首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
什么是物种?新物种是如何形成的?这些问题是生命科学研究的重大问题.物种的形成是在生殖隔离的基础上某些新的生物学性状的形成和保留,是生物进化的最基本过程,其实质是基因结构突变的积累与功能的分化. 地理隔离使群体中的基因不能交流,基因突变也会影响个体间交配趣向,从而造成交配隔离或者交配后杂合体的基因组不亲和、杂交不育甚至杂交不活,使不同的群体逐渐分化为新物种. 随着分子生物学与基因组学的飞速发展,进化生物学家已经发现一些与物种形成有关的基因-物种形成基因(speciation genes),鉴定并了解这些基因的功能,不仅能使我们在分子水平上理解新物种形成的实质和规律、而且对于我们突破种间屏障进行远缘杂交育种也有重要的理论指导意义.本文综述了目前对几个物种形成基因及其功能的研究进展,为该领域的进一步研究提供资料.  相似文献   

2.
Studies of adaptation and speciation have greatly benefited from rapid progress of DNA sequencing and genotyping technologies. Comparative genomics of closely related taxa has great potential to advance evolutionary research on genetic architecture of adaptive traits and reproductive isolation. Such studies that utilized closely related plant species and ecotypes have already provided some important insights into genomic regions and/or genes that are potentially involved in local adaptation and speciation. The choice of an appropriate species model for such research is crucial. The paper discusses current approaches used to reveal the patterns of intra‐ and interspecific divergence due to natural selection. Its outcomes in herbaceous plants and forest trees are briefly summarized and compared to reveal general regularities concerning evolutionary processes. We then highlight the importance of multispecies studies and discuss the utility of several related pine taxa as fine candidates for evolutionary inferences. Genetically similar but ecologically and phenotypically diverged taxa seem a promising study system to search for genomic patterns of speciation and adaptive variation.  相似文献   

3.
Shaw KL  Mullen SP 《Genetica》2011,139(5):649-661
Despite persistent debate on the nature of species, the widespread adoption of Mayr’s biological species concept has led to a heavy emphasis on the importance of reproductive isolation to the speciation process. Equating the origin of species with the evolution of reproductive isolation has become common practice in the study of speciation, coincident with an increasing focus on elucidating the specific genetic changes (i.e.—speciation genes) underlying intrinsic reproductive barriers between species. In contrast, some have recognized that reproductive isolation is usually a signature effect rather than a primary cause of speciation. Here we describe a research paradigm that shifts emphasis from effects to causes in order to resolve this apparent contradiction and galvanize the study of speciation. We identify major elements necessary for a balanced and comprehensive investigation of the origin of species and place the study of so-called “speciation genes” into its appropriate context. We emphasize the importance of characterizing diverging phenotypes, identifying relevant evolutionary forces acting on those phenotypes and their role in the causal origins of reduced gene flow between incipient species, and the nature of the genetic and phenotypic boundaries that results from such processes. This approach has the potential to unify the field of speciation research, by allowing us to make better “historical” predictions about the fate of diverging populations regardless of taxon.  相似文献   

4.
物种形成是指由已有的物种通过各种进化机制进化出新物种的过程。持续不断的物种形成产生了地球上灿烂的生物物种多样性。然而,研究人员对物种形成的模式与机制的了解却非常有限。一直以来,谱系分裂被认为是最重要的物种形成模式,但在植物中,谱系融合,即通过杂交形成新物种的过程,也是一个非常重要的物种形成模式。经过几十年的研究才逐渐认识到,生殖隔离是差异适应和遗传漂变的副产品,而不是物种形成的前提。相比合子形成后隔离,合子形成前的隔离在物种形成过程中更早地发挥作用。合子形成前的隔离,尤其是生态地理的隔离是植物中最重要的隔离机制。一些基于QTLs分析的研究发现,基因组中的少数主效位点在物种形成中起了关键作用,并且这些位点往往受到自然选择的作用。适应性辐射往往发生在隆起的山脉和新形成的岛屿上,很可能与这些地方能够提供很多可利用的生态位有关。最新的物种形成理论认为,基因是物种形成的基本单位,不同的物种可以在非控制物种差异适应性状的位点上存在基因流。这一观点为植物物种形成的研究提供了新的思路。随着植物物种形成研究的深入,越来越多植物物种形成基因被分离,包括花色素苷合成通路和S-基因座上的一些关键基因,揭示了植物物种形成的分子机制。前期的研究主要集中在模式植物和农作物上,许多生态上非常有趣的非模式植物还未得到广泛的研究。在未来的研究中,还需要更多来自非模式植物的例子以全面理解植物物种形成的多样化机制。  相似文献   

