首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the tobacco hornworm, Manduca sexta, metamorphosis occurs in response to two releases of ecdysone that occur 2 days apart. Epidermis was explanted from feeding final-instar larvae before the first release of ecdysone and was cultured in Grace's medium. When exposed to 1 μg/ml of β-ecdysone for 24 hr and then to hormone-free medium for 24 hr, followed by 5 μg/ml of β-ecdysone for 4 days, the epidermis produced tanned pupal cuticle in vitro. During the first 24 hr of exposure to β-ecdysone, the epidermis first changed its cellular commitment to that for pupal cuticle formation (ET50 = 14 hr), then later (by 22 hr) it became committed to tan that cuticle. Then, for most of the pupal cuticle to be tanned, at least a 12-hr period of culture in hormone-free medium was required before the cuticle synthesis was initiated. Consequently, some events prerequisite to sclerotization of pupal cuticle not only occur during the ecdysone-induced change in commitment but also during the ecdysone-free period. When the tissue was preincubated in 3 μg/ml of juvenile hormone (JH I or a mimic epoxygeranylsesamole) for 3 hr and then exposed to both ecdysone and juvenile hormone for 24 hr, it subsequently formed larval cuticle. The optimal conditions for this larval cuticle formation were exposure to 5 μg/ml of β-ecdysone in the presence of 3 μg/ml of epoxygeranylsesamole for 48 hr. When the epidermis was cultured in Grace's medium for 3 days and then exposed to 5 μg/ml of β-ecdysone for 4 days, 70% of the pieces formed pupal cuticle. By contrast, if both ecdysone and JH were added, 77% formed larval cuticle. Therefore, the change from larval to pupal commitment of the epidermal cells requires not only the absence of JH, but also exposure to ecdysone.  相似文献   

2.
Slow infusions of β-ecdysone are more effective in eliciting a normal physiological response than are discrete injections of the hormone. Infusion of β-ecdysone into final instar larvae in the presence of juvenile hormone (JH) induces apolysis and the deposition of a normal larval cuticle. In the absence of JH larvae display the prodromal symptoms of pupation (exposure of the heart, purging of the gut, etc.) in response to a β-ecdysone infusion. The occurrence of certain covert physiological events that accompany the exposure of the heart are evidently necessary to prepare a larva for pupation. An infusion of β-ecdysone can induce apolysis and pupal cuticle deposition only after the prodromal signs of pupation have become evident. Of the two pulses of ecdysone that normally precede pupation in Manduca, the first is apparently responsible for the genetic switchover from larval to pupal development whereas the second one triggers apolysis and the subsequent events that lead to pupation. Results obtained from infusion experiments in which the dose and exposure time were varied independently are consistent with the idea that ecdysone has to be present for a certain minimum time above a threshold concentration to induce a physiological response. The requisite exposure time is apparently not dose-dependent.  相似文献   

3.
The morphogenetic activity of three hormonal substances—α-ecdysone, β-ecdysone, and inokosterone—has been studied in vitro on isolated imaginal leg discs of third-instar larvae of Drosophila melanogaster.In the presence of α-ecdysone (0.3–3 μg/ml) and also of the phytohormone inokosterone (0.3–3 μg/ml), the discs underwent metamorphosis, as characterized by complete evagination (in less than 24 hr), secretion, and shedding (48 hr after explanation) of the pupal cuticle, secretion, and structural differentiation of the imaginal cuticle, namely pigmentation and formation of claws, bristles, and hairs (during days 3–6).In the presence of β-ecdysone (10, 6, 3, 0.3, 0.03, 0.003 μg/ml), evagination was always abnormal and incomplete. With all concentrations but the lowest, the partially everted legs had a swollen appearance and, at all concentrations, the subsequent development was inhibited. No imaginal differentiation occurred at any of the concentrations tested.Larval fat body or larval epidermis added to the isolated discs had no influence on their response to either α-ecdysone or β-ecdysone.Changing the osmotic pressure of the β-ecdysone containing medium likewise did not alter the noxious effect of β-ecdysone.Discs cultured first in the presence of β-ecdysone (for 24 hr), then transferred to fresh medium containing α-ecdysone were unable to undergo normal development. The inhibitory effect of β-ecdysone thus appears to be irreversible.Discs cultured first in the presence of α-ecdysone (for 24, 48 or 72 hr), then transferred to β-ecdysone containing medium, were unable to continue their normal differentiation. Further development was blocked within a few hours after the transfer.Results are discussed in view of results obtained with other in vitro and in vivo cultivation techniques. In conclusion, isolated leg discs of Drosophila are unable to respond physiologically to exogenous β-ecdysone. Only α-ecdysone and inokosterone will induce complete and normal metamorphosis in leg discs cultured in vitro.  相似文献   

