首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979–2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species’ ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented.  相似文献   

2.
Generating trend and population estimates from bird count data is challenging and a variety of factors have to be taken into account. We present an integrative statistical approach for estimating population numbers and trends for seabirds at sea. The method allows for the integration of bird-count data from different sources and sampling schemes: offshore observer-based line transect and digital strip transect surveys and land-based point counts; the estimation of log-linear and highly nonlinear trends; the prediction of population numbers for predefined sub-areas, years, or seasons; and investigations of the effects of various environmental and detection-related covariates on bird count numbers. We applied the approach to count data for great black-backed gulls (Larus marinus) in the German part of the North Sea and Baltic Sea from 1990–2016. Count data were collected by observer-based offshore ship and aerial surveys, offshore digital aerial surveys, and point counts from the shore. The detectability of great black-backed gulls was affected by the sea state (the condition of the sea surface, characterized by wave height, wave form, foam, and spray) and survey method. Digital and observer-based aerial surveys detected only 59–77% of the abundance recorded by ship-based surveys. Great black-backed gulls are mainly present in German waters in winter, when they account for 3–4% of the European population. Their core distributional areas are mainly in deeper offshore waters where they are relatively dispersed, with several concentrations probably connected to fishing activity. Great black-backed gulls have undergone substantial declines, with the most pronounced decreases of >90% in the offshore waters of the German part of the North Sea. Breeding numbers at important European breeding sites do not show similar declines, suggesting that the trends observed in the sea areas might indicate a shift in the distribution or habitat use and a decreasing importance of marine areas for European great black-backed gulls. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

3.
Little is known about the migration and movements of migratory tree-roosting bat species in North America, though anecdotal observations of migrating bats over the Atlantic Ocean have been reported since at least the 1890s. Aerial surveys and boat-based surveys of wildlife off the Atlantic Seaboard detected a possible diurnal migration event of eastern red bats (Lasiurus borealis) in September 2012. One bat was sighted approximately 44 km east of Rehoboth Beach, Delaware during a boat-based survey. Eleven additional bats were observed between 16.9 and 41.8 km east of New Jersey, Delaware, and Virginia in high definition video footage collected during digital aerial surveys. Observations were collected incidentally as part of a large baseline study of seabird, marine mammal, and sea turtle distributions and movements in the offshore environment. Digital survey methods also allowed for altitude estimation for several of these bats at >100 m above sea level. These observations provide new evidence of bat movements offshore, and offer insight into their flight heights above sea level and the times of day at which such migrations may occur.  相似文献   

4.
Relatively simple foraging radius models have the potential to generate predictive distributions for a large number of species rapidly, thus providing a cost-effective alternative to large-scale surveys or complex modelling approaches. Their effectiveness, however, remains largely untested. Here we compare foraging radius distribution models for all breeding seabirds in Ireland, to distributions of empirical data collected from tracking studies and aerial surveys. At the local/colony level, we compared foraging radius distributions to GPS tracking data from seabirds with short (Atlantic puffin Fratercula arctica, and razorbill Alca torda) and long (Manx shearwater Puffinus puffinus, and European storm-petrel Hydrobates pelagicus) foraging ranges. At the regional/national level, we compared foraging radius distributions to extensive aerial surveys conducted over a two-year period. Foraging radius distributions were significantly positively correlated with tracking data for all species except Manx shearwater. Correlations between foraging radius distributions and aerial survey data were also significant, but generally weaker than those for tracking data. Correlations between foraging radius distributions and aerial survey data were benchmarked against generalised additive models (GAMs) of the aerial survey data that included a range of environmental covariates. While GAM distributions had slightly higher correlations with aerial survey data, the results highlight that the foraging radius approach can be a useful and pragmatic approach for assessing breeding distributions for many seabird species. The approach is likely to have acceptable utility in complex, temporally variable ecosystems and when logistic and financial resources are limited.  相似文献   

