首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary DNA repair and recombination were investigated in a recD mutant of Escherichia coli which lacked the nuclease activity of the RecBCD enzyme. The resistance of this mutant to ultraviolet (UV) light was shown to be a function of recJ. A recD recJ double mutant was found to be more sensitive to UV radiation than a recB mutant, whereas recD and recJ single mutants were resistant. Recombination in conjugational crosses with Hfr donors was also reduced in recD recJ strains, but the effect was modest in comparison with the sensitivity to UV. Within certain limits, mutations in recF, recN, recO, lexA and ruv did not affect sensitivity to UV and recombination in a recD mutant any more than in a recD + strain. The possibility that recD and recJ provide overlapping activities, either of which can promote DNA repair and recombination in the absence of the other, is discussed.  相似文献   

2.
Summary In Escherichia coli, induction of the SOS functions by UV irradiation or by mutation in the recA gene promotes an SOS mutator activity which generates mutations in undamaged DNA. Activation of RecA protein by the recA730 mutation increases the level of spontaneous mutation in the bacterial DNA. The number of recA730-induced mutations is greatly increased in mismatch repair deficient strains in which replication errors are not corrected. This suggests that the majority of recA730-induced mutations (90%) arise through correctable, i.e. non-targeted, replication errors. This recA730 mutator effect is suppressed by a mutation in the umuC gene. We also found that dam recA730 double mutants are unstable, segregating clones that have lost the dam or the recA mutations or that have acquired a new mutation, probably in one of the genes involved in mismatch repair. We suggest that the genetic instability of the dam recA730 mutants is provoked by the high level of replication errors induced by the recA730 mutation, generating killing by coincident mismatch repair on the two unmethylated DNA strands. The recA730 mutation increases spontaneous mutagenesis of phage poorly. UV irradiation of recA730 host bacteria increases phage untargeted mutagenesis to the level observed in UV-irradiated recA + strains. This UV-induced mutator effect in recA730 mutants is not suppressed by a umuC mutation. Therefore UV and the recA730 mutation seem to induce different SOS mutator activities, both generating untargeted mutations.  相似文献   

3.
Summary To measure the degree of phr gene induction by DNA-damaging agents, the promoter region was fused to the coding region of the lacZ gene in plasmid pMC1403. The new plasmids were introduced into Escherichia coli cells having different repair capabilities. More efficient induction of phr gene expression was detected in a uvrA strain as compared with the wild-type strain. In addition, obvious induction was detected in uvrA cells treated by 4-nitroquinoline 1-oxide and mitomycin C. Nalidixic acid, an inhibitor of DNA gyrase, also induced phr gene expression. In contrast, little induced gene expression was noted in UV-irradiated lexA and recA strains. It is suggested from these results that induction of the phr gene is one of the SOS responses. Possible nucleotide sequences which could be considered to constitute an SOS box were found at the regulator region of the phr gene.Abbreviations phr photoreactivation - UV ultraviolet light - 4NQO 4-nitroquinoline 1-oxide - MMC mitomycin C - PRE photoreactivating enzyme - E. coli Escherichia coli  相似文献   

4.
Summary The ruv operon of Escherichia coli consists of two genes, orfl1 and ruv, which encode 22 and 37 kilodalton proteins, respectively, and are regulated by the SOS system. Although the distal gene, ruv, is known to be involved in DNA repair, the function of orf1 has not been studied. To examine whether orf1 is also involved in DNA repair, we constructed a strain with a deletion of the entire ruv operon. The strain was sensitive to UV even after introduction of low copy number plasmids carrying either orf1 or ruv, but UV resistance was restored by introduction of a plasmid carrying both orfl and ruv. These results suggest that orf1 as well as ruv is involved in DNA repair. Therefore, orf1 and ruv should be renamed ruvA and ruvB, respectively.  相似文献   

5.
Summary A new recombination gene called recR has been identified and located near dnaZ at minute 11 on the current linkage map of Escherichia coli. The gene was detected after transposon mutagenesis of a recB sbcB sbcC strain and screening for insertion mutants that had a reduced efficiency of recombination in Hfr crosses. The recR insertions obtained conferred a recombination deficient and extremely UV sensitive phenotype in both recB recC sbcA and recB recC sbcB sbcC genetic backgrounds. recR derivatives of recBC + sbc + strains were proficient in conjugational and transductional recombination but deficient in plasmid recombination and sensitive to UV light. Strains carrying recR insertions combined with mutations uvrA and other rec genes revealed that the gene is involved in a recombinational process of DNA repair that relies also on recF and recO, and possibly recJ, but which is independent of recB, recC and recD. The properties of two other insertions, one located near pyrE and the other near guaA, are discussed in relation to their proximity to recG and xse (the gene for exonuclease VII), respectively.  相似文献   

