首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytotoxic effects of many quinones are thought to be mediated through their one-electron reduction to semiquinone radicals, which subsequently enter redox cycles with molecular oxygen to produce active oxygen species and oxidative stress. The two-electron reduction of quinones to diols, mediated by DT-diaphorase (NAD(P)H: (quinone-acceptor) oxidoreductase), may therefore represent a detoxifying pathway which protects the cell from the formation of these reactive intermediates. By using menadione (2-methyl-1,4-naphthoquinone) and isolated hepatocytes, the relative contribution of the two pathways to quinone metabolism has been studied and a protective role for DT-diaphorase demonstrated. Moreover, in the presence of cytotoxic concentrations of menadione rapid changes in intracellular thiol and Ca2+ homeostasis were observed. These were associated with alterations in the surface structure of the hepatocytes which may be an early indication of cytotoxicity.  相似文献   

2.
The metabolism of quinone compounds presents one source of oxidative stress in mammals, as many pathways proceed by mechanisms that generate reactive oxygen species as by-products. One defense against quinone toxicity is the enzyme NAD(P)H:quinone oxidoreductase type 1 (QR1), which metabolizes quinones by a two-electron reduction mechanism, thus averting production of radicals. QR1 is expressed in the cytoplasm of many tissues, and is highly inducible. A closely related homologue, quinone reductase type 2 (QR2), has been identified in several mammalian species. QR2 is also capable of reducing quinones to hydroquinones, but unlike QR1, cannot use NAD(P)H. X-ray crystallographic studies of QR1 and QR2 illustrate that despite their different biochemical properties, these enzymes have very similar three-dimensional structures. In particular, conserved features of the active sites point to the close relationship between these two enzymes.  相似文献   

3.
Oxidative stress may be an important determinant of the severity of acute pancreatitis. One-electron reduction of oxidants generates reactive oxygen species (ROS) via redox cycling, whereas two-electron detoxification, e.g. by NAD(P)H:quinone oxidoreductase, does not. The actions of menadione on ROS production and cell fate were compared with those of a non-cycling analogue (2,4-dimethoxy-2-methylnaphthalene (DMN)) using real-time confocal microscopy of isolated perfused murine pancreatic acinar cells. Menadione generated ROS with a concomitant decrease of NAD(P)H, consistent with redox cycling. The elevation of ROS was prevented by the antioxidant N-acetyl-l-cysteine but not by the NADPH oxidase inhibitor diphenyliodonium. DMN produced no change in reactive oxygen species per se but significantly potentiated menadione-induced effects, probably via enhancement of one-electron reduction, since DMN was found to inhibit NAD(P)H:quinone oxidoreductase detoxification. Menadione caused apoptosis of pancreatic acinar cells that was significantly potentiated by DMN, whereas DMN alone had no effect. Furthermore, bile acid (taurolithocholic acid 3-sulfate)-induced caspase activation was also greatly increased by DMN, whereas DMN had no effect per se. These results suggest that acute generation of ROS by menadione occurs via redox cycling, the net effect of which is induction of apoptotic pancreatic acinar cell death. Two-electron detoxifying enzymes such as NAD(P)H:quinone oxidoreductase, which are elevated in pancreatitis, may provide protection against excessive ROS and exert an important role in determining acinar cell fate.  相似文献   