5.
Large areas with hydrocarbon prospects offshore northwest Greenland necessitate seabird studies in this region. The little auk population breeding in Thule District is the largest seabird population in northwest Greenland, as well as the largest known population of this species. In 1994 and 1995 we mapped the distribution of little auk colonies in Thule District during aerial surveys. Most colonies are situated in sloping screes facing the sea, some as far as 11 km from the coast in valleys or facing glaciers. The total horizontal extent of the colonies is about 400 km. Our surveys generally confirm previous and local knowledge, although the information obtained is more detailed. Received: 11 November 1996 / Accepted: 21 September 1997  相似文献   

6.
Spatial and temporal distribution of seabird transiting and foraging at sea is an important consideration for marine conservation planning. Using at‐sea observations of seabirds (n = 317), collected during the breeding season from 2012 to 2016, we built boosted regression tree (BRT) models to identify relationships between numerically dominant seabird species (red‐footed booby, brown noddy, white tern, and wedge‐tailed shearwater), geomorphology, oceanographic variability, and climate oscillation in the Chagos Archipelago. We documented positive relationships between red‐footed booby and wedge‐tailed shearwater abundance with the strength in the Indian Ocean Dipole, as represented by the Dipole Mode Index (6.7% and 23.7% contribution, respectively). The abundance of red‐footed boobies, brown noddies, and white terns declined abruptly with greater distance to island (17.6%, 34.1%, and 41.1% contribution, respectively). We further quantified the effects of proximity to rat‐free and rat‐invaded islands on seabird distribution at sea and identified breaking point distribution thresholds. We detected areas of increased abundance at sea and habitat use‐age under a scenario where rats are eradicated from invaded nearby islands and recolonized by seabirds. Following rat eradication, abundance at sea of red‐footed booby, brown noddy, and white terns increased by 14%, 17%, and 3%, respectively, with no important increase detected for shearwaters. Our results have implication for seabird conservation and island restoration. Climate oscillations may cause shifts in seabird distribution, possibly through changes in regional productivity and prey distribution. Invasive species eradications and subsequent island recolonization can lead to greater access for seabirds to areas at sea, due to increased foraging or transiting through, potentially leading to distribution gains and increased competition. Our approach predicting distribution after successful eradications enables anticipatory threat mitigation in these areas, minimizing competition between colonies and thereby maximizing the risk of success and the conservation impact of eradication programs.  相似文献   

7.
Competition for food is widely cited as an important cost of coloniality among birds and much of the evidence in support of this hypothesis comes from studies of colonial piscivorous seabirds. However, for generalist seabirds able to switch between different prey types, the role of food availability in relation to colony size is unclear. Here we investigate patterns of the consumption of seabird prey in relation to colony size in a generalist seabird, the great skua Stercorarius skua, in Shetland, UK. At the population level skuas feed mainly on sandeels Ammodytes marinus and fishery discards, but respond to declines in fish availability to facultatively prey on other seabirds. By comparing the consumption of seabirds among seven different sized colonies, including one colony with artificially reduced numbers of skuas (Fair Isle), we investigate whether consumption of seabird prey is influenced by skua population size, while simultaneously measuring seabird prey availability. Data from five years also enables us to investigate the influence of annual variation in environmental conditions on seabird consumption. Using measures of body condition and reproductive performance we investigate the consequences of living in different sized colonies, which may provide insight into ultimate costs of nesting at high population density. Skua diets varied among colonies and the proportion of seabird prey in the diet was inversely related to skua colony size, despite similar per capita numbers of seabirds across colonies. At the colony where their numbers were artificially suppressed, skuas consumed a greater proportion of seabirds per capita. Highly significant year effects in seabird predation were observed but the pattern among colonies remained consistent over time. Two measures of adult body condition (pectoral muscle index and mean corpuscular volume) revealed that adult great skuas were in poorer condition at the largest colony (Foula), but reproductive performance did not alter significantly among colonies. This study provides evidence that intra‐specific competition among skuas may limit opportunities for obtaining seabird prey, which may be particularly important during periods of poor availability of sandeels and fishery discards, and has implications for assessing the impact of skuas on seabird populations.  相似文献   