6.
Nucleotide excision is a highly conserved DNA repair pathway for correcting DNA lesions that cause distortion of the double helical structure. The protein heterodimer XPC-Rad23 is involved in recognition of and binding to such lesions. We have isolated full-length cDNAs encoding two different members of the maize Rad23 family. The deduced amino acid sequences of both maize orthologues show a high degree of homology to plant and animal Rad23 proteins. The cDNA encoding maize Rad23A was cloned as an in-frame C-terminal fusion of glutathione S-transferase. This chimera was expressed in Escherichia coli as a soluble protein and purified to homogeneity using glutathione-agarose followed by MonoQ column chromatography. Purified recombinant maize Rad23 protein was used to generate polyclonal antibodies that cross-react with a approximately 48-kDa protein in extracts from plant as well as mammalian cells. The purified recombinant protein and antibodies would be useful reagents to study the biochemistry of nucleotide excision repair in plants.  相似文献   

7.
Summary Plasmid pTSO118 containing the Escherichia coli origin of replication, oriC, initiated replication simultaneously with the chromosome when temperature-sensitive host cells were synchronized by temperature shifts. Replicating intermediates of the plasmid as well as of the chromosome were isolated from the outer membrane fraction of the cell. Plasmid DNA with eye structures was enriched when cytosine-1--arabinofuranoside was introduced into the culture during replication. Electron microscopy of the replicating molecules, after digestion with restriction endonucleases, showed that the replication fork proceeds exclusively counter-clockwise towards the unc operon. We conclude that the replication of the oriC plasmid is unidirectional or, if bidirectional, is highly asymmetric.  相似文献   

8.
Summary Gene conversion, the non-reciprocal transfer of sequence information between homologous DNA sequences, has been reported in lower eukaryotes, mammals and in Escherichia coli. In an E. coli rec + strain, we established a plasmid carrying two different deleted neo genes (neoDL and neoDR) in an inverted orientation and then selected for homologous recombination events that had reconstructed an intact neo + gene. We found some plasmids that had apparently experienced intramolecular gene conversion. Further evidence, however, suggests that they are products of multiple rounds of reciprocal crossing-over,apparently involving two plasmid molecules. First, most of the Neo+ clones contained multiple types of Neo+ plasmids, although the frequency of producing the neo + clones was low. Second, all the neo + clones also contained, as a minority, one particular form of dimer, which can be formed by reciprocal crossing-over between neoDL of one plasmid molecule and neoDR of another plasmid molecule. Third, in reconstruction experiments, we cloned and purified this dimer and transferred it back into the rec + cells. The dimer gave rise to clones containing multiple types of neo + recombinant monomers, including those apparent gene conversion types, and containing only few molecules of this dimer plasmid.  相似文献   

9.
Summary Escherichia coli K803 cells were mutagenized and screened for the presence of clones sensitive to -rays but not to ultraviolet light. One new mutant of this type, named rorB, was isolated. This mutant is both cross-sensitive to mitomycin C and shows reduced conjugal recombination frequencies, but to a lesser extent than the phenotypically similar mutant recN. Unlike previously reported mutants of E. coli or yeast with an enhanced sensitivity to ionising radiations, rorB appears to be near wild type in ability to rejoin DNA double-strand breaks. The rorB gene maps close to ilvGEDAC at 84.5 min of the E. coli chromosome.  相似文献   

