首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vulnerability of natural communities to invasion by non‐native plants has been linked to factors such as recent disturbance and high resource availability, suggesting that recently restored habitats may be especially invasible. Because non‐native plants can interfere with restoration goals, monitoring programs should anticipate which sites are most susceptible to invasion and which species are likely to become problematic at a site. Restored sites of larger area and those with high rates of propagule input should have higher species richness of both natives and non‐natives, leading to a positive correlation between the two. However, in restored wetlands, urbanization, riparian landscape settings, and nitrogen enrichment likely favor non‐native relative to native species. We sampled 28 restored wetlands in Illinois, USA, modeled the responses of native richness, non‐native richness and non‐native cover to local and landscape predictors with linear regression, and modeled the presence/absence of 21 non‐native species with logistic regressions. Unexpectedly, native and non‐native richness were uncorrelated, suggesting different responses to environmental factors. Native richness declined with increasing available soil nitrogen and urbanization in the surrounding landscape. Non‐native richness, the richness of non‐natives relative to natives, and the likelihood of invasion by several individual invasive species decreased with increasing distance from the city of Chicago, likely in response to decreasing non‐native propagule pressure. Total cover of non‐natives, however, as well as cover by non‐native Phalaris arundinacea, increased with nitrogen availability. Our results indicate that although non‐native richness was better predicted by factors related to propagule pressure, non‐native species dominance was more closely related to local abiotic factors. Non‐native richness in restoration sites may be beyond the control of restoration practitioners, and furthermore, may be of limited relevance for conservation goals. In contrast, limiting the relative dominance of non‐natives should be a restoration priority and may be achievable through management of nutrient availability.  相似文献   

2.
Questions: 1. What are the distribution and habitat associations of non‐native (neophyte) species in riparian zones? 2. Are there significant differences, in terms of plant species diversity, composition, habitat condition and species attributes, between plant communities where non‐natives are present or abundant and those where non‐natives are absent or infrequent? 3. Are the observed differences generic to non‐natives or do individual non‐native species differ in their vegetation associations? Location: West Midlands Conurbation (WMC), UK. Methods: 56 sites were located randomly on four rivers across the WMC. Ten 2 m × 2 m quadrats were placed within 15 m of the river to sample vegetation within the floodplain at each site. All vascular plants were recorded along with site information such as surrounding land use and habitat types. Results: Non‐native species were found in many vegetation types and on all rivers in the WMC. There were higher numbers of non‐natives on more degraded, human‐modified rivers. More non‐native species were found in woodland, scrub and tall herb habitats than in grasslands. We distinguish two types of communities with non‐natives. In communities colonized following disturbance, in comparison to quadrats containing no non‐native species, those with non‐natives had higher species diversity and more forbs, annuals and shortlived monocarpic perennials. Native species in quadrats containing non‐natives were characteristic of conditions of higher fertility and pH, had a larger specific leaf area and were less stress tolerant or competitive. In later successional communities dominated by particular non‐natives, native diversity declined with increasing cover of non‐natives. Associated native species were characteristic of low light conditions. Conclusions: Communities containing non‐natives can be associated with particular types of native species. Extrinsic factors (disturbance, eutrophication) affected both native and non‐native species. In disturbed riparian habitats the key determinant of diversity is dominance by competitive invasive species regardless of their native or non‐native origin.  相似文献   

3.
In situations where native mutualists have become extinct, non‐native species may partner with remnant native species. However, non‐native mutualists may differ behaviorally from extinct native mutualists. In the case of pollination, novel relationships between natives and non‐natives could differ both quantitatively and qualitatively from native–native relationships. In Hawai'i, the non‐native Japanese White‐eye (Zosterops japonicus) has largely replaced endemic birds as pollinator of the endemic Clermontia parviflora and C. montis‐loa. We surveyed Clermontia patches and found that they ranged from 106 to 1198 m in diameter. We performed manual pollination of flowers with pollen taken from plants at five distance categories, ranging from 0 (self‐fertilization) to 20 km, and examined the germination of resulting seeds. We used radiotelemetry to estimate daily Japanese White‐eye movement distances. Percent germination of seeds after short‐ to intermediate‐distance pollination crosses (i.e., 20–1200 m, or intra‐patch pollen transfer distances) significantly exceeded germination of seeds from selfed trials for C. parviflora. No significant differences in germination rates among treatments were detected for C. montis‐loa. The maximum daily movement distances of radio‐tracked birds were generally <1 km. Together, these results suggest that this novel pollinator may be an effective mutualist for both Clermontia species. This study serves as an example of research examining qualitative components of novel mutualism, which are generally neglected relative to quantitative components.  相似文献   