8.
Quantifying the likely effects of offshore wind farms on wildlife is fundamental before permission for development can be granted by any Determining Authority. The effects on marine top predators from displacement from important habitat are key concerns during offshore wind farm construction and operation. In this respect, we present evidence for no significant displacement from a UK offshore wind farm for two broadly distributed species of conservation concern: common guillemot (Uria aalge) and harbor porpoise (Phocoena phocoena). Data were collected during boat‐based line transect surveys across a 360 km2 study area that included the Robin Rigg offshore wind farm. Surveys were conducted over 10 years across the preconstruction, construction, and operational phases of the development. Changes in guillemot and harbor porpoise abundance and distribution in response to offshore wind farm construction and operation were estimated using generalized mixed models to test for evidence of displacement. Both common guillemot and harbor porpoise were present across the Robin Rigg study area throughout all three development phases. There was a significant reduction in relative harbor porpoise abundance both within and surrounding the Robin Rigg offshore wind farm during construction, but no significant difference was detected between the preconstruction and operational phases. Relative common guillemot abundance remained similar within the Robin Rigg offshore wind farm across all development phases. Offshore wind farms have the potential to negatively affect wildlife, but further evidence regarding the magnitude of effect is needed. The empirical data presented here for two marine top predators provide a valuable addition to the evidence base, allowing future decision making to be improved by reducing the uncertainty of displacement effects and increasing the accuracy of impact assessments.  相似文献   

9.
Summary The distribution patterns of aerial seabirds are analysed from counts made in the Prydz Bay region, Antarctica, during the African legs of SIBEX I and II in late summer (end of February to April), and compared with those made farther west at the same time of year during FIBEX. Species composition and abundances were similar in all three surveys, with sooty shearwaters Puffinus griseus contributing approximately half of the total aerial bird energy demand. Differences between surveys are explained in terms of longitudinal or seasonal differences in sampling areas and periods. Correlations between bird distribution patterns and environmental parameters are used to infer the scale-dependent factors affecting bird dispersion at sea. Two macro-scale bird assemblages, identified by physical parameters, were separated along latitudinal gradients (temperature and salinity) associated with the Antarctic Divergence. These assemblages are consistent with the Intermediate and Southern High Latitude Groups identified during FIBEX. At smaller spatial scales, almost all species were correlated with the abundance of Antarctic krill Euphausia superba, both across the entire SIBEX I grid, and within the areas north and south of the Antarctic Divergence. Similarly, during SIBEX II, seabird densities were six times greater when krill was abundant than when krill was scarce. Sooty shearwaters, which appeared to be moving through the area, were the only abundant bird species not correlated with krill abundance. Possible reasons why previous studies have not detected correlations between seabird and krill abundances are discussed.  相似文献   

10.
This study investigates the effects of the construction and operation of a large Danish offshore wind farm on harbor and gray seal haul-out behavior within a nearby (4 km) seal sanctuary. Time-lapse photography, visual monitoring, and aerial surveys were used to monitor the number of seals on land in daylight hours. Seals were monitored during two preconstruction periods (19 June–31 August 2001 and April–August 2002), a construction period of the wind farm (August 2002–December 2003), and a period of operation of the wind farm (December 2003–December 2004). Monthly aerial surveys were conducted to estimate the proportion of seals in the sanctuary relative to neighboring haul-out sites. From preconstruction to construction and through the first year of operation the number of harbor seals in the sanctuary increased at the same rate as the number of seals at the neighboring haul-out sites. No long-term effects on haul-out behavior were found due to construction and operation of the wind farm. However, a significant short-term decrease was seen in the number of seals present on land during sheet pile driving in or near the wind farm. Acoustic deterrents were utilized simultaneously to avoid hearing damage.  相似文献   