5.
Divergent selection by pollinators can bring about strong reproductive isolation via changes at few genes of large effect. This has recently been demonstrated in sexually deceptive orchids, where studies (1) quantified the strength of reproductive isolation in the field; (2) identified genes that appear to be causal for reproductive isolation; and (3) demonstrated selection by analysis of natural variation in gene sequence and expression. In a group of closely related Ophrys orchids, specific floral scent components, namely n‐alkenes, are the key floral traits that control specific pollinator attraction by chemical mimicry of insect sex pheromones. The genetic basis of species‐specific differences in alkene production mainly lies in two biosynthetic genes encoding stearoyl–acyl carrier protein desaturases (SAD) that are associated with floral scent variation and reproductive isolation between closely related species, and evolve under pollinator‐mediated selection. However, the implications of this genetic architecture of key floral traits on the evolutionary processes of pollinator adaptation and speciation in this plant group remain unclear. Here, we expand on these recent findings to model scenarios of adaptive evolutionary change at SAD2 and SAD5, their effects on plant fitness (i.e., offspring number), and the dynamics of speciation. Our model suggests that the two‐locus architecture of reproductive isolation allows for rapid sympatric speciation by pollinator shift; however, the likelihood of such pollinator‐mediated speciation is asymmetric between the two orchid species O. sphegodes and O. exaltata due to different fitness effects of their predominant SAD2 and SAD5 alleles. Our study not only provides insight into pollinator adaptation and speciation mechanisms of sexually deceptive orchids but also demonstrates the power of applying a modeling approach to the study of pollinator‐driven ecological speciation.  相似文献   

6.
物种形成过程是生物多样性形成的基础, 长期以来一直是进化生物学的中心议题之一。传统的异域物种形成理论认为, 地理隔离是物种分化的主要决定因子, 物种形成只有在种群之间存在地理隔离的情况下才能发生。近年来, 随着种群基因组学的发展和溯祖理论分析方法的完善, 种群间存在基因流情况下的物种形成成为进化生物学领域新的研究焦点。物种形成过程中是否有基因流的发生?基因流如何影响物种的形成与分化?基因流存在条件下物种形成的生殖隔离机制是什么?根据已发表的相关文献资料, 作者综述了当前物种形成研究中基因流的时间和空间分布模式、基因流对物种分化的影响以及生殖隔离机制形成等问题, 指出基因流存在条件下的物种形成可能是自然界普遍发生的一种模式。  相似文献   

7.
The evolutionary consequences of hybridization ultimately depend on the magnitude of reproductive isolation between hybrids and their parents. We evaluated the relative contributions of pre-and post-zygotic barriers to reproduction for hybrid formation, hybrid persistence and potential for reproductive isolation of hybrids formed between two Rhododendron species,R. spiciferum and R. spinuliferum. Our study established that incomplete reproductive isolation promotes hybrid formation and persistence and delays hybrid speciation.All pre-zygotic barriers to reproduction leading to hybrid formation are incomplete: parental species have overlapping flowering; they share the same pollinators;reciprocal assessments of pollen tube germination and growth do not differ among parents. The absence of post-zygotic barriers between parental taxa indicates that the persistence of hybrids is likely. Reproductive isolation was incomplete between hybrids and parents in all cases studied, although asymmetric differences in reproductive fitness were prevalent and possibly explain the genetic structure of natural hybrid swarms where hybridization is known to be bidirectional but asymmetric. Introgression, rather than speciation, is a probable evolutionary outcome of hybridization between the two Rhododendron taxa. Our study provides insights into understanding the evolutionary implications of natural hybridization in woody plants.  相似文献   

8.
The origin of premating reproductive isolation continues to help elucidate the process of speciation and is the central event in the evolution of biological species. Therefore, during the process of species formation the diverging populations must acquire some means of reproductive isolation so that the genes from one gene pool are prevented from dispersing freely into a foreign gene pool. In the genus Drosophila, the phenomenon of behavioural reproductive isolation, which is an important type of premating (prezygotic) reproductive isolating mechanisms, has been extensively studied and interesting data have been documented. In many cases incomplete sexual isolation has been observed and the pattern and degree of isolation within and between the species have often been used to elucidate the phylogenetic relationships. The present review documents an overview of speciation mediated through behavioural incompatibility in different species groups of Drosophila with particular reference to the models proposed on the basis of one-sided ethological isolation to predict the direction of evolution. This study is crucial for understanding the mechanism of speciation through behavioural incompatibility and also for an understanding of speciation genetics in future prospects.  相似文献   