4.
Regulation of genes encoding NAD(P)H:quinone oxidoreductases   总被引:15,自引:0,他引:15  
  相似文献   

5.
Quinone oxidoreductase activities dependent on pyridine nucleotides are associated with the plasma membrane (PM) in zucchini (Cucurbita pepo L.) hypocotyls. In the presence of NADPH, lipophilic ubiquinone homologs with up to three isoprenoid units were reduced by intact PM vesicles with a Km of 2 to 7 [mu]M. Affinities for both NADPH and NADH were similar (Km of 62 and 51 [mu]M, respectively). Two NAD(P)H:quinone oxidoreductase forms were identified. The first, labeled as peak I in gel-filtration experiments, behaves as an intrinsic membrane complex of about 300 kD, it slightly prefers NADH over NADPH, it is markedly sensitive to the inhibitor diphenylene iodonium, and it is active with lipophilic quinones. The second form (peak II) is an NADPH-preferring oxidoreductase of about 90 kD, weakly bound to the PM. Peak II is diphenylene iodonium-insensitive and resembles, in many properties, the soluble NAD(P)H:quinone oxidoreductase that is also present in the same tissue. Following purification of peak I, however, the latter gave rise to a quinone oxidoreductase of the soluble type (peak II), based on substrate and inhibitor specificities and chromatographic and electrophoretic evidence. It is proposed that a redox protein of the same class as the soluble NAD(P)H:quinone oxidoreductase (F. Sparla, G. Tedeschi, and P. Trost [1996] Plant Physiol. 112:249-258) is a component of the diphenylene iodonium-sensitive PM complex capable of reducing lipophilic quinones.  相似文献   

6.
NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) is a widely-distributed FAD-dependent flavoprotein that promotes obligatory 2-electron reductions of quinones, quinoneimines, nitroaromatics, and azo dyes, at rates that are comparable with NADH or NADPH. These reductions depress quinone levels and thereby minimize opportunities for generation of reactive oxygen intermediates by redox cycling, and for depletion of intracellular thiol pools. NQO1 is a highly-inducible enzyme that is regulated by the Keap1/Nrf2/ARE pathway. Evidence for the importance of the antioxidant functions of NQO1 in combating oxidative stress is provided by demonstrations that induction of NQO1 levels or their depletion (knockout, or knockdown) are associated with decreased and increased susceptibilities to oxidative stress, respectively. Furthermore, benzene genotoxicity is markedly enhanced when NQO1 activity is compromised. Not surprisingly, human polymorphisms that suppress NQO1 activities are associated with increased predisposition to disease. Recent studies have uncovered protective roles for NQO1 that apparently are unrelated to its enzymatic activities. NQO1 binds to and thereby stabilizes the important tumor suppressor p53 against proteasomal degradation. Indeed, NQO1 appears to regulate the degradative fate of other proteins. These findings suggest that NQO1 may exercise a selective “gatekeeping” role in regulating the proteasomal degradation of specific proteins, thereby broadening the cytoprotective role of NQO1 far beyond its highly effective antioxidant functions.  相似文献   

7.
The autooxidation of L-Dopa, a catecholamine used in the symptomatic treatment of Parkinson's disease, generally yields reactive oxygen species and neurotoxic quinones. NAD(P)H:quinone oxidoreductase (NQO) is a flavoenzyme that is implicated in the detoxication of quinones, including those formed during L-Dopa autooxidation. Through the action of this enzyme, deleterious redox-labile quinones are turned into less toxic and more stable hydroquinones that are amenable to further detoxication and/or cellular excretion. In the present study, using primary rat astrocytes and C6 astroglioma as a model to evaluate the neuroprotective response of astroglial cells upon exposure to L-Dopa, we demonstrate that this compound, or more correctly its quinone (auto)oxidation products, up-regulates astroglial NQO in a time- and concentration-dependent way as assessed at the level of mRNA expression, protein level, and enzymatic activity. Moreover, under similar conditions cellular glutathione content was enhanced. It is concluded that, similar to glutathione, the oxidative stress limiting NQO is likely to contribute to the capacity of astroglial cells to protect dopaminergic neurons against L-Dopa, and, hence, may be considered as a potential target for the development of neuroprotective strategies for Parkinson's disease.  相似文献   