11.
《Harmful algae》2003,2(1):1-17
From the late Pliocene to now, blooms of toxic algae are associated with mortalities of marine birds. Given the long historical presence of harmful algal blooms (HABs) worldwide and the numbers of seabirds that feed on filter-feeding fish and shellfish, it is surprising that relatively few incidents of seabird deaths as a result of toxic algae have been reported. The limited information available tends to come from major events, whereas the rare events are missed and hence not reported. Much is anecdotal and still more probably is not published. We suspect that factors working in concert may lead to deaths and wrecks that might not occur as a result of anyone factor working independently, e.g. starvation tends to render birds more vulnerable to stress.“Seabird wrecks”, very much larger than usual concentration of seabird corpses washed ashore over a short period of time, often provide evidence of deleterious conditions in offshore populations, e.g. weather, food, pollution, fishing activities, and parasites. It is noted in the literature that wrecks caused by natural toxins such as botulism and algal toxins are apparently less common; however, this perception may be due to a combination of factors including the bird species involved, size of populations, location, and chance of discovery. Wrecks involving near-shore species probably provide a more accurate estimate of total mortality for any given event than offshore species.A survey of available data on the impacts of toxic algae on seabirds revealed an array of responses ranging from reduced feeding activity, inability to lay eggs, and loss of motor coordination to death. Severe impacts on recruitment have been noted in some populations. There are few experimental studies; however, evidence has been provided for the ability of some species to ‘learn’ to avoid toxic food sources. We present a summary of available data on seabird/toxic algal interactions and suggestions of how impacts on seabirds during future blooms of harmful algae be recorded.  相似文献   

12.
Invasive ants are a significant conservation concern and can have far-reaching effects in ecosystems they invade. We used the experimental control of ant numbers on two pairs of small (<5 ha) offshore islets dominated by either the big-headed ant, Pheidole megacephala or the tropical fire ant, Solenopsis geminata to investigate the influence of these species on seabird hatching success, fledging success and weight. Limited unpublished observations of both ant species attacking nesting seabirds exist, but the frequency of attacks or how they affect seabird growth and survival are unknown. Island-wide treatments with hydramethylnon resulted in the eradication of P. megacephala and the temporary reduction of S. geminata densities. No difference in hatching success, growth, or fledging success of Wedge-tailed Shearwaters (Puffinus pacificus), a common colonial nesting seabird in the Hawaiian Islands was observed on the pair of islets dominated by P. megacephala. On islets dominated by S. geminata, ant control resulted in a temporary increase in fledging success. Injury frequency increased dramatically on the untreated islet (8.3–100%) while remaining the same on the treated islet (27–38%). Severely injured chicks (i.e., chicks that lost >20% of tissue on their feet) weighed significantly less than uninjured chicks and did not fledge. It is unclear if the chicks were being preyed upon or stung in defense of nearby ant colonies. Radical changes in invasive ant populations have been noted, and booming ant populations could cause short-term, but widespread damage to seabird colonies. The negative effects of invasive ants on seabirds may be difficult to detect, and therefore unknown or underestimated throughout the world where the two groups overlap.  相似文献   

13.
As part of the energy transition, the French government is planning the construction of three offshore wind farms in Normandy (Bay of Seine and eastern part of the English Channel, north-western France) in the next years. These offshore wind farms will be integrated into an ecosystem already facing multiple anthropogenic disturbances such as maritime transport, fisheries, oyster and mussel farming, and sediment dredging. Currently no integrated, ecosystem-based study on the effects of the construction and exploitation of offshore wind farms exists, where biological approaches generally focused on the conservation of some valuable species or groups of species. Complementary trophic web modelling tools were applied to the Bay of Seine ecosystem (to the 50 km2 area covered by the wind farm) to analyse the potential impacts of benthos and fish aggregation caused by the introduction of additional hard substrates from the piles and the turbine scour protections. An Ecopath ecosystem model composed of 37 compartments, from phytoplankton to seabirds, was built to describe the situation “before” the construction of the wind farm. Then, an Ecosim projection over 30 years was performed after increasing the biomass of targeted benthic and fish compartments. Ecological Network Analysis (ENA) indices were calculated for the two periods, “before” and “after”, to compare network functioning and the overall structural properties of the food web. Our main results showed (1) that the total ecosystem activity, the overall system omnivory (proportion of generalist feeders), and the recycling increased after the construction of the wind farm; (2) that higher trophic levels such as piscivorous fish species, marine mammals, and seabirds responded positively to the aggregation of biomass on piles and turbine scour protections; and (3) a change in keystone groups after the construction towards more structuring and dominant compartments. Nonetheless, these changes could be considered as limited impacts of the wind farm installation on this coastal trophic web structure and functioning.  相似文献   