9.
? Transgenomics is the process of introducing genomic clones from a donor species into a recipient species and then screening the resultant transgenic lines for phenotypes of interest. This method might allow us to find genes involved in the evolution of phenotypic differences between species as well as genes that have the potential to contribute to reproductive isolation: potential speciation genes. ? More than 1100 20-kbp genomic clones from Leavenworthia alabamica were moved into Arabidopsis thaliana by transformation. After screening a single primary transformant for each line, clones associated with mutant phenotypes were tested for repeatability and co-segregation. ? We found 84 clones with possible phenotypic effects, of which eight were repeatedly associated with the same phenotype. One clone, 11_11B, co-segregated with a short fruit phenotype. Further study showed that 11_11B affects seed development, with as much as one-third of the seeds aborted in some fruit. ? Transgenomics is a viable strategy for discovering genes of evolutionary interest. We identify methods to reduce false positives and false negatives in the future. 11_11B can be viewed as a potential speciation gene, illustrating the value of transgenomics for studying the molecular basis of reproductive isolation.  相似文献   

10.
The molecular and evolutionary basis of reproductive isolation in plants   总被引:1,自引:0,他引:1  
Reproductive isolation is defined as processes that prevent individuals of different populations from mating, survival or producing fertile offspring. Reproductive isolation is critical for driving speciation and maintaining species identity, which has been a fundamental concern in evolutionary biology. In plants, reproductive isolation can be divided into prezygotic and postzygotic reproductive barriers, according to its occurrence at different developmental stages. Postzygotic reproductive isolation caused by reduced fitness in hybrids is frequently observed in plants, which hinders gene flow between divergent populations and has substantial effects on genetic differentiation and speciation, and thus is a major obstacle for utilization of heterosis in hybrid crops. During the past decade, China has made tremendous progress in molecular and evolutionary basis of prezygotic and postzygotic reproductive barriers in plants. Present understandings in reproductive isolation especially with new data in the last several years well support three evolutionary genetic models, which represent a general mechanism underlying genomic differentiation and speciation. The updated understanding will offer new approaches for the development of wide-compatibility or neutral varieties, which facilitate breeding of hybrid rice as well as other hybrid crops.  相似文献   

11.
We report the isolation and development of 81 novel primers for amplifying microsatellite loci in the Rhagoletis pomonella sibling species complex, and the sequencing, characterization and analysis of basic population genetic parameters for nine of these genes. We also report the successful cross‐species amplification of several of these loci. The R. pomonella sibling species complex is a textbook example of genetic differentiation in sympatry via host‐plant shifting. Microsatellite markers can be useful for mapping host‐plant‐associated adaptations in Rhagoletis that generate reproductive isolation and facilitate speciation, as well as for resolving the genetic structure and evolutionary history of fly populations.  相似文献   

12.
13.
The analysis of large datasets describing reproductive isolation between species has been extremely influential in the study of speciation. However, the statistical methods currently used for these data limit the ability to make direct inferences about the factors predicting the evolution of reproductive isolation. As a result, our understanding of iconic patterns and rules of speciation rely on indirect analyses that have clear statistical limitations. Phylogenetic mixed models are commonly used in ecology and evolution, but have not been applied to studies of reproductive isolation. Here I describe a flexible framework using phylogenetic mixed models to analyze data collected at different evolutionary scales, to test both categorical and continuous predictor variables, and to test the effect of multiple predictors on rates and patterns of reproductive isolation simultaneously. I demonstrate the utility of this framework by re‐analyzing four classic datasets, from both animals and plants, and evaluating several hypotheses that could not be tested in the original studies: In the Drosophila and Bufonidae datasets, I found support for more rapid accumulation of reproductive isolation in sympatric species pairs compared to allopatric species pairs. Using Silene and Nolana, I found no evidence supporting the hypothesis that floral differentiation elevates postzygotic reproductive isolation. The faster accumulation of postzygotic isolation in sympatry is likely the result of species coexistence determined by the level of postzygotic isolation between species. In addition, floral trait divergence does not appear to translate into pleiotropic effects on postzygotic reproductive isolation. Overall, these methods can allow researchers to test new hypotheses using a single statistical method, while remedying the statistical limitations of several previous methods.  相似文献   