4.
Secondary compounds can contribute to the success of non‐native plant species if they reduce damage by native herbivores or inhibit the growth of native plant competitors. However, there is opposing evidence on whether the secondary compounds of non‐native plant species are stronger than those of natives. This may be explained by other factors, besides plant origin, that affect the potential of plant secondary compounds. We tested how plant origin, phylogeny, growth strategy and stoichiometry affected the allelopathic potential of 34 aquatic plants. The allelopathic potential was quantified using bioassays with the cyanobacterium Dolichospermum flos‐aquae. The allelopathic potential showed a strong phylogenetic signal, but was similar for native and non‐native species. Growth strategy was important, and emergent plants had twice the allelopathic potential as compared to submerged plants. Furthermore, the allelopathic potential was positively correlated to the foliar carbon‐to‐phosphorus (C:P) and total phenolic content. We conclude that eudicot plant species with an emergent growth strategy and high plant C:P ratio exhibit a high allelopathic potential. Unless non‐native plant species match this profile, they generally have a similar allelopathic potential as natives.  相似文献   

5.
Aim Increasingly, ecologists are using evolutionary relationships to infer the mechanisms of community assembly. However, modern communities are being invaded by non‐indigenous species. Since natives have been associated with one another through evolutionary time, the forces promoting character and niche divergence should be high. On the other hand, exotics have evolved elsewhere, meaning that conserved traits may be more important in their new ranges. Thus, co‐occurrence over sufficient time‐scales for reciprocal evolution may alter how phylogenetic relationships influence assembly. Here, we examined the phylogenetic structure of native and exotic plant communities across a large‐scale gradient in species richness and asked whether local assemblages are composed of more or less closely related natives and exotics and whether phylogenetic turnover among plots and among sites across this gradient is driven by turnover in close or distant relatives differentially for natives and exotics. Location Central and northern California, USA. Methods We used data from 30 to 50 replicate plots at four sites and constructed a maximum likelihood molecular phylogeny using the genes: matK, rbcl, ITS1 and 5.8s. We compared community‐level measures of native and exotic phylogenetic diversity and among‐plot phylobetadiversity. Results There were few exotic clades, but they tended to be widespread. Exotic species were phylogenetically clustered within communities and showed low phylogenetic turnover among communities. In contrast, the more species‐rich native communities showed higher phylogenetic dispersion and turnover among sites. Main conclusions The assembly of native and exotic subcommunities appears to reflect the evolutionary histories of these species and suggests that shared traits drive exotic patterns while evolutionary differentiation drives native assembly. Current invasions appear to be causing phylogenetic homogenization at regional scales.  相似文献   

6.
The need for research and development of effective approaches to weed control continues to increase globally. Adaptive protocols using diverse control methods are often required in ecological restoration as recruitment of native species is highly site‐specific, species‐specific, and experimental. The use of composted weed refuse to control other weeds may be a practical option; yet, the option is not well studied due to the accompanied risk of introducing weed propagules to areas where weed control is desired. Here, we tested the effectiveness of different physical control techniques including the use of mulch made by composting weed refuse on‐site. English ivy (Hedera helix), a non‐native, invasive species in the Pacific northwestern United States, was removed from a heavily invaded site, shredded, and composted. The mulch was compared with other methods of suppressing herb Robert (Geranium robertianum), another invasive species on‐site. Five treatments were tested: flame‐weeding, hand‐pulling, mulching, hand‐pulling followed by mulching, and flame‐weeding followed by mulching. The mulch and pull/mulch treatments were the most effective, reducing G. robertianum cover by 92 and 86% of pre‐treatment levels, respectively, and suppressing G. robertianum 2.9 and 1.6 times more than the control, respectively. The mechanism behind the effectiveness of the mulch is uncertain, but may be related to weed seed burial or the allelopathic potential of the mulch. Composting one invasive species to use as mulch to control another can be effective and merits trial elsewhere.  相似文献   