8.
9.
The quinone oxidoreductases [NAD(P)H:quinone oxidoreductase1 (NQO1) and NRH:quinone oxidoreductase2 (NQO2)] are flavoproteins. NQO1 is known to catalyse metabolic detoxification of quinones and protect cells from redox cycling, oxidative stress and neoplasia. NQO2 is a 231 amino acid protein (25956 mw) that is 43 amino acids shorter than NQO1 at its carboxy-terminus. The human NQO2 cDNA and protein are 54 and 49% similar to the human liver cytosolic NQO1 cDNA and protein. Recent studies have revealed that NQO2 differs from NQO1 in its cofactor requirement. NQO2 uses dihydronicotinamide riboside (NRH) rather than NAD(P)H as an electron donor. Another difference between NQO1 and NQO2 is that NQO2 is resistant to typical inhibitors of NQO1, such as dicoumarol, Cibacron blue and phenindone. Flavones, including quercetin and benzo(a)pyrene, are known inhibitors of NQO2. Even though overlapping substrate specificities have been observed for NQO1 and NQO2, significant differences exist in relative affinities for the various substrates. Analysis of the crystal structure of NQO2 revealed that NQO2 contains a specific metal binding site, which is not present in NQO1. The human NQO2 gene has been precisely localized to chromosome 6p25. The human NQO2 gene locus is highly polymorphic. The NQO2 gene is ubiquitously expressed and induced in response to TCDD. Nucleotide sequence analysis of the NQO2 gene promoter revealed the presence of several cis-elements, including SP1 binding sites, CCAAT box, xenobiotic response element (XRE) and an antioxidant response element (ARE). The complement of these elements regulates tissue specific expression and induction of the NQO2 gene in response to xenobiotics and antioxidants. The in vivo role of NQO2 and its role in quinone detoxification remains unknown.  相似文献   

10.
动脉粥样硬化、糖尿病、慢性肾功能衰竭和先兆子痫等血管疾病时活性氧(reactive oxygen species,ROS)生成增加,容易导致内皮依赖性血管舒张功能的损害和血管损伤,而细胞可以诱导多种编码Ⅱ相解毒酶和抗氧化蛋白的基因表达,从而减轻ROS和亲电子物质介导的细胞损伤。一个被称为抗氧化反应元件(antioxidant response element,ARE)或亲电子反应元件(electrophile response element,EpRE)的顺式转录调控元件,可以介导诸如亚铁血红素加氧酶1、γ-谷氨酰半胱氨酸合成酶、硫氧还蛋白还原酶、谷胱甘肽-S转移酶和NAD(P)H:苯醌氧化还原酶等基因的转录。其他抗氧化酶,如超氧化物歧化酶、过氧化氢酶和非酶清除剂(如谷胱甘肽)等也参与ROS的清除。转录因子NF-E2相关因子2(nuclear factor-erythroid 2-related factor 2, Nrf2)是属于Cap‘n’Collar家族的转录因子,具有碱性亮氨酸拉链(basic region-leucine zipper,bZIP),它在ARE介导的抗氧化基因表达中起重要的作用。在正常情况下,Kelch样环氧氯丙烷相关蛋白-1(Kelch-like ECH-associated protein-1,Keapl)与Nrf2耦联,并与肌动蛋白细胞骨架结合被锚定于胞浆,但是在半胱氨酸残基发生氧化的情况下,Nrf2和Keapl解耦联,进入细胞核并与ARE结合,从而激活多种抗氧化基因和Ⅱ相解毒酶基因的转录。蛋白激酶C、丝裂原活化蛋白激酶和磷脂酰肌醇-3激酶参与Nrf2/ARE信号转导的调控。本文综述了有关Nrf2/ARE信号转导通路在血管稳态和动脉硬化、先兆子痫等疾病情况下内皮及平滑肌细胞对抗持续性氧化应激中起的作用。  相似文献   

11.
In the presence of NADPH and oxygen, menadione (2-methyl-1,4-naphthoquinone) elicits low level red chemiluminescence from rodent liver preparations. This chemiluminescence is believed to arise from the formation of active oxygen species that are generated when the quinone undergoes oxidative cycling. The obligatory two-electron reduction of quinones to hydroquinones catalyzed by NAD(P)H:(quinone-acceptor) oxidoreductase (EC 1.6.99.2) has been implicated in the suppression of this photoemission by competing with oxidative cycling (Wefers, H., Komai, T., Talalay, P., and Sies, H. (1984) FEBS Lett. 169, 63-66 and references therein). Thus, in previous studies, we showed that treatment of mice with BHA (2(3)-tert-butyl-4-hydroxyanisole), which elevates cytosolic quinone reductase activity about 10-fold, reduced menadione-dependent chemiluminescence of hepatic post-mitochondrial supernatant fractions, whereas inhibition of quinone reductase by dicoumarol greatly intensified light emission. We demonstrate here that addition of pure quinone reductase to this preparation suppresses menadione-dependent chemiluminescence, and that the protective effect of 2(3)-tert-butyl-4-hydroxyanisole treatment can be accounted for completely by the induction of this specific enzyme. These results provide conclusive evidence that in this system the protective action of anticarcinogenic antioxidants is entirely attributable to the elevation of the level of an electrophile-processing enzyme.  相似文献   

