluorescent protein (GFP) as a marker and model its release from damaged cells using the finite-element method. A correlation between the disrupted membrane area fraction, A d , the distribution of membrane ruptures and the rate of GFP efflux, k e , has been established. k e has been determined experimentally for Chinese hamster ovary cells, which have been damaged mechanically by passage through a micronozzle geometry in a microfluidic system. The immediate GFP release downstream of the micronozzles has been observed in real-time and the corresponding membrane damage has been predicted. On this basis, we calculated the expected times required for the drainage of freely diffusable cytosolic glucose and found a loss of ??90% within 1 s for a disrupted membrane area fraction of ??5%. Hence, even minimal membrane damage would lead to a rapid loss of cytosolic metabolites by diffusion unless membrane resealing processes take place.  相似文献   

14.
Fusarium oxysporum includes nonpathogenic strains and pathogenic strains that can induce necrosis or tracheomycosis in plants. The objective of this study was to compare the abilities of a pathogenic strain (Foln3) and a nonpathogenic strain (Fo47) to colonize flax roots and to induce early physiological responses in flax cell culture suspensions. Both strains colonized the outer cortex of the root; however, plant defense reactions, i.e., the presence of wall appositions, osmiophilic material, and collapsed cells, were less frequent and less intense in a root colonized by Foln3 than by Fo47. Early physiological responses were measured in flax cell suspensions confronted with germinated microconidia of both strains. Both pathogenic (Foln3) and nonpathogenic strains (Fo47) triggered transient H2O2 production in the first few minutes of the interaction, but the nonpathogenic strain also induced a second burst 3 h postinoculation. Ca2+ influx was more intense in cells inoculated with Fo47 than in cells inoculated with Foln3. Similarly, alkalinization of the extracellular medium was higher with Fo47 than with Foln3. Inoculation of the fungi into flax cell suspensions induced cell death 10 to 20 h postinoculation, with a higher percentage of dead cells observed with Fo47 than with Foln3 beginning at 14 h. This is the first report showing that early physiological responses of flax cells can be used to distinguish pathogenic and nonpathogenic strains of the soil-borne fungus F. oxysporum.  相似文献   

15.
An electron microscope study of the myxobacterium Chondrococcus columnaris has revealed the following structures in the peripheral layers of the cells: (1) a plasma membrane, (2) a single dense layer (probably the mucopeptide component of the cell wall), (3) peripheral fibrils, (4) an outer membrane, and (5) a material coating the surfaces of the cells which could be stained with the dye ruthenium red.The ruthenium red-positive material is probably an acid mucopolysaccharide and may be involved in the adhesive properties of the cells. The outer membrane and plasma membrane both have the appearance of unit membranes: an electron-translucent layer sandwiched between two electron-opaque layers. The peripheral fibrils span the gap between the outer membrane and the mucopeptide layer, a distance of about 100 A, and run parallel to each other along the length of the cell. The fibrils appear to be continuous across the ends of the cells. The location of these fibrillar structures suggests that they may play a role in the gliding motility of these bacteria.  相似文献   

16.
The apparent affinity of photosynthesis for inorganic carbon in Anabaena variabilis strain M-3 increased during the course of adaptation from high to low CO2 concentration (5% and 0.03% v/v CO2 in air, respectively). This was attributed to an increased ability of the cells to accumulate inorganic carbon during the course of adaptation to low CO2 conditions. The release of phycobiliproteins was used to evaluate the sensitivity of the cells to lysozyme treatment followed by osmotic shock. High CO2-grown cells were more sensitive to this treatment than were low CO2 ones. The efflux of inorganic carbon from cells preloaded with radioactive bicarbonate is faster in high than it is in low CO2-adapted cells. It is postulated that the cell wall or membrane components undergo changes during the course of adaptation to low CO2 conditions. This is supported by electron micrographs showing differences in the cell wall appearance between high and low CO2-grown cells. The increasing ability to accumulate HCO3 and the lessened sensitivity to lysozyme during adaptation to low CO2 conditions depends on protein synthesis. The increase in affinity for inorganic carbon during the adaptation to low CO2 conditions is severely inhibited by the presence of spectinomycin. Incubation in the light significantly lessens the time required for the adaptation to low CO2 conditions.  相似文献   