7.
Exotic annual grasses are a major challenge to successful restoration in temperate and Mediterranean climates. Experiments to restore abandoned agricultural fields from exotic grassland to coastal sage scrub habitat were conducted over two years in southern California, U.S.A. Grass control methods were tested in 5 m2 plots using soil and vegetation treatments seeded with a mix of natives. The treatments compared grass‐specific herbicide, mowing, and black plastic winter solarization with disking and a control. In year two, herbicide and mowing treatments were repeated on the first‐year plots, plus new control and solarization plots were added. Treatments were evaluated using percent cover, richness and biomass of native and exotic plants. Disking alone reduced exotic grasses, but solarization was the most effective control in both years even without soil sterilization, and produced the highest cover of natives. Native richness was greatest in solarization and herbicide plots. Herbicide application reduced exotics and increased natives more than disking or mowing, but produced higher exotic forb biomass than solarization in the second year. Mowing reduced grass biomass and cover in both years, but did not improve native establishment more than disking. Solarization was the most effective restoration method, but grass‐specific herbicide may be a valuable addition or alternative. Solarization using black plastic could improve restoration in regions with cool, wet summers or winter growing seasons by managing exotic seedbanks prior to seeding. While solarization may be impractical at very large scales, it will be useful for rapid establishment of annual assemblages on small scales.  相似文献   

8.
The symbiosis between land plants and arbuscular mycorrhizal fungi (AMF) is one of the most widespread and ancient mutualisms on the planet. However, relatively little is known about the evolution of these symbiotic plant–fungal interactions in natural communities. In this study, we investigated the symbiotic AMF communities of populations of the native plant species Pilea pumila (Urticaceae) with varying histories of coexistence with a nonmycorrhizal invasive species, Alliaria petiolata (Brassicaceae), known to affect mycorrhizal communities. We found that native populations of P. pumila with a long history of coexistence with the invasive species developed more diverse symbiotic AMF communities. This effect was strongest when A. petiolata plants were actively growing with the natives, and in soils with the longest history of A. petiolata growth. These results suggest that despite the ancient and widespread nature of the plant–AMF symbiosis, the plant traits responsible for symbiotic preferences can, nevertheless, evolve rapidly in response to environmental changes.  相似文献   

9.
Little information exists about the establishment of native longleaf pine flatwoods species for use in restoration efforts and as buffers around natural areas in the southeastern United States. Composition of groundcover in these systems is dominated by perennial graminoid species. Vegetation in current buffers is generally non‐native turfgrass that can escape into natural areas, often reducing establishment and survival of native species. Where management objectives involve actively restoring native groundcover or reducing the probability of invasion by these non‐native turfgrasses, identification of native species and restoration methods is needed. We investigated seed germination and establishment of four species native to longleaf pine flatwoods in central Florida and one species native to the adjacent wetland communities. Paspalum setaceum, Panicum anceps, Eustachys petraea, and Eragrostis refracta were directly seeded, and P. distichum was planted as sprigs into three former P. notatum pastures. Irrigation, fertilization, weed control, and mowing treatments were assessed in terms of cover development of the sown species. Paspalum distichum developed the highest percent cover—over 80% in wet areas after 1 year. Mowing had mixed impacts depending on the species, and fertilization never significantly increased cover. Directly seeded species developed sparse cover (0–40%), probably as a result of drought conditions. However, E. petraea and E. refracta appeared more promising for use on rights‐of‐way when using high sowing rates. A second experiment conducted on a roadside included these two species and sprigged P. distichum. Both E. petraea and P. distichum developed more than 45% cover on the roadside. Establishment of these natives from seed or sprigs was significantly enhanced when site preparation effectively reduced the seedbank of other species present in the soil.  相似文献   

10.
The enemy release hypothesis posits that non‐native plant species may gain a competitive advantage over their native counterparts because they are liberated from co‐evolved natural enemies from their native area. The phylogenetic relationship between a non‐native plant and the native community may be important for understanding the success of some non‐native plants, because host switching by insect herbivores is more likely to occur between closely related species. We tested the enemy release hypothesis by comparing leaf damage and herbivorous insect assemblages on the invasive species Senecio madagascariensis Poir. to that on nine congeneric species, of which five are native to the study area, and four are non‐native but considered non‐invasive. Non‐native species had less leaf damage than natives overall, but we found no significant differences in the abundance, richness and Shannon diversity of herbivores between native and non‐native Senecio L. species. The herbivore assemblage and percentage abundance of herbivore guilds differed among all Senecio species, but patterns were not related to whether the species was native or not. Species‐level differences indicate that S. madagascariensis may have a greater proportion of generalist insect damage (represented by phytophagous leaf chewers) than the other Senecio species. Within a plant genus, escape from natural enemies may not be a sufficient explanation for why some non‐native species become more invasive than others.  相似文献   