4.
Juvenile hormone esterase (JHE) activity, ecdysone titre, and developmental competence of the epidermis were determined in last instar larvae and pupae of Galleria mellonella. Haemolymph JHE activity reaches a peak before increases are observed in ecdysone titre both during larval-pupal and pupal-adult metamorphosis. JHE activity is low during the penultimate larval instar although general esterase activity is relatively high. In last instar larvae two ecdysone peaks are noted after the increase in JHE activity. Furthermore, epidermal cell reprogramming occurs just after the increase in haemolymph JHE activity and possibly before the first increase in ecdysone titre. This was tested by injection of high doses of β-ecdysone into last instar larvae of different ages resulting in rapid cuticle deposition. Reprogramming occurred if the resulting cuticle was of the pupal type. These correlative observations may increase our understanding of the relative importance of an ecdysone surge in the absence of JH in reprogramming of the insect epidermis.  相似文献   

5.
Wild type (Oregon R) and non-pupariating as well as late-pupariating mutant larval tissues were cultured in vitro up to 5 weeks with and without 20-hydroxy ecdysone (1 μg/ml). The following responses were elicited by the hormone: in the case of wild type tissues detachment of the larval epidermis and muscles from the cuticle; puparial tanning and sclerotization of the larval cuticle; dissociation of the fat body into single cells; inhibition of the movement of the hind intestine. Most of these responses developed within 1 week of culturing. Of the 4 mutants tested, 3 behaved like the wild type. In cultures of ?(1)npr-1, however, puparial tanning, disc evagination, and inhibition of the movement of the hind intestine was abnormally weak and the dissociation of fat body was not observed at all. Detachment of the epidermis and muscles as well as formation of the pupal cuticle by disc tissue occurred normally. The results are discussed with respect to the ecdysteroid-induced metamorphosis of the tissues and the autonomy of mutant gene action.  相似文献   

6.
Epidermal cells from ligated day-3 last instar larvae of Galleria mellonella secrete a larval cuticle if exposed to ecdysone immediately following ligation; whereas, they deposit a pupal cuticle if exposed to ecdysone three to four days after ligation. During the period of reprogramming the genome in the diploid cells of the wax moth larvae no DNA synthesis occurs. This is direct proof that DNA synthesis is not required for reprogramming in the epidermis of Galleria during larval-pupal transformation.  相似文献   