14.
North Atlantic right whales, Eubalaena glacialis, remain endangered, primarily due to excessive anthropogenic mortality. Current management protocols in US waters are triggered by identifying the presence of at least one right whale in a management area. We assessed whether acoustic detection of right whale contact calls can work as an alternative to visual aerial surveys for establishing their presence. Aerial survey and acoustic monitoring were conducted in Cape Cod Bay, Massachusetts, in 2001–2005 and used to evaluate and compare right whale detections. Over the 58 d with simultaneous aerial and acoustic coverage, aerial surveys saw whales on approximately two-thirds of the days during which acoustic monitoring heard whales. There was no strong relationship between numbers of whales seen during aerial surveys and numbers of contact calls detected on survey days. Results indicate acoustic monitoring is a more reliable mechanism than aerial survey for detecting right whales. Because simple detection is sufficient to trigger current management protocols, continuous, autonomous acoustic monitoring provides information of immediate management utility more reliably than aerial surveillance. Aerial surveys are still required to provide data for estimating population parameters and for visually assessing the frequency and severity of injuries from shipping and fishing and detecting injured and entangled right whales.  相似文献   

15.
Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins'' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic variability.  相似文献   

16.
In a world of growing anthropogenic pressures on biodiversity, effective indicators need to be specific and sensitive to the pressures in the ecosystem concerned, yet be simple enough to be interpreted by non-experts and straightforward enough to facilitate routine monitoring. Globally, seabirds are under increasing pressure as a result of anthropogenic activities and environmental variation. Traditionally, seabird indicators have been based on abundance at breeding colonies. However, as many species do not reach sexual maturity for several years, and may not attend the colony over this time period, such indicators may fail to capture the ecological complexity of the system concerned.We constructed two indicators of the state of nine seabird species that breed along the UK coast of the North Sea: (i) abundance of seabirds at breeding colonies, and (ii) probability of seabird breeding failure. The indicators were significantly and strongly correlated with each other for eight out of nine species, but the abundance indicator typically lagged the indicator on seabird breeding failure by two to three years. We then considered a third indicator which compared kittiwake (Rissa tridactyla) breeding success to the levels expected given the underlying environmental conditions; changes in the abundance indicator also lagged this by three years. We investigate how sensitive each of these indicators was to the impacts of fishing. We found that the species which had seen the greatest increases in breeding failure rate over the study period were those species which were most sensitive to fisheries pressure.By focussing on demographic parameters, and correcting for the underlying environmental conditions, we can detect potentially important population level changes at an earlier stage than by focussing on abundance alone. These indicators are able to more accurately capture the complexity of the ecosystem concerned and can be readily interpreted by policy-makers.  相似文献   

