首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration.C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis.Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups.The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest.  相似文献   

2.
Humanin and its analogues have been shown to protect cells against death induced by various Alzheimer's disease genes and amyloid-beta-peptides in vitro: the analogue [Gly14]-humanin has also been shown to be potent in reversing learning and memory impairment induced by scopolamine in mice in vivo. It is important to validate these results by using other behavioral methods. In this study, the effect of [Gly14]-humanin and des-Leu-PAGA, another analogue (0.2 micromol kg(-1), i.p.) on the 3-quinuclidinyl benzilate-induced (2 mg kg(-1), i.p.) impairment of spatial memory in the multiple T-maze in rats has been evaluated. Both peptides reversed the impairment of spatial memory. These results indicate the potential of humanin analogues in modulation of the cholinergic system.  相似文献   

3.
本研究的主要目的是建立昆明小鼠物体识别模型并评价该模型在安全药理学研究中的潜在应用价值。研究了昆明小鼠物体识别记忆随时间而减弱的特性,在训练结束后4h或1h,检测昆明小鼠的物体识别记忆,并评价了东莨胆碱对昆明小鼠物体识别记忆的影响。结果表明:1h间隔组昆明小鼠熟悉期探究物体的时间差和测试期探究物体的时间差存在显著差异(P<0.05),昆明小鼠在训练结束后1h记忆保持良好,可以进行物体识别;东莨胆碱组昆明小鼠熟悉期探究物体的时间差和测试期探究物体的时间差比较(P>0.05),没有显著性差异。因此,东莨胆碱损伤了昆明小鼠的物体识别记忆。用昆明小鼠建立的物体识别模型具有简单、快速、可靠等特点,在安全药理学研究中可用于检测化学药物对记忆的损伤。  相似文献   

4.
It has been demonstrated that melatonin plays important roles in memory improvement and promotes neurogenesis in experimental animals. We examined effects of melatonin on cognitive deficits, neuronal damage, cell proliferation, neuroblast differentiation and neuronal maturation in the mouse dentate gyrus after cotreatment of scopolamine (anticholinergic agent) and melatonin. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were intraperitoneally injected for 2 and/or 4 weeks to 8-week-old mice. Scopolamine treatment induced significant cognitive deficits 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly improved spatial learning and short-term memory impairments. Two and 4 weeks after scopolamine treatment, neurons were not damaged/dead in the dentate gyrus, in addition, no neuronal damage/death was shown after cotreatment of scopolamine and melatonin. Ki67 (a marker for cell proliferation)- and doublecortin (a marker for neuroblast differentiation)-positive cells were significantly decreased in the dentate gyrus 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly increased Ki67- and doublecortin-positive cells compared with scopolamine-treated group. However, double immunofluorescence for NeuN/BrdU, which indicates newly-generated mature neurons, did not show double-labeled cells (adult neurogenesis) in the dentate gyrus 2 and 4 weeks after cotreatment of scopolamine and melatonin. Our results suggest that melatonin treatment recovers scopolamine-induced spatial learning and short-term memory impairments and restores or increases scopolamine-induced decrease of cell proliferation and neuroblast differentiation, but does not lead to adult neurogenesis (maturation of neurons) in the mouse dentate gyrus following scopolamine treatment.  相似文献   

5.
Several epidemiological studies have shown that consumption of large quantities of vegetables especially cruciferous vegetables (Broccoli and Brussels sprouts) can protect against chronic diseases. Sulforaphane, an isothiocynate found in cruciferous vegetables has been demonstrated to have neuroprotective effects in several experimental paradigms. This study was undertaken to examine the effect of sulforaphane on cognitive impairment in zebra fish model using a novel method of fear conditioning. Initially, the normal behaviour of zebra fishes was studied in light-dark tank for 10 min daily for 10 days. Fishes were then divided into seven groups of twelve in each. Group I served as normal, group II served as fear conditioned control, group III and group IV were sulforaphane (25 µM/L) and piracetam (200 mg/L) treated respectively. Group V served as scopolamine (400 µM/L) induced memory impairment fishes. Group VI and VII were sulforaphane (25 µM/L) and piracetam (200 mg/L) treated scopolamine induced memory impairment groups respectively. In normal behavioural analysis, fishes preferred to stay in dark compartment. The average number of entries into the dark and time spent in dark were significantly more. Fishes in group II to VII were individually subjected to fear conditioning passive avoidance task and evaluated for learned task memory. It was observed that the average number of entries into dark and time spent in dark were significantly decreased. After exposure to respective treatment fishes in group III to VII were subjected to cognitive evaluation. There was no significant difference in cognition of group III and IV fishes exposed to sulforaphane and piracetam alone respectively. Fishes exposed to scopolamine showed a significant cognitive impairment. Sulforaphane exposure prior to scopolamine significantly retained the memory of learned task. These findings suggest that sulforaphane might be a promising therapeutic agent for cognitive enhancement in Alzheimer’s disease.  相似文献   