7.
Summary This paper reviews the effects of insect hormones on lepidopteran imaginal discs cultured in vitro.β-ecdysone stimulated both evagination and cuticle deposition of wing discs ofPlodia interpunctella (Hübner). However, evagination required a shorter exposure to ecdysone than did cuticle deposition. Cuticle deposition was obtained under the following conditions: (a) a 24-hr pulse ofβ-ecdysone (0.5–5.0μg/ml); (b) continuous treatment with 0.2μg/mlβ-ecdysone; or (c) continuous treatment with 0.5 to 50.0μg/mlβ-ecdysone in medium conditioned with larval fat body. Investigations of some biochemical effects of ecdysone showed that RNA and protein synthesis was required for evagination and cuticle deposition. In particular, studies with actinomycin D and cycloheximide (at nontoxic levels) showed that RNA and protein synthesis during the ecdysone-dependent period was essential for subsequent development. These findings support the hypothesis that stimulation of macromolecular synthesis is fundamental to the action of ecdysone on imaginal discs. The influence of beta-ecdysone on chitin synthesis was also examined.β-ecdysone stimulated uptake and incorporation of tritiated-glucosamine by culturedP. interpunctella wing discs. Addition of hexosamines to the culture medium had no influence on ecdysone-induced cuticle deposition, but inhibition of glucose-uptake by cytochalasin B prevented the formation of cuticle. The action of ecdysone on particular enzymes in the chitin pathway remains to be elucidated. Presented in the formal symposium on Information Transfer in Eukaryotic Cells, at the 26th Annual Meeting of the Tissue Culture Association, Montreal, Quebec, June 2–5, 1975.  相似文献   

8.
When epidermis from wandering stage tobacco hornworm (Manduca sexta) larvae was exposed to 5 μg/ml 20-hydroxyecdysone for 3 days, then exposed to hormone-free Grace's medium, the newly formed pupal cuticle tanned slowly up to 35% of its area by day 12. The addition of 1.3 mM dopamine on either day 4 or 5 slightly increased the area tanned and addition of β-alanine (to 11.2 mM) on days 3–5 enhanced tanning 2–2.5-fold by day 8. Later addition had no effect. When pharate pupal cuticle about 24 h before ecdysis was explanted to Grace's medium, little tanning occurred in 24 h unless dopa or dopamine or their derivatives were added; β-alanine up to 4.4 mM had no effect. Partial tanning occurred in 10 mM dopa or dopamine. More effective were N-β-alanylnorepinephrine and N-β-alanyldopamine which produced nearly maximal tanning at 1 and 5 mM respectively. Up to 10 mM N-β-acetylnorepinephrine had little effect. Thus, dopamine and β-alanine are important to cuticular tanning in vitro and apparently need to be incorporated into the exocuticle during its synthesis. Maximal tanning of this exocuticle then requires further incorporation of β-alanyl conjugates.  相似文献   

9.
The levels of ecdysteroids in Sarcophaga bullata were determined by radioimmunoassay (RIA) from the time of larviposition (0 hr) to after the 2nd ecdysis and from late larval to pupal development. Two distinct peaks of ecdysteroid activity were recorded mid-way through the first and second stadia (14 and 34 hr) and two smaller peaks occurred a few hours prior to each ecdysis. A large release of ecdysteroids occurred from 8 hr before and up to 18 hr after formation of the white prepupa. This peak initiated the formation of the prepupa, the tanning of the puparium, larval/pupal apolysis and secretion of the pupal cuticle.Assays for the cuticle tanning hormone, bursicon, in pre-ecdysial larvae were not positive and a possible role for ecdysone in pre-ecdysial tanning of larval cuticular structures is proposed.  相似文献   

10.
Ecdysone haemolymph levels and in vivo development of imaginal wing discs have been studied during the last larval instar of Pieris brassicae.During this period, β-ecdysone variations show two successive peaks, the first one related to the induction of wandering stage, and the second (main) one to pupal cuticle synthesis. The observed situation is very similar to that of Manduca sexta. Imaginal wing disc growth is composed of several genetically programmed steps that need the presence of ecdysone, but do not appear very closely linked to circulating hormone levels. It seems that ecdysone haemolymph peaks should be considered as periods where ecdysone levels are above a threshold value.  相似文献   