11.
12.
Effects of host plant α‐ and β‐diversity often confound studies of herbivore β‐diversity, hindering our ability to predict the full impact of non‐native plants on herbivores. Here, while controlling host plant diversity, we examined variation in herbivore communities between native and non‐native plants, focusing on how plant relatedness and spatial scale alter the result. We found lower absolute magnitudes of β‐diversity among tree species and among sites on non‐natives in all comparisons. However, lower relative β‐diversity only occurred for immature herbivores on phylogenetically distinct non‐natives vs. natives. Locally in that comparison, non‐native gardens had lower host specificity; while among sites, the herbivores supported were a redundant subset of species on natives. Therefore, when phylogenetically distinct non‐natives replace native plants, the community of immature herbivores is likely to be homogenised across landscapes. Differences in communities on closely related non‐natives were subtler, but displayed community shifts and increased generalisation on non‐natives within certain feeding guilds.  相似文献   

13.
Non‐native fish generally cause native fish decline, and once non‐natives are established, control or elimination is usually problematic. Because non‐native fish colonization has been greatest in anthropogenically altered habitats, restoring habitat similar to predisturbance conditions may offer a viable means of non‐native fish control. In this investigation we identified habitats favoring native over non‐native fish in a Mojave Desert oasis (Ash Meadows) and used this information to restore one of its major warm water spring systems (Kings Pool Spring). Prior to restoration, native fishes predominated in warm water (25–32°C) stream and spring‐pool habitat, whereas non‐natives predominated in cool water (≤23°C) spring‐pool and marsh/slack water habitat. Native Amargosa pupfish (Cyprinodon nevadensis) and Ash Meadows speckled dace (Rhinichthys osculus nevadensis) inhabited significantly faster mean water column velocities (MWCV) and greater total depth (TD) than non‐native Sailfin molly (Poecilia latipinna) and Mosquitofish (Gambusia affinis) in warm water stream habitat, and Ash Meadows speckled dace inhabited significantly faster water than non‐natives in cool water stream habitat. Modification of the outflow of Kings Pool Spring from marsh to warm water stream, with MWCV, TD, and temperature favoring native fish, changed the fish composition from predominantly non‐native Sailfin molly and Mosquitofish to predominantly Ash Meadows pupfish. This result supports the hypothesis that restoring spring systems to a semblance of predisturbance conditions would promote recolonization of native fishes and deter non‐native fish invasion and proliferation.  相似文献   

14.
We tested whether direct placement of forest floor material (FFM: litter, fibric, humus layers and surface mineral horizons) and sowing of a cover crop (Melilotus officinalis) could facilitate the establishment of native forest understory species at a reclaimed coal mine in Alberta, Canada. FFM was salvaged at two depths (15 and 40 cm) from a recently harvested native aspen forest and immediately placed at the same depths on the reclamation site. Total richness (approximately 61 species in 96 subplots) was similar in each of 3 years post‐placement; total richness for all 3 years combined was 87 including 34 typical boreal forest understory species plus 30 other natives. The deeper treatment reduced cover of all species, native and non‐native species in year 1. In year 3, the deeper treatment still had lower cover of non‐native species but had higher cover of forest understory species in years 2 and 3. The deeper treatment also resulted in lower species richness per plot, but only in year 1. In year 2 (when the biennial clover was at its tall stage), the cover crop treatment was associated with lower cover of non‐native species but did not affect the cover of native forest understory species. Direct placement of FFM can help facilitate establishment of a diverse native boreal forest understory in a reclaimed landscape. Although richness and cover may be initially higher with shallower salvage and placement, deeper salvage may ultimately be better for encouraging establishment of native forest understory species.  相似文献   

15.