6.
We isolated 2,3-dihydroxy-4-methoxyacetophenone, a neuroprotective compound from Cynenchum paniculatum in our previous study.The present study was conducted to investigate the possible neuroprotective effect of 2,3-dihydroxy-4-methoxyacetophenone that has been previously isolated from Cynenchum paniculatum on hippocampal neuronal cell line, HT22 cells and its possible cognitive-enhancing effect on scopolamine-induced amnesia in mice.Neuroprotective effect against glutamate-induced neurotoxicity in HT22 cells was evaluated by MTT assay. Also, cognitive enhancing effect against scopolamine (1 mg/kg, ip) induced learning and memory deficit was measured by Morris water maze test. Oral administered of 2,3-dihydroxy-4-methoxyacetophenone (1, 10, 20, 40 and 50 mg/kg) to amnesic mice induced by scopolamine. In Morris water maze test, 2,3-dihydroxy-4-methoxyacetophenone (50 mg/kg) improved the impairment of spatial memory induced by scopolamine. 2,3-Dihydroxy-4-methoxyacetophenone protect HT22 cells on glutamate induced cell-death in a dose-dependent manner (EC50 value: 10.94 μM). Furthermore, 2,3-dihydroxy-4-methoxyacetophenone was found to inhibit [Ca2+] accumulation in HT22 cells and had antioxidantive activity. The results showed that 2,3-dihydroxy-4-methoxyacetophenone exert neuroprotective and cognitive-enhancing activities through its antioxidant activity. We suggest that 2,3-dihydroxy-4-methoxyacetophenone improves cognitive function and may be helpful for the treatment of Alzheimer’s disease.  相似文献   

7.
The effect of α-asarone on impairment of cognitive performance caused by amnesic drug scopolamine was investigated. Treatment with α-asarone attenuated scopolamine-induced cognitive deficits as evaluated by passive avoidance and Y-maze test. Administration of α-asarone for 15 d improved memory and cognitive function as indicated by an increase in transfer latency time and spontaneous alternation in passive avoidance and the Y-maze test respectively. To understand the action of α-asarone, the levels of acetylcholinesterase (AChE), malondialdehyde (MDA), and superoxide dismutase (SOD) in the hippocampus (Hippo) and cerebral cortex (CC) of scopolamine-induced amnesic mice were evaluated. The mice treated with Scopolamine showed increased activity of AChE, MDA and SOD levels in both the Hippo and the CC area. Treatment with α-asarone attenuated the increased activity of AChE and normalized the MDA and SOD levels in the Hippo and the CC area in the scopolamine treated amnesic mice. These results suggest that α-asarone has a beneficial effect in cognitive impairment induced by dysfunction of cholinergic system in brain through inhibition of AChE activity and by influencing the antioxidant defense mechanism.  相似文献   

8.
The effect of 7-oxo-DHEA acetate on memory in young and old C57BL/6 mice   总被引:8,自引:0,他引:8  
Shi J  Schulze S  Lardy HA 《Steroids》2000,65(3):124-129
7-Oxo-dehydroepiandrosterone, which can be formed from dehydroepiandrosterone (DHEA) by several mammalian tissues, is more effective than its parent steroid as an inducer of thermogenic enzymes when administered to rats. Using the Morris water maze procedure, we tested DHEA and its 7-oxo-derivative for their ability to reverse the memory abolition induced by scopolamine in young C57BL/6 mice, and for their effect on memory in old mice. A single dose of 7-oxo-DHEA-acetate at 24 mg/kg b.w. completely reversed the impairment caused by 1 mg of scopolamine per kg b.w. (P < 0.001). DHEA (20 mg/kg) was also effective (P < 0.01). In old mice given the same single doses followed by feeding 0.05% of the respective steroid in the diet, memory of the water maze training was retained through a four week test period in mice receiving 7-oxo-DHEA-acetate (P < 0.05) but not in the control or DHEA-treated groups. When old mice were not tested until five weeks after being trained 7-oxo-DHEA exerted a slight, but statistically insignificant, improvement in memory retention. The possible effect of 7-oxo-DHEA in human memory problems deserves investigation.  相似文献   