11.
Expression of Manduca Broad-Complex (BR-C) mRNA in the larval epidermis is under the dual control of ecdysone and juvenile hormone (JH). Immunocytochemistry with antibodies that recognize the core, Z2, and Z4 domains of Manduca BR-C proteins showed that BR-C appearance not only temporally correlates with pupal commitment of the epidermis on day 3 of the fifth (final) larval instar, but also occurs in a strict spatial pattern within the abdominal segment similar to that seen for the loss of sensitivity to JH. Levels of Z2 and Z4 BR-C proteins shift with Z2 predominating at pupal commitment and Z4 dominant during early pupal cuticle synthesis. Both induction of BR-C mRNA in the epidermis by 20-hydroxyecdysone (20E) and its suppression by JH were shown to be independent of new protein synthesis. For suppression JH must be present during the initial exposure to 20E. When JH was given 6 h after 20E, suppression was only seen in those regions that had not yet expressed BR-C. In the wing discs BR-C was first detected earlier 1.5 days after ecdysis, coincident with the pupal commitment of the wing. Our findings suggest that BR-C expression is one of the first molecular events underlying pupal commitment of both epidermis and wing discs.  相似文献   

12.
In the absence of other organ systems, β-ecdysone (0·05 to 0·10 μg/ml culture medium) stimulates the shortening of interganglionic connectives of Galleria mellonella that occurs during metamorphosis. There is a direct relations-ship between the amount of β-ecdysone in the medium and the fraction of the sample shortening to at least half the initial length. β-Ecdysone is ~ 140 × more active than α-ecdysone in eliciting the response. When β-ecdysone and other ecdysone analogues are assayed on this system at uniform dosages (10 μg/ml tissue culture medium), the order of effectiveness (percentage sample shortening to at least half the initial length) is: cyasterone > ponasterone-A = β-ecdysone > inokosterone > α-ecdysone. 22-Iso-α-ecdysone is ineffective in stimulating shortening.  相似文献   

13.
The titer of ecdysone in whole animal extracts of Manduca sexta was determined by radioimmunoassay during the fifth (last) larval instar, pharate pupal development and pupation. A subtle peak in ecdysone concentration was noted at day 4 (just prior to the onset of the wandering stage) and a second and greater peak at day 8.5 (coincident with pharate pupal development). The titer fluctuations during development were a result of changes in tissue ecdysone and not of alterations in the ecdysone content of the gut. When prothoracic gland secretory activity was analyzed in vitro at the same stages, the most rapid rate of α-ecdysone secretion was shown to occur on day 7 (one day prior to the peak in whole-animal ecdysone concentration). An earlier peak in prothoracic gland activity may occur at day 4–5. Thin layer and gas-liquid chromatographic analyses revealed developmental changes in the ratio of β:α-ecdysone in hemolymph and whole-animal extracts. It is suggested that the steroid-hydroxylating capacity of the insect increases during the instar.  相似文献   

14.
D S King  E P Marks 《Life sciences》1974,15(1):147-154
Hemolymph β-ecdysone levels are high (~1.6 μg/ml) in late last instar cockroach (Leucophaeamaderae) nymphs; the level of α-ecdysone (~0.1 μg/ml) is evidently subphysiological. Cultured leg regenerates, target organs of ecdysone, are capable of slowly converting α- to β-ecdysone. Cultured prothoracic glands secrete α-ecdysone, which was identified by complete mass spectrometry. These results are consistent with the view that α-ecdysone, secreted by the prothoracic gland, functions as a prohormone which is converted into the active moulting hormone, β-ecdysone, in other tissues.  相似文献   

15.
The titre and metabolism of ecdysone were studied in the last larval instar of the spruce budworm, Choristoneura fumiferana. Both in males and females a distinct ecdysone peak is present just before ecdysis. Injection of radioactive α-ecdysone into the insect when the endogenous level is low results in the transformation of most of the injected hormone into 3-dehydro-α-ecdysone and conjugates, with very little conversion to β-ecdysone. Whereas when the labelled material is administered when the endogenous level is high, the α-ecdysone is for the most part converted to β-ecdysone. The significance of the correlation between the endogenous titre of ecdysone and the metabolism of injected α-ecdysone is discussed.  相似文献   