17.
Aim We examined patterns of covariation among piscivorous and planktivorous seabirds breeding at St Lazaria Island in order to evaluate their responses to interannual changes in sea surface temperature, a variable that affects marine food webs. In addition, we evaluated seabird population trends for responses to decadal‐scale changes in the marine ecosystem. Location St Lazaria Island, Sitka Sound, Alaska. Methods Established seabird monitoring protocols for the Alaska Maritime National Wildlife Refuge were followed in estimating population trends, the timing of nesting events and the reproductive success of eight species of seabirds between 1994 and 2006. Results  Population increases were noted for storm‐petrels (Oceanodroma furcata and O. leucorhoa), rhinoceros auklets (Cerorhinca monocerata) and glaucous‐winged gulls (Larus glaucescens). We found no population trend for pelagic cormorants (Phalacrocorax pelagicus), but it appeared that populations of common (Uria aalge) and thick‐billed (U. lomvia) murres and of tufted puffins (Fratercula cirrhata) declined. We detected no linear trends in either breeding chronology or reproductive success over the study period for any seabird. All species of piscivorous seabirds apparently responded similarly to environmental cues as there was a positive covariation among species in the timing of nesting. Piscivores tended to nest earlier, and most species had higher rates of reproductive success in years with relatively warm spring sea temperatures. In contrast, planktivorous Leach’s storm‐petrels (O. leucorhoa) tended to nest earlier when spring and summer sea temperatures were relatively cool. Clearly, seabirds at St Lazaria were responding to interannual changes in sea temperatures near the breeding colony, probably as a result of effects on the food webs. Main conclusions Every seabird species we monitored at St Lazaria exhibited significant population trends between 1994 and 2006. For most species there appeared to be a relationship between both the timing of nesting and reproductive rates and spring or summer sea surface temperatures. Responses at both decadal (populations) and interannual (timing and reproductive success) scales make seabirds useful candidates for helping to monitor change in the marine environment.  相似文献   

18.
Global warming is predicted to reduce the amount of sea ice concentration in polar environments, thus presenting profound changes for populations of seabirds and marine mammals dependent on sea ice. Using data from a shipboard survey during August 2012, I test the hypothesis that relative abundance of seabird and marine mammals reflects environmental variability associated with the dynamic pack ice zone. Using environmental data and observations of sea ice concentration, I quantified an environmental gradient that describes the spatial organization of the dynamic pack ice zone. The relationship of top predators to this environmental gradient revealed three important aspects: (1) an open water and pack ice community is present with some top predator species exhibiting higher abundance associated with moderate sea ice concentration (40–60 %) as opposed to the pack ice edge (10 %), (2) Antarctic fur seals (Arctocephalus gazella) were the most abundant pinniped and they were observed resting on ice floes and foraging within leads and polynyas, and (3) for the most abundant species, spatial regression models indicate that latitude and sea ice concentration (a principal north/south gradient) are the most important environmental determinants. Winter ocean conditions may strongly influence population dynamics of top predators; therefore, information regarding their habitat use during winter is needed for understanding ecosystem dynamics.  相似文献   

19.
ABSTRACT Nocturnal burrow‐nesting seabirds breeding on isolated oceanic islands pose challenges to conventional monitoring techniques, resulting in their frequent exclusion from population studies. These seabirds have been devastated by nonnative predator introductions on islands worldwide. After predators are eradicated, recovery has been poorly quantified, but evidence suggests some nocturnal seabird populations have been slow to return. We evaluated the use of automated acoustic recorders and call‐recognition software to investigate nocturnal seabird recovery after removal of introduced Arctic foxes (Alopex lagopus) in the Aleutian Archipelago, Alaska. We compared relative seabird abundance among islands by examining levels of vocal activity. We deployed acoustic recorders on Nizki‐Alaid, Amatignak, and Little Sitkin islands that had foxes removed in 1975, 1991, and 2000, respectively, and on Buldir, a predator‐free seabird colony. Despite frequent gales, only 2.9% of 2230 recording hours from May to August of 2008 and 2009 were unusable due to wind noise. Recording quality and call recognition model success were highest when recording devices were placed at sites offering some wind shelter. We detected greater vocal activity of Fork‐tailed (Oceanodroma furcata) and Leach's (O. leucorhoa) storm‐petrels and Ancient Murrelets (Synthliboramphus antiquus) on islands with longer time periods since fox eradication. Also, by detecting chick calls in the automated recordings, we confirmed breeding by Ancient Murrelets on an island thought to be abandoned due to fox predation. Acoustic monitoring allowed us to examine the relative abundance of seabirds at remote sites. If a link between vocalizations and population dynamics can be made, acoustic monitoring could be a powerful census method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号