14.
Recombination and the divergence of hybridizing species   总被引:10,自引:0,他引:10  
Ortíz-Barrientos D  Reiland J  Hey J  Noor MA 《Genetica》2002,116(2-3):167-178
The interplay between hybridization and recombination can have a dramatic effect on the likelihood of speciation or persistence of incompletely isolated species. Many models have suggested recombination can oppose speciation, and several recent empirical investigations suggest that reductions in recombination between various components of reproductive isolation and/or adaptation can allow species to persist in the presence of gene flow. In this article, we discuss these ideas in relation to speciation models, phylogenetic analyses, and species concepts. In particular, we revisit genetic architectures and population mechanisms that create genetic correlations and facilitate divergence in the face of gene flow. Linkage among genes contributing to adaptation or reproductive isolation due to chromosomal rearrangements as well as pleiotropy or proximity of loci can greatly increase the odds of species divergence or persistence. Finally, we recommend recombination to be a focus of inquiry when studying the origins of biological diversity.  相似文献   

15.
Patterns of parapatric speciation   总被引:5,自引:0,他引:5  
Abstract. Geographic variation may ultimately lead to the splitting of a subdivided population into reproductively isolated units in spite of migration. Here, we consider how the waiting time until the first split and its location depend on different evolutionary factors including mutation, migration, random genetic drift, genetic architecture, and the geometric structure of the habitat. We perform large-scale, individual-based simulations using a simple model of reproductive isolation based on a classical view that reproductive isolation evolves as a by-product of genetic divergence. We show that rapid parapatric speciation on the time scale of a few hundred to a few thousand generations is plausible even when neighboring subpopulations exchange several individuals each generation. Divergent selection for local adaptation is not required for rapid speciation. Our results substantiates the claims that species with smaller range sizes (which are characterized by smaller local densities and reduced dispersal ability) should have higher speciation rates. If mutation rate is small, local abundances are low, or substantial genetic changes are required for reproductive isolation, then central populations should be the place where most splits take place. With high mutation rates, high local densities, or with moderate genetic changes sufficient for reproductive isolation, speciation events are expected to involve mainly peripheral populations.  相似文献   

16.
Understanding how speciation can take place in the presence of homogenizing gene flow remains a major challenge in evolutionary biology. In the early stages of ecological speciation, reproductive isolation between populations occupying different habitats is expected to be concentrated around genes for local adaptation. These genomic regions will show high divergence while gene exchange in other regions of the genome should continue relatively unimpaired, resulting in low levels of differentiation. The problem is to explain how speciation progresses from this point towards complete reproductive isolation, allowing genome‐wide divergence. A new study by Via and West (2008) on speciation between host races of the pea aphid, Acyrthosiphon pisum, introduces the mechanism of ‘divergence hitchhiking’ which can generate large ‘islands of differentiation’ and facilitate the build‐up of linkage disequilibrium, favouring increased reproductive isolation. This idea potentially removes a major stumbling block to speciation under continuous gene flow.  相似文献   

17.
The X chromosome plays an important role in both adaptive evolution and speciation. We used a molecular evolutionary screen of X-linked genes potentially involved in reproductive isolation in mice to identify putative targets of recurrent positive selection. We then sequenced five very rapidly evolving genes within and between several closely related species of mice in the genus Mus. All five genes were involved in male reproduction and four of the genes showed evidence of recurrent positive selection. The most remarkable evolutionary patterns were found at Testis-specific gene a8 (Tsga8), a spermatogenesis-specific gene expressed during postmeiotic chromatin condensation and nuclear transformation. Tsga8 was characterized by extremely high levels of insertion-deletion variation of an alanine-rich repetitive motif in natural populations of Mus domesticus and M. musculus, differing in length from the reference mouse genome by up to 89 amino acids (27% of the total protein length). This population-level variation was coupled with striking divergence in protein sequence and length between closely related mouse species. Although no clear orthologs had previously been described for Tsga8 in other mammalian species, we have identified a highly divergent hypothetical gene on the rat X chromosome that shares clear orthology with the 5' and 3' ends of Tsga8. Further inspection of this ortholog verified that it is expressed in rat testis and shares remarkable similarity with mouse Tsga8 across several general features of the protein sequence despite no conservation of nucleotide sequence across over 60% of the rat-coding domain. Overall, Tsga8 appears to be one of the most rapidly evolving genes to have been described in rodents. We discuss the potential evolutionary causes and functional implications of this extraordinary divergence and the possible contribution of Tsga8 and the other four genes we examined to reproductive isolation in mice.  相似文献   