10.
N-Methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, initiates excision repair of several N-alkylpurine adducts, deaminated and lipid peroxidation-induced purine adducts. MPG from human and mouse has previously been cloned and expressed. However, due to the poor expression level in Escherichia coli (E. coli) and multi-step purification process of full-length MPG, most successful attempts have been limited by extremely poor yield and stability. Here, we have optimized the codons within the first five residues of human MPG (hMPG) to the best used codons for E. coli and expressed full-length hMPG in large amounts. This high expression level in conjunction with a strikingly high isoelectric point (9.65) of hMPG, in fact, helped purify the enzyme in a single step. A previously well-characterized monoclonal antibody having an epitope in the N-terminal tail could detect this codon-optimized hMPG protein. Surface plasmon resonance studies showed an equilibrium binding constant (KD) of 0.25 nM. Steady-state enzyme kinetics showed an apparent Km of 5.3 nM and kcat of 0.2 min−1 of MPG for the hypoxanthine (Hx) cleavage reaction. Moreover, hMPG had an optimal activity at pH 7.5 and 100 mM KCl. Unlike the previous reports by others, this newly purified full-length hMPG is appreciably stable at high temperature, such as 50 °C. Thus, this study indicates that this improved expression and purification system will facilitate large scale production and purification of a stable human MPG protein for further biochemical, biophysical and structure–function analysis.  相似文献   

11.
Summary Temperature-sensitive mutants that filamented at the non-permissive temperature were isolated by specific mutagenesis of the terminus region of the Escherichia coli chromosome. Two of them, mapping at about 35 min, failed to divide due to inhibition of DNA replication. Further characterization indicated that these mutants are temperature-sensitive for DNA chain elongation.  相似文献   

12.
To resist terrestrial UV radiation, plants employ DNA-damage-repair/toleration (DRT) activities, as well as shielding mechanisms. Little is known about the structure and regulation of plant DRT genes. We isolated DRT cDNAs from Arabidopsis thaliana, by selecting for complementation of Escherichia coli mutants lacking all bacterial defenses against UV-light damage to DNA. These mutants are phenotypically deficient in recombinational and mutagenic toleration (RecA), excision repair (Uvr) and photoreactivation toreactivation (Phr). Among 840 survivors of heavily UV-irradiated (10–7 survival) mutants harboring plasmids derived from an Arabidopsis cDNA library in the vector YES, we identified four unique plant cDNAs, designated DRT100, DRT101, DRT102, and DRT103. Drt101 and Drt102 activity were specific for UV-light damage, and complemented both UvrB and UvrC phenotypes in the dark. Apparent Uvr correction efficiencies were 1 to 40% for Drt101, and 0.2 to 15% for Drt102, depending on the UV fluence. Drt101 and Drt102 showed no extensive amino-acid homology with any known DNA-repair proteins. Drt100 appeared to correct RecA, rather than Uvr, phenotypes. Although the light dependence of Drt103 activity was consistent with its identification as a photoreactivating enzyme, its predicted amino-acid sequence did not resemble known photolyase sequences. The N-terminal coding sequence of Drt101 suggests that it is targeted to chloroplasts, as reported for Drt100. These cDNAs afforded only modest increases in survival during the original selection procedure. The fact that they were readily isolated nevertheless suggests that selections may be made powerful enough to overcome barriers to expression and function in bacteria, at least for cDNAs of reasonable abundance.  相似文献   

13.
Summary Induction of the SOS response in Escherichia coli results in an increase in the relative rate of synthesis of single-stranded DNA binding protein (SSB). In contrast to RecA protein, this increase is slow and does not lead to higher SSB levels. The significance of ssb induction to SOS repair is discussed.  相似文献   

14.
Summary Sequence changes in mutations induced by ultraviolet light are reported for the chromosomal Escherichia coli gpt gene in almost isogenic E. coli uvr + and excision-deficient uvrA cells. Differences between the mutagenic spectra are ascribed to preferential removal of photoproducts in the transcribed strand by excision repair in uvr + cells. This conclusion is confirmed by analysis of published results for genes in both uvr + and uvr cells, showing a similar selective removal of mutagenic products from the transcribed strand of the E. coli lacI gene and of the lambda phage cl repressor gene. Comparison of these data with published results for ultraviolet mutagenesis of gpt on a chromosome in Chinese hamster ovary cells showed that a mutagenic hot spot in mammalian cells is not present in E. coli; the possibility is suggested that the hot spot might arise from localized lack of excision repair. Otherwise, mutagenesis in hamster cells appeared similar to that in E. coli uvr + cells, except there appears to be a smaller fraction of single-base additions and deletions (frameshifts) in mammalian than in bacterial cells. Phenotypes of 6-thioguanine-resistant E. coli showed there is a gene (or genes) other than gpt involved in the utilization of thioguanine by bacteria.  相似文献   