Aim

To test whether native and non‐native species have similar diversity–area relationships (species–area relationships [SARs] and phylogenetic diversity–area relationships [PDARs]) and whether they respond similarly to environmental variables.

Location

United States.

Methods

Using lists of native and non‐native species as well as environmental variables for >250 US national parks, we compared SARs and PDARs of native and non‐native species to test whether they respond similarly to environmental conditions. We then used multiple regressions involving climate, land cover and anthropogenic variables to further explore underlying predictors of diversity for plants and birds in US national parks.

Results

Native and non‐native species had different slopes for SARs and PDARs, with significantly higher slopes for native species. Corroborating this pattern, multiple regressions showed that native and non‐native diversity of plants and birds responded differently to a greater number of environmental variables than expected by chance. For native species richness, park area and longitude were the most important variables while the number of park visitors, temperature and the percentage of natural area were among the most important ones for non‐native species richness. Interestingly, the most important predictor of native and non‐native plant phylogenetic diversity, temperature, had positive effects on non‐native plants but negative effects on natives.

Main conclusions

SARs, PDARs and multiple regressions all suggest that native and non‐native plants and birds responded differently to environmental factors that influence their diversity. The agreement between diversity–area relationships and multiple regressions with environmental variables suggests that SARs and PDARs can be both used as quick proxies of overall responses of species to environmental conditions. However, more importantly, our results suggest that global change will have different effects on native and non‐native species, making it inappropriate to apply the large body of knowledge on native species to understand patterns of community assembly of non‐native species.
  相似文献   

16.
Successful restoration of an invaded landscape to a diverse, invasion‐resistant native plant community requires determining the optimal native species mix to add to the landscape. We manipulated native seed mix (annuals, perennials, or a combination of the two), while controlling the growth of non‐native species to test the hypothesis that altering native species composition can influence native establishment and subsequent non‐native invasion. Initial survival of native annuals and perennials was higher when seeded in separate mixes than when combined, and competition between the native perennials and annuals led to lower perennial cover in year 2 of mixed‐seeded plots. The plots with the highest perennial cover had the highest resistance to invasion by Brassica nigra. To clarify interactions among different functional groups of natives and B. nigra, we measured competitive interactions in pots. We grew one native annual, one native perennial, and B. nigra alone or with different competitors and measured biomass after 12 weeks. Brassica nigra was the strongest competitor, limiting the growth of all native species, and was not impacted by competition with native annuals or perennial seedlings. Results from the potted plant experiment demonstrated the strong negative influence of B. nigra on native seedlings. Older native perennials were the strongest competitors against invasive species in the field, yet perennial seedling survival was limited by competition with native annuals and B. nigra. Management action that maximizes perennial growth in early years may lead to a relatively more successful restoration and the establishment of an invasion‐resistant community.  相似文献   

17.
The limiting similarity hypothesis predicts that communities should be more resistant to invasion by non‐natives when they include natives with a diversity of traits from more than one functional group. In restoration, planting natives with a diversity of traits may result in competition between natives of different functional groups and may influence the efficacy of different seeding and maintenance methods, potentially impacting native establishment. We compare initial establishment and first‐year performance of natives and the effectiveness of maintenance techniques in uniform versus mixed functional group plantings. We seeded ruderal herbaceous natives, longer‐lived shrubby natives, or a mixture of the two functional groups using drill‐ and hand‐seeding methods. Non‐natives were left undisturbed, removed by hand‐weeding and mowing, or treated with herbicide to test maintenance methods in a factorial design. Native functional groups had highest establishment, growth, and reproduction when planted alone, and hand‐seeding resulted in more natives as well as more of the most common invasive, Brassica nigra. Wick herbicide removed more non‐natives and resulted in greater reproduction of natives, while hand‐weeding and mowing increased native density. Our results point to the importance of considering competition among native functional groups as well as between natives and invasives in restoration. Interactions among functional groups, seeding methods, and maintenance techniques indicate restoration will be easier to implement when natives with different traits are planted separately.  相似文献   