17.
《Analytical biochemistry》1987,164(2):320-330
This paper describes a highly efficient procedure for the quantitative conversion of Escherichia coli cells to spheroplasts utilizing 100- to 1000-fold less lysozyme than in the most efficient procedures used to date. The resulting spheroplasts have intact outer and inner membranes and are fully viable on agar plates. The spheroplasting procedure is a refinement of earlier procedures and enables regulation of the translocation of minute amounts of lysozyme into the periplasmic space of E. coli cells, based on a Ca2+ pretreatment, an EDTA incubation, and a heat shock. About 1000 lysozyme molecules per cell are sufficient for complete spheroplast formation (>98%). Some of the characteristics of these spheroplasts prior to and after recovery are described. It is anticipated that such viable spheroplasts will be useful in the study of fusion of gram-negative cells and other membrane systems, in the introduction of DNA and proteins into refractory gram-negative cell, and in investigating envelope-related synthesis and assembly processes.  相似文献   

18.
Freeze-etched cells of Bacillus subtilis have been studied with the electron microscope. The outer surface of the plasma membrane, i.e. the side facing the cell wall, is covered with numerous granules and short strands, each measuring approximately 50 A in diameter. These strands are occasionally seen to enter the cell wall. The inner surface of the plasma membrane, i.e. the side facing the cytoplasm, appears to be sparsely dotted with small particles measuring about 50 A. The envelope of mesosomes differs from the plasma membrane. Blunt protrusions arise from its outer surface; the inner surface appears smooth. Stalked particles, as described by other investigators after negative staining with phosphotungstic acid, were not observed on any membrane surface in our material. Preparations were also made of specimens prefixed in osmium tetroxide prior to freeze-etching. Under these conditions the bacterial membranes appeared to be surprisingly well preserved. In contrast to directly frozen, unfixed cells, some osmium tetroxide-fixed preparations showed a differentiation in cytoplasm and nucleoplasm, which made it possible to observe the close association of the mesosome with the latter.  相似文献   

19.
In inhomogeneous (static) magnetic fields close contact between ‘magnetic’ human erythrocytes was established. The cells were made magnetic by incubating them in a medium containing small Fe3O4-particles which adsorbed to the outer membrane surface. Fusion was induced by applying two electric field pulses (field strength: 8.5 kV · cm?1; duration: 60 μs) to the magnetically collected cells. This procedure allowed the use of electrically conductive media (3 · 10?1 Ω?1 · cm?1). Fusion of red blood cells occured very often. If cell suspensions of high density were used fusion resulted in the formation of giant red blood cells with osmotically intact membranes.  相似文献   

20.
The morphology of dried Candida lipolytica yeast suspended in aqueous solutions (H2O, 0.4% NaOH, 2N HCl, and 6N HCl) and organic solvents (95% alcohol and acetone) was studied using a scanning electron microscope (SEM) and an optical microscope. The effect of high-pressure homogenization on cell-wall structure and cell clumps was also determined. The protein extractability, sedimentation property, and viscosity of cells subjected to different mechanical and chemical treatments were also investigaged. The dried yeast cells were in a spherical agglomeration consisting of 100s of closely bound cells. The clump was resistant to water, aqueous 2N HCl solution at 25°C, 95% alcohol and acetone, but vulnerable to 6N HCl, aqueous 0.4% NaOH solution, and homogenization. The homogenization of the cell suspension not only broke the clump but also cracked the cell-wall structure. The aqueous alkaline solution could have weakened the cell wall and increased the solubility of the protein released through the cracks in the cell wall. The destruction of the agglomeration and the cell-wall structure increased the hydration of the cell and thereby increased the stability of the suspension. The sedimentation and the viscosity of the cell suspension corresponded to the morphological changes and the extractability of protein in the cell suspensions with different treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号