15.
Summary Escherichia coli rnh mutants deficient in ribonuclease H (RNase H) are capable of DNA replication in the absence of protein synthesis. This constitutive stable DNA replication (SDR) is dependent upon the recA + gene product. The requirement of SDR for recA + can be suppressed by rin mutations (for recA+-independent), or by lexA(Def) mutations which inactivate the LexA repressor. Thus, there are at least three genetically distinct types of SDR in rnh mutants: recA +-dependent SDR seen in rnh - rin+ lexA+ strains, recA +-independent in rnh - rin- lexA+, and recA +-independent in rnh - rin+ lexA(Def). The expression of SDR in rin - and lexA(Def) mutants demonstrated a requirement for RNA synthesis and for the absence of RNase H. The suppression of the recA + requirement by rin mutations was shown to depend on some new function of the recF + gene product. In contrast, the suppression by lexA-(Def) mutations was not dependent on recF +. The lexA3 mutation inhibited recA +-dependent SDR via reducing the amount of recA + activity available, and was suppressed by the recAo254 mutation. The SDR in rnh - rin- cells was also inhibited by the lexA3 mutation, but the inhibition was not reversed by the recAo254 mutation, indicating a requirement for some other lexA +-regulated gene product in the recA +-independent SDR process. A model is presented for the regulation of the expression of these three types of SDR by the products of the lexA +, rin+ and recF + genes.  相似文献   

16.
Summary The DNA ligase of Escherichia coli catalyses the NAD-dependent formation of phosphodiester linkages between 5-phosphoryl and 3-hydroxyl groups in DNA. It is essential for DNA replication and repair of damaged DNA strands. We determined the nucleotide sequence of the lig gene of Escherichia coli coding for DNA ligase and flanking regions. The coding frame of the gene was confirmed by the amino acid composition and the amino- and carboxyl-terminal amino acid sequences of the purified ligase. The ligase consists of 671 amino acid residues with a molecular weight of 73,690.On leave from Takara Shuzo Co., Ltd., Kyoto, Japan  相似文献   

17.
Two bacterial perhydrolase genes, perPA and perBC, were cloned from Pseudomonas aeruginosa and Burkholderia cepacia, respectively, using PCR amplification with primers designed to be specific for conserved amino acid sequences of the already-known perhydrolases. The amino acid sequence of PerPA was identical to a putative perhydrolase of P. aeruginosa PAO1 genome sequences, whereas PerBC of B. cepacia was a novel bacterial perhydrolase showing similarity of less than 80% with all other existing perhydrolases. Most importantly, the perPA gene was expressed as a soluble intracellular form to an extent of more than 50% of the total protein content in Escherichia coli. Two perhydrolase enzymes were confirmed to exhibit the halogenation activity towards Phenol Red and monochlorodimedone. These results suggested that we successfully obtained the newly identified members of the bacterial perhydrolase family, expanding the pool of available perhydrolases.  相似文献   

18.
The discovery that Helicobacter pylori is associated with gastric cancer has led to numerous studies that investigate the mechanisms by which H. pylori induces carcinogenesis. Gastric cancer shows genetic instability both in nuclear and mitochondrial DNA, besides impairment of important DNA repair pathways. As such, this review highlights the consequences of H. pylori infection on the integrity of DNA in the host cells. By down-regulating major DNA repair pathways, H. pylori infection has the potential to generate mutations. In addition, H. pylori infection can induce direct changes on the DNA of the host, such as oxidative damage, methylation, chromosomal instability, microsatellite instability, and mutations. Interestingly, H. pylori infection generates genetic instability in nuclear and mitochondrial DNA.  相似文献   

19.
The mutagenic potentials of DNAs containing site- and stereospecific intrastrand DNA crosslinks were evaluated in Escherichia coli cells that contained a full complement of DNA polymerases or were deficient in either polymerases II, IV, or V. Crosslinks were made between adjacent N(6)-N(6) adenines and consisted of R,R- and S,S-butadiene crosslinks and unfunctionalized 2-, 3-, and 4-carbon tethers. Although replication of single-stranded DNAs containing the unfunctionalized 3- and 4-carbon tethers were non-mutagenic in all strains tested, replication past all the other intrastrand crosslinks was mutagenic in all E. coli strains, except the one deficient in polymerase II in which no mutations were ever detected. However, when mutagenesis was analyzed in cells induced for SOS, mutations were not detected, suggesting a possible change in the overall fidelity of polymerase II under SOS conditions. These data suggest that DNA polymerase II is responsible for the in vivo mutagenic bypass of these lesions in wild-type E. coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号