12.
13.
Quinone oxidoreductases are flavoproteins that catalyze two-electron reduction and detoxification of quinones. This leads to the protection of cells against toxicity, mutagenicity, and cancer due to exposure to environmental and synthetic quinones and its precursors. Two cytosolic forms of quinone oxidoreductases [NAD(P)H:quinone oxidoreductase 1 (NQO1) and NRH:quinone oxidoreductase 2 (NQO2)] were previously identified, purified, and cloned. A role of cytosolic NQO1 in protection of cells from oxidative stress, cytotoxicity, and mutagenicity of quinones was established. Currently, we have characterized and partially purified the NQO activity from rat liver microsomes. This activity was designated as microsomal NQO (mNQO). The mNQO activity showed significantly higher affinity for NADH than NADPH as electron donors and catalyzed reduction of 2,6-dichlorophenolindophenol and menadione. The mNQO activity was insensitive to dicoumarol, a potent inhibitor of cytosolic NQO1. Western analysis of microsomal proteins revealed 29- and 18-kDa bands that cross-reacted with polyclonal antibodies raised against cytosolic NQO1. The mNQO activity was partially purified by solubilization of microsomes with detergent Chaps, ammonium sulfate fractionation, and DEAE-Sephacel column chromatography. The microsomal mNQO proteins are expected to provide additional protection after cytosolic NQOs against quinone toxicity and mutagenicity.  相似文献   

14.
15.
A series of heterocyclic quinones based on benzofuran, benzothiophene, indazole and benzisoxazole has been synthesized, and evaluated for their ability to function as substrates for recombinant human NAD(P)H:quinone oxidoreductase (NQO1), a two-electron reductase upregulated in tumor cells. Overall, the quinones are excellent substrates for NQO1, approaching the reduction rates observed for menadione.  相似文献   

16.
Short-chain quinones are described as potent antioxidants and in the case of idebenone have already been under clinical investigation for the treatment of neuromuscular disorders. Due to their analogy to coenzyme Q10 (CoQ10), a long-chain quinone, they are widely regarded as a substitute for CoQ10. However, apart from their antioxidant function, this provides no clear rationale for their use in disorders with normal CoQ10 levels. Using recombinant NAD(P)H:quinone oxidoreductase (NQO) enzymes, we observed that contrary to CoQ10 short-chain quinones such as idebenone are good substrates for both NQO1 and NQO2. Furthermore, the reduction of short-chain quinones by NQOs enabled an antimycin A-sensitive transfer of electrons from cytosolic NAD(P)H to the mitochondrial respiratory chain in both human hepatoma cells (HepG2) and freshly isolated mouse hepatocytes. Consistent with the substrate selectivity of NQOs, both idebenone and CoQ1, but not CoQ10, partially restored cellular ATP levels under conditions of impaired complex I function. The observed cytosolic-mitochondrial shuttling of idebenone and CoQ1 was also associated with reduced lactate production by cybrid cells from mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) patients. Thus, the observed activities separate the effectiveness of short-chain quinones from the related long-chain CoQ10 and provide the rationale for the use of short-chain quinones such as idebenone for the treatment of mitochondrial disorders.  相似文献   

17.
Since the higher redox potential of quinone molecules has been correlated with enhanced cellular deleterious effects, we studied the ability of the association of ascorbate with several quinones derivatives (having different redox potentials) to cause cell death in K562 human leukaemia cell line. The rationale is that the reduction of quinone by ascorbate should be dependent of the quinone half-redox potential thus determining if reactive oxygen species (ROS) are formed or not, leading ultimately to cell death or cell survival. Among different ROS that may be formed during redox cycling between ascorbate and the quinone, the use of different antioxidant compounds (mannitol, desferal, N-acetylcysteine, catalase and superoxide dismutase) led to support H2O2 as the main oxidizing agent. We observed that standard redox potentials, oxygen uptake, free ascorbyl radical formation and cell survival were linked. The oxidative stress induced by the mixture of ascorbate and the different quinones decreases cellular contents of ATP and GSH while caspase-3-like activity remains unchanged. Again, we observed that quinones having higher values of half-redox potential provoke a severe depletion of ATP and GSH when they were associated with ascorbate. Such a drop in ATP content may explain the lack of activation of caspase-3. In conclusion, our results indicate that the cytotoxicity of the association quinone/ascorbate on K562 cancer cells may be predicted on the basis of half-redox potentials of quinones.  相似文献   