18.
Evaluating dominance as a component of non-native species invasions   总被引:2,自引:0,他引:2  
Many studies have quantified plant invasions by determining patterns of non‐native species establishment (i.e. richness and absolute cover). Until recently, dominance has been largely overlooked as a significant component of invasion. Therefore, we re‐examined a 6‐year data set of 323 0.1 ha plots within 18 vegetation types collected in the Grand Staircase‐Escalante National Monument from 1998 to 2003, including dominance (i.e. relative cover) in our analyses. We specifically focused on the non‐native species Bromus tectorum, a notable dominant annual grass in this system. We found that non‐native species establishment and dominance are both occurring in species‐rich, mesic vegetation types. Therefore, non‐native species dominance may result despite many equally abundant native species rather than a dominant few, and competitive exclusion does not seem to be a primary control on either non‐native species establishment or dominance in this study. Unlike patterns observed for non‐native species establishment, relative non‐native species cover could not be predicted by native species richness across vegetation types (R2 < 0.001; P = 0.45). However, non‐native species richness was found to be positively correlated with relative non‐native species cover and relative B. tectorum cover (R2 = 0.46, P < 0.01; R2 = 0.17, P < 0.01). Analyses within vegetation types revealed predominantly positive relationships among these variables for the correlations that were significant. Regression tree analyses across vegetation types that included additional biotic and abiotic variables were a little better at predicting non‐native species dominance (PRE = 0.49) and B. tectorum dominance (PRE = 0.39) than at predicting establishment. Land managers will need to set priorities for control efforts on the more productive, species‐rich vegetation types that appear to be susceptible to both components of invasion.  相似文献   

19.
Aim A regional analysis was used to explore the influence of river regulation on the dominance of non‐native, invasive shrubs and trees. We addressed the following questions: (1) How do large dams affect hydrological parameters that influence riparian vegetation? (2) How do flow regimes affect the dominance of non‐native woody species? (3) How do changes in flow regimes affect the dominance of non‐native woody species? Location South‐western USA. Methods We sampled the canopy cover of woody species on 179 point bars along seven non‐dammed and thirteen dammed river segments. Wilcoxon rank sum tests were used to determine differences between flow parameters in dammed and non‐dammed rivers. We used correlation analyses and generalized linear model comparisons to examine associations of flow parameters and canopy cover of native (Populus and Salix) and non‐native (Tamarix and Elaeagnus) taxa. An index of flow alteration that was created using principal components analysis was regressed with vegetation cover. Results Tamarix cover was positively related to drainage area, flow constancy, August and May median flow and flow recession rate, but Elaeagnus cover was unrelated to flow variables. River segments with peak flows in late summer or high constancy had the highest Tamarix cover. Populus cover was positively influenced by low maximum temperatures and frequent high pulses. Flow alteration was negatively related to Populus cover and positively related to Tamarix cover. Total non‐native, Elaeagnus and Salix covers were not correlated with flow alteration. Main conclusions Rivers with a large drainage area and low flow variability are inherently more vulnerable to invasions. River regulation does not necessarily increase the cover of non‐native, invasive species. Instead, changes in flow allow proliferation of species that have life‐history traits suited to modified flow regimes. River restoration projects that aim to reinstate natural flow regimes should be designed with knowledge of native and non‐native species' life history strategies.  相似文献   

20.
We compare two successional models as guides for restoring native riparian understory species along a 160‐km stretch of the Sacramento River in California. In 2001 and 2007, we surveyed cover, frequency, and richness of native and exotic understory species in 15 sites planted (1989–1996) with overstory species to determine whether native understory species colonized naturally (passive relay floristics model). In 2007, we surveyed 20 additional sites (planted 1997–2003) in 14 of which understory species were planted (initial floristics model) to evaluate whether planting accelerated community recovery. We surveyed 10 remnant forests as references for successional trajectories. Mean cover and frequency of natives changed little over time in sites where they were not planted initially; increases in native cover in a few sites were primarily due to a single common species (Galium aparine). Species composition shifted from light‐demanding to shade‐adapted species, both exotic and native, in response to a doubling of overstory cover. Sites with high intensity understory plantings had greater cover and frequency of native understory species than unplanted sites, but were still low relative to reference forests. Light‐demanding natives (e.g., Artemisia douglasiana, Rubus ursinus, and grasses) established in sites where they were planted; however, a shade‐adapted species (Carex barbarae) did not survive well. Our research indicates that the passive relay floristics and the initial floristic composition approaches serve to restore a few common native understory species, but that planting species as site conditions become appropriate (active relay floristics model) will be needed to restore entire native understory communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号