16.
During pupal-adult development of the silkworm, Bombyx mori, the ecdysone titer changes, exhibiting two maxima in the females: one on the second day of pupal development and the other just before adult emergence. During the second maximum, ecdysone accumulates in the ovaries. It also accumulates in isolated abdomens, which were prepared just after pupal ecdysis and induced to initiate adult development by injection with β-ecdysone. Several lines of evidence suggest that ecdysone is synthesized in the ovary itself.  相似文献   

17.
Previous studies have shown that the larval epidermis of the tobacco hornworm, Manduca sexta, contains a 29 kDa nuclear protein (JP29) that binds pothoaffinity analogs of juvenile hormone (JH), but does not bind JH I with high affinity. We now find that JP29 is also associated with the insecticyanin granules, and we show that JP29 mRNA is regulated in a complex fashion by both 20-hydroxyecdysone (20E) and JH. Studies with day 2 fourth instar larval epidermis in vitro showed that a molting concentration 12 μg/ml) of 20E caused the disappearance of JP29 mRNA, irrespective of the presence or absence of JH; this effect was dependent on the concentration of 20E (ED50=200 ng/ml). The reappearance of JP29 mRNA around the time of ecdysis required the presence of JH at head capsule slippage (HCS), since little appeared in larvae allatectomized about 6 h before HCS unless JH I was applied at the time of HCS. Maintenance of JP29 mRNA in fifth instar epidermis also required the continued presence of JH in both isolated abdomens and in vitro. Culture of either day 1 or day 2 fifth instar epidermis without hormones for 24 h caused decline of JP29 mRNA, which was accelerated by 20E in a concentration-dependent manner (ED50 = 30 and 10 ng/ml 20E respectively). When day 2 epidermis was exposed to 500 ng/ml 20E for 24 h to cause pupal commitment, JP29 mRNA disappeared. Neither methoprene nor JH I (in either the presence or the absence of the esterase inhibitor O-ethyl, S-phenyl phosphamidethiolate [EPPAT]) was able to prevent this loss, although both slowed its rate. The mRNA for the larval cuticle protein LCP14 was found to be regulated similarly to that for JP29 by 20E, but differently by JH. The JP29 protein was relatively long-live, persisting after the disappearance of its mRNA for at least 19 h during the larval molt and for more than 24 h in vitro. Although trace amounts of JP29 are found for the first 12 h after pupal ecdysis, injection of 5 μg JH II into pupae during the critical period to cause the synthesis of a second pupal cuticle had no effect on the amount of JP29 present. Thus, although the presence of JP29 in larval epidermis is associated with and dependent on JH, high amounts are not associated with the “status quo” action of JH on the pupa. The role of this protein consequently remains obscure. Arch. Insect Biochem. Physiol. 34:409–428, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Summary In the tobacco hornworm,Manduca sexta, the epidermis which underlies the larval crochets is the first tissue to become independent of the prothoracic glands (PG) in a larval molt. In each successive larval molt, crochet forming cells increase in size, form hooks at their distal ends and, finally, secrete cuticle. This paper examines the endocrine requirements for competence to molt and describes parallel cultures in vivo and in vitro to define the hormonal control of crochet molting. When implanted into a fourth instar host larva prior to initiation of the last larval molt, competent crochet epidermis molted, forming crochets synchronously with its host. In the fourth instar, competence to form crochets is attained slowly during the first two days following ecdysis from the third instar. During the feeding phase of the fifth (last) instar, the crochet epidermis remains competent to molt (to form an extra sixth instar set of crochets) until the larva attains a weight of about 4.5 gm. Then, concurrent with the decline in the titer of juvenile hormone (JH) in the hemolymph, competence to form crochets declines. A similar loss of competence did not occur when fourth instar crochet epidermis was exposed to a declining JH titer by culture in either fourth instar isolated abdomens for 72 h or in fifth instar host larvae between 4 and 7 gm. Responses of crochet epidermis cultured in vitro also were examined. Competent fourth instar crochet epidermis formed crochets following 3–6 h exposure to ecdysone in vitro. Six ×10–7M -ecdysone was required for 50% response, whereas a 10–50-fold higher concentration of -ecdysone was necessary. Although formation of morphologically complete crochets in vitro proceeded with similar time course to that in situ, no molt-induced growth occurred in vitro. When crochet epidermis was exposed to ecdysone in vitro immediately after explantation, exogenous JH was not required for molting. But when tissue was first cultured for 72 h without hormones, subsequent molting in vitro could not be elicited, although molting still could occur when the tissue subsequently was implanted into a fourth instar host. Exposure to corpora allata or to JH during the 72 h of culture in vivo partially prevented the loss in capacity to respond to ecdysone in vitro, suggesting that JH may be one factor involved directly or indirectly in maintenance of tissue responsiveness.Preliminary presentation of some of this work given at the December, 1973 Meeting of the American Society of Zoologists (Fain and Riddiford, 1973)  相似文献   