18.
We aimed to characterize the role of NAD(P)H:quinone oxidoreductase (NQO1) in apoptosis induction by antitumour quinones RH1 (2,5-diaziridinyl-3-hydroxymethyl-6-methyl-1,4-benzoquinone) and MeDZQ (2,5-dimethyl-3,6-diaziridinyl-1,4-benzoquinone). Digitonin-permeabilized FLK cells catalyzed NADPH-dependent single- and two-electron reduction of RH1 and MeDZQ. At equitoxic concentrations, RH1 and MeDZQ induced apoptosis more efficiently than the nonalkylating duroquinone or H(2)O(2). The antioxidant N,N'-diphenyl-p-phenylene diamine, desferrioxamine, and the inhibitor of NQO1 dicumarol, protected against apoptosis induction by all compounds investigated, but to a different extent. The results of multiparameter regression analysis indicate that RH1 and MeDZQ most likely induce apoptosis via NQO1-linked formation of alkylating species but not via NQO1-linked redox cycling.  相似文献   

19.
Abstract: The application of enzymatic staining techniques, using tetrazolium dyes, to aldehyde-treated brain sections has revealed the presence of NADPH-diaphorase activity attributed to nitric oxide synthase. When evaluating the specificity of the putative guanylyl cyclase inhibitor LY 83583, a robust and novel staining pattern was noted in epithelial, endothelial, and astrocytic cells when LY 83583 was included in the NADPH-diaphorase histochemical reaction. This LY 83583-dependent staining could be blocked by the NAD(P)H:quinone oxidoreductase inhibitor dicumarol. Based on its quinone structure, we hypothesized that LY 83583 was a substrate for the enzyme NAD(P)H:quinone oxidoreductase. Transfection of human embryonic kidney 293 cells with the rat liver isoform of NAD(P)H:quinone oxidoreductase resulted in robust NADPH- and LY 83583-dependent staining that was completely blocked by dicumarol and was not observed in untransfected cells. Analysis of transfected cell extracts and brain homogenates indicated that LY 83583 was a substrate for NAD(P)H:quinone oxidoreductase, with a K m similar to the well-characterized substrate menadione. Sensitivity of the nitroblue tetrazolium reduction to superoxide dismutase indicated that the reduction of LY 83583 by NAD(P)H:quinone oxidoreductase leads to superoxide generation. The localization of NAD(P)H:quinone oxidoreductase activity to astrocytic cells suggests a role for glia in combating oxidative insults to brain and in activating quinone-like drugs such as LY 83583.  相似文献   

20.
NAD(P)H:quinone oxidoreductase 1 (NQO1), a redox-regulated flavoenzyme, plays a central role in monitoring cellular redox state. NQO1 acts to protect against oxidative stress induced by a variety of metabolic situations, including metabolism of quinones and other xenobiotics, by: (i) functioning as a two electron donor to provide a shunt that competes with the formation of reactive oxygen species; (ii) maintaining reduced coenzyme Q; and (iii) regulating the stress activated kinase pathway. In Alzheimer's disease, while there is abundant evidence for the involvement of oxidative stress, the cause or the consequences are largely unresolved. We suspected that increased NQO1 could signal a major shift in redox balance in Alzheimer's disease and, in this study, found that NQO1 is localized not only to neurofibrillary tangles but also the cytoplasm of hippocampal neurons. By marked contrast, there is very little NQO1 in the same neuronal populations in young and age-matched controls. This novel association of NQO1 further buttresses the nexus of oxidative stress, via free radicals, with selective neuronal vulnerability and also supports a fundamental abnormality in redox balance in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号