9.
Dementia is one of the age related mental problems and a characteristic symptom of various neurodegenerative disorders including Alzheimer's disease. Certain drugs like diazepam, barbiturates and alcohol disrupt learning and memory in animals and man. However, a new class of drugs known as nootropic agents is now used in situations where there is organic disorder in learning abilities. The present work was undertaken to assess the potential of O. sanctum extract as a nootropic and anti-amnesic agent in mice. Aqueous extract of dried whole plant of O. sanctum ameliorated the amnesic effect of scopolamine (0.4 mg/kg), diazepam (1 mg/kg) and aging induced memory deficits in mice. Elevated plus maze and passive avoidance paradigm served as the exteroceptive behavioral models. O. sanctum extract decreased transfer latency and increased step down latency, when compared to control (piracetam treated), scopolamine and aged groups of mice significantly. O. sanctum preparations could of beneficial in the treatment of cognitive disorders such as dementia and Alzheimer's disease.  相似文献   

10.
Scopolamine, an anticholinergic drug, is reported to produce amnesia by interference of long term potentiation and has been used for discerning the efficacy of various antiamnesic drugs. The intoxication with anticholinergics and benzodiazepines tend to produce neurodegeneration which cause memory deficits. Our earlier reports have shown the antiamnesic drug, B. monniera to be capable of alleviating diazepam induced memory deficits. We have now tested how scopolamine affects downstream signaling molecules of long term potentiation and if B. monniera can also modulate the scopolamine induced amnesia. We used Morris water maze scale to test the amnesic effect of scopolamine and its reversal by B. monniera. Rota-rod test was used to screen muscle coordination activity of mice before water maze investigations were carried out. The results showed that scopolamine downregulated protein kinase C and iNOS without affecting cAMP, protein kinase A, calmodulin, MAP kinase, nitrite, CREB and pCREB. B. monniera reversed the scopolamine induced amnesia by significantly improving calmodulin and by partially attenuating protein kinase C and pCREB. These observations suggest involvement of calmodulin in evoking antiamnesic effects of B. monniera.  相似文献   

11.
This study was designed to investigate the effects of the root-bark extract of Clausena harmandiana (CH) and its active constituents (nordentatin and 7-methoxyheptaphylline) on pharmacological activities regarding selected targets associated with AD, namely, its antioxidant activity, inhibition of Aβ aggregation, acetylcholinesterase (AChE) activity, and neuroprotective effects. The effect of the CH extract on the cognitive impairment induced by scopolamine was also evaluated in mice. The effects of the CH extract and its active constituents on radical scavenging, Aβ aggregation, and AChE activity were investigated with a 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assay, a thioflavin-T assay, and Ellman’s method. The neuroprotective effects of the extract against hydrogen-peroxide and Aβ toxicity were evaluated with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. In addition, the effects on cognitive impairment induced by scopolamine in mice were evaluated using Morris-water-maze and modified-Y-maze test models. The results of the present study demonstrate that the root-bark extract of CH shows multimodal actions relevant to the AD pathological cascade, including antioxidant effects, the inhibition of Aβ aggregation, the inhibition of AChE function, and neuroprotection against oxidative stress and Aβ toxicity. The extracts could improve both the short- and long-term memory deficits induced by scopolamine in mice.  相似文献   

12.
The role of honeybee central brain structures, suspected to be cholinergic, has been studied in learning and memory. The nicotinic antagonist mecamylamine and the muscarinic antagonist scopolamine were locally injected into the calyces and the alpha-lobes of mushroom bodies, and their effects on memory acquisition and retrieval were investigated using one-trial olfactory conditioning of the proboscis extension reflex. A strong impairment of the olfactory learning was noticed following mecamylamine injection into the mushroom body calyces. Mecamylamine and scopolamine disturbed retrieval processes when injected into the alpha-lobes of mushroom bodies but remain without effect on these processes when injected into the mushroom body calyces. These results emphasise the role of the cholinergic networks of the mushroom bodies in the formation and recall of memory in the honeybee. They suggest that the role of the brain structures in these processes is sequential. Mushroom body calyces involved in the associative process of olfactory learning could be relayed by the alpha-lobes for information retrieval.  相似文献   

13.
灵芝对小鼠空间分辨学习与记忆的影响   总被引:4,自引:0,他引:4  
本文用Y-型迷宫法测试小鼠空间分辨行为。实验结果表明,每日ig灵芝2.58/kg共7d,有明显促进学习的作用。每日ig灵芝2.5g/kg共7d或ig灵芝5g/kg共7d都能显著地拮坑东莨菪碱所致学习障碍的作用。此外,学习训练后立即ig灵芝2.5g/kg或ig灵芝5g/kg也有明显地改善东莨菪碱损害记忆巩固的作用。  相似文献   