19.
 Insect molting and metamorphosis are orchestrated by ecdysteroids with juvenile hormone (JH) preventing the actions of ecdysteroids necessary for metamorphosis. During the molt and metamorphosis of the dorsal abdominal epidermis of the tobacco hornworm, Manduca sexta, the isoforms involved in the ecdysone receptor (EcR)/Ultraspiracle (USP) complex change with the most dramatic switch being the loss of USP-1 and the appearance of USP-2 during the larval and pupal molts. We show here that this switch in USP isoforms is mediated by high 20-hydroxyecdysone (20E) and that the presence of JH is necessary for the down-regulation of USP-1 mRNA. The decrease of USP-1 mRNA in day 2 fourth instar larval epidermis in vitro required exposure to a high concentration (10–5 M) of 20E equivalent to the peak ecdysteroid concentration in vivo, whereas the increase of USP-2 mRNA occurred at lower concentrations (effective concentrations, EC50=6.3×10–7 M). During the pupal molt of allatectomized larvae which lack JH, USP-2 mRNA increased normally with the increasing ecdysteroid titer, whereas USP-1 mRNA remained high until pupation. When day 2 fifth instar larval epidermis was exposed to 500 ng/ml 20E in the absence of JH to cause pupal commitment of the cells by 24 h, USP-1 RNA remained at its high preculture level for 12 h, then increased two- to threefold by 24 h. The increase was prevented by the presence of 1 μg/ml JH I which also prevents the pupal commitment of the cells. By contrast, USP-2 mRNA increased steadily with the same EC50 as in fourth stage epidermis, irrespective of the presence or absence of JH. Under the same conditions, mRNAs for both EcR-B1 and EcR-A isoforms were up-regulated by 20E, each in its own time-dependent manner, similar to that seen in vivo. These initial mRNA increases were unaffected by the presence of JH I, but those seen after 12 h exposure to 20E were prevented by JH, indicating a difference in response between larvally and pupally committed cells. The presence of JH which maintained larval commitment of the cells also prolonged the half-life of the EcR proteins in these cells. These results indicate that both EcR and USP RNAs are regulated by 20E and can be modulated by JH in a complex manner with only that of USP-2 apparently unaffected. Received: 16 July 1998 / Accepted: 5 August 1998  相似文献   

20.
《Insect Biochemistry》1978,8(4):275-278
A new method has been devised for the purification and analysis of ecdysones of insect origin. The system uses high-performance liquid chromatography for both purification and analysis, thus allowing a rapid determination of both α- and β-ecdysone in extracts of whole insects. Ecdysone levels analysed during the 12 days of pupal-adult development of Heliothis zea showed a sharp rise in α-ecdysone production one day after larval-pupal ecdysis and a peak concentration 3.5 days after ecdysis. A parallel increase in the titer of β-ecdysone occurred approximately 24 hr later. The concentrations of α and β-ecdysone quickly dropped to low levels on days 5 and 6, respectively, and neither ecdysone was detectable during the latter phase of adult development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号