18.
The identification of incipient ecological species represents an opportunity to investigate current evolutionary process where adaptive divergence and reproductive isolation are associated. In this study we analysed the genetic structure of marine and estuarine populations of the silverside fish Odontesthes argentinensis using nine microsatellite loci and 396 bp of the mitochondrial DNA (mtDNA) control region. Our main objective was to investigate the relationship among estuarine colonization, divergent selection and speciation in silversides. Significant genetic structure was detected among all marine and estuarine populations. Despite the low phylogeographic structure in mtDNA haplotypes, there was clear signal of local radiations of haplotypes in more ancient populations. Divergence among marine populations was interpreted as a combined result of homing behaviour, isolation by distance and drift. On the other hand, ecological shifts due to the colonization of estuarine habitats seem to have promoted rapid adaptive divergence and reproductive isolation in estuarine populations, which were considered as incipient ecological species. This conclusion is supported by the existence of a set of environmental factors required for successful reproduction of estuarine ecotypes. The pattern of genetic structure indicates that phenotypic and reproductive divergence evolved in the face of potential gene flow between populations. We suggest that the 'divergence-with-gene-flow' model of speciation may account for the diversification of estuarine populations. The approach used can potentially identify 'incipient estuarine species', being relevant to the investigation of the evolutionary relationships of silversides in several coastal regions of the world.  相似文献   

19.
物种形成是基本的进化过程, 也是生物多样性形成的基础。自然选择可以导致新物种的产生。生态物种形成是指以生态为基础的歧化选择使不同群体分化产生生殖隔离的物种形成过程。本文首先回顾了生态物种形成的研究历史, 并详细介绍了生态物种形成的3个要素, 即歧化选择的来源、生殖隔离的形式以及关联歧化选择与生殖隔离的遗传机制。歧化选择的来源主要包括不同的环境或生态位、不同形式的性选择, 以及群体间的相互作用。生殖隔离的形式多种多样, 我们总结了合子前和合子后隔离的遗传学机制以及在生态物种形成中起到的作用。控制适应性性状的基因与导致生殖隔离的基因可以通过基因多效性或连锁不平衡相互关联起来。借助于第二代测序技术, 研究者可以对生态物种形成的遗传学与基因组学基础进行研究。此外, 本文还总结了生态物种形成领域最新的研究进展, 包括平行进化的全基因组基础, 以及基因流影响群体分化的理论基础。通过归纳比较由下至上和由上至下这两种不同的研究思路, 作者认为这两种思路的结合可以为生态物种形成基因的筛选提供更有力也更精确的方法。同时, 作者还提出生态物种形成的研究应该基于更好的表型描述以及更完整的基因组信息, 研究的物种也应该具有更广泛的代表性。  相似文献   

20.
Quantifying and comparing the strengths of different reproductive barriers between diverging lineages is especially useful for determining the evolutionary mechanisms driving speciation. Etheostoma barrenense and Etheostoma zonale are closely related sympatric species of darters that are sexually dimorphic and exhibit clear differences in male nuptial coloration. Prior studies demonstrated that these species exhibit complete behavioral isolation, and that both intraspecific and interspecific variation in male coloration play a role in female choice, all consistent with speciation by sexual selection on male nuptial color. Remaining unclear, however, is whether behavioral isolation is the strongest reproductive barrier between these species or, alternatively, whether additional reproductive barriers are equally strong, which could implicate mechanisms other than sexual selection in speciation. Here, we compare the relative strengths of multiple reproductive barriers between the two focal species, measuring: (1) ecological isolation, (2) gametic incompatibility, (3) hybrid inviability, (4) conspecific sperm precedence, and comparing these measures to a previously estimated strength of behavioral isolation. We find that behavioral isolation is the strongest reproductive barrier measured to date and suggest it may be the only barrier that has evolved to completion. This result provides additional empirical evidence for speciation driven by sexual selection and provides insight into the maintenance of sympatric species in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号