14.
Housing conditions represent an important environmental variable playing a critical role in the assessment of mouse behaviour. In the present study the effects of isolation and nesting material on the behaviour of female C57BL/6J mice were evaluated. The mice were subjected to different rearing conditions from weaning (at the age of 3 weeks). The study groups were group- and single-housed mice, divided further into groups with or without nesting material (species-specific enrichment). After 8 weeks spent in respective conditions the behavioural testing began. Both factors (social conditions and nesting material) appeared to have a significant impact on the behavioural phenotype. However, it is important to stress that the interaction between the factors was virtually absent. We established that isolation increased locomotor activity and reduced anxiety-like behaviour in several tests of exploration. In contrast, absence of nesting material increased anxiety-like behaviour. Neither factor affected rota-rod performance, nociception and prepulse inhibition. Contextual fear memory was significantly reduced in single-housed mice, and interestingly, in mice with nesting material. Cued fear memory was reduced by single-housing, but not affected by enrichment. Mice from enriched cages displayed faster and better learning and spatial search strategy in the water maze. In contrast, isolation caused significant impairment in the water maze. In conclusion, both isolation and species-specific enrichment have profound effects on mouse behaviour and should be considered in design of the experiments and in assessment of animal welfare issues.  相似文献   

15.
Konar A  Shah N  Singh R  Saxena N  Kaul SC  Wadhwa R  Thakur MK 《PloS one》2011,6(11):e27265

Background

Scopolamine is a well-known cholinergic antagonist that causes amnesia in human and animal models. Scopolamine-induced amnesia in rodent models has been widely used to understand the molecular, biochemical, behavioral changes, and to delineate therapeutic targets of memory impairment. Although this has been linked to the decrease in central cholinergic neuronal activity following the blockade of muscarinic receptors, the underlying molecular and cellular mechanism(s) particularly the effect on neuroplasticity remains elusive. In the present study, we have investigated (i) the effects of scopolamine on the molecules involved in neuronal and glial plasticity both in vivo and in vitro and (ii) their recovery by alcoholic extract of Ashwagandha leaves (i-Extract).

Methodology/Principal Findings

As a drug model, scopolamine hydrobromide was administered intraperitoneally to mice and its effect on the brain function was determined by molecular analyses. The results showed that the scopolamine caused downregulation of the expression of BDNF and GFAP in dose and time dependent manner, and these effects were markedly attenuated in response to i-Extract treatment. Similar to our observations in animal model system, we found that the scopolamine induced cytotoxicity in IMR32 neuronal and C6 glioma cells. It was associated with downregulation of neuronal cell markers NF-H, MAP2, PSD-95, GAP-43 and glial cell marker GFAP and with upregulation of DNA damage- γH2AX and oxidative stress- ROS markers. Furthermore, these molecules showed recovery when cells were treated with i-Extract or its purified component, withanone.

Conclusion

Our study suggested that besides cholinergic blockade, scopolamine-induced memory loss may be associated with oxidative stress and Ashwagandha i-Extract, and withanone may serve as potential preventive and therapeutic agents for neurodegenerative disorders and hence warrant further molecular analyses.  相似文献   

16.
The relationship between amyloid beta and cognitive dysfunction in mouse models of Alzheimer's disease has been evaluated predominantly with the spatial reference memory version of the water maze task. However, as Alzheimer's disease encompasses decline in multiple memory systems, it is important to also utilize non-spatial tasks to fully characterize the role of amyloid on behaviour in animal models. We used the TgCRND8 mouse model of Alzheimer's disease to evaluate the effect of amyloid on spatial reference memory, as well as on the non-spatial task of acquisition of conditioned taste aversion, and on the procedural task of swimming to a visible platform. We demonstrate that 8- to 12-month-old TgCRND8 mice are significantly impaired in all three tasks, and that the levels of soluble amyloid beta are significantly correlated with impairment in spatial reference memory, but not with impairment in conditioned taste aversion or swimming to a visible platform. Insoluble fractions of amyloid, which correspond closely to amyloid plaque burden in the brain, are not associated with any behavioural measure. Our study extends the characterization of the model to stages of advanced amyloid pathology and demonstrates that older TgCRND8 mice are impaired in multiple memory systems, including procedural tasks, which are spared at younger ages. The lack of association between amyloid plaques and memory decline supports clinical findings in Alzheimer's patients.  相似文献   

17.
We previously demonstrated that 3-iodothyronamine (T1AM), a by-product of thyroid hormone metabolism, pharmacologically administered to mice acutely stimulated learning and memory acquisition and provided hyperalgesia with a mechanism which remains to be defined. We now aimed to investigate whether the T1AM effect on memory and pain was maintained in mice pre-treated with scopolamine, a non-selective muscarinic antagonist expected to induce amnesia and, possibly, hyperalgesia.Mice were pre-treated with scopolamine and, after 20 min, injected intracerebroventricularly (i.c.v.) with T1AM (0.13, 0.4, 1.32 μg/kg). 15 min after T1AM injection, the mice learning capacity or their pain threshold were evaluated by the light/dark box and by the hot plate test (51.5 °C) respectively. Experiments in the light/dark box were repeated in mice receiving clorgyline (2.5 mg/kg, i.p.), a monoamine oxidase (MAO) inhibitor administered 10 min before scopolamine (0.3 mg/kg).Our results demonstrated that 0.3 mg/kg scopolamine induced amnesia without modifying the murine pain threshold. T1AM fully reversed scopolamine-induced amnesia and produced hyperalgesia at a dose as low as 0.13 μg/kg. The T1AM anti-amnestic effect was lost in mice pre-treated with clorgyline.We report that the removal of muscarinic signalling increases T1AM pro learning and hyperalgesic effectiveness suggesting T1AM as a potential treatment as a “pro-drug” for memory dysfunction in neurodegenerative diseases.  相似文献   

18.
探究香水莲花提取物(Nymphaea hybrid extract,NHE)对东莨菪碱诱导记忆障碍小鼠的学习记忆能力的影响。采用腹腔注射东莨菪碱建立记忆障碍模型,Morris水迷宫实验测定小鼠空间学习和记忆能力。水迷宫实验结束后,断头处死小鼠,进行生化指标的测定。结果表明,与模型组小鼠相比,NHE干预后,小鼠的逃避潜伏期明显缩短(P <0. 01),目标象限停留时间百分比和穿越平台次数增加(P <0. 05或P <0. 01),小鼠海马和皮质区的SOD和GSH-PX活力显著升高(P <0. 01或P <0. 05),MDA含量极显著降低(P <0. 01),ACh E活性显著降低(P <0. 01),ACh含量增加(P <0. 01或P <0. 05)。同时,免疫印迹结果表明,NHE能够改善东莨菪碱引起小鼠海马和皮质中ERK、CREB磷酸化水平和BDNF蛋白表达的减少。综上,香水莲花提取物可以提高东莨菪碱诱导的记忆障碍小鼠的学习记忆能力,具体机制涉及缓解大脑的氧化应激损伤,平衡胆碱能系统,激活ERK-CREB-BDNF信号通路。  相似文献   

19.
The authors studied the influence of amiridin and tacrine on learning and memory in mice and rat by passive avoidance conditioning test at norm and under scopolamine induced amnesia as well as of their effect on acetylcholine esterase (AChE) activity in brain cortex homogenates. Amiridin in doses 0.1 and 0.2 mg/kg showed a beneficial action on conditioning in untreated animals, its effect being comparable with that of piracetam. Tacrine was ineffective. In scopolamine treated animals amiridin and tacrine showed anti-amnestic action at dose of 0.1 mg/kg which was found ineffective with respect to AChE activity. The data suggests that the ameliorating effect of amiridin and tacrine on cognitive abilities in patients with senile dementia is not related their anticholinesterase properties.  相似文献   

20.
Tsai FS  Peng WH  Wang WH  Wu CR  Hsieh CC  Lin YT  Feng IC  Hsieh MT 《Life sciences》2007,80(18):1692-1698
The study was conducted to investigate the ameliorating effects of luteolin on memory acquisition in rats. The effects of luteolin on scopolamine-induced impairment of passive avoidance response were evaluated primarily, as well as the role of the central nervous system through the use of central neurotoxins and central nervous antagonists. Luteolin was not reversed by scopolamine N-methylbromide (M-SCOP) but blocked the impairment of learning acquisition induced by cholinergic neurotoxin (ethylcholine aziridinium, AF64A) and muscarinic (scopolamine hydrobromide, SCOP) and nicotinic (mecamylamine, MECA) receptor antagonists. However, it did not block dopaminergic neurotoxin (6-hydroxydopamine, 6-OHDA)-induced and serotonergic neurotoxin (5,7-dihydroxytryptamine, 5,7-DHT)-induced impairments. From these results, we suggest that the attenuating effect of luteolin (10 mg/kg, i.p.) on the deficits of passive avoidance performance induced by SCOP may be related to the increases in the activities of central muscarinic and nicotinic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号