共查询到20条相似文献,搜索用时 0 毫秒
1.
M. G. Neijzing 《Chromosoma》1982,85(2):287-298
In meiosis of haploid rye associations of two or more chromosomes are observed. In order to investigate whether these associations are chiasmate, metaphase I and anaphase I associations were analysed after Giemsa banding. — At anaphase I chromatid exchanges between differently marked chromosome arms were observed, which proved the presence of real chiasmata. The association between banded and unbanded arms shows that the heterochromatic telomeres do not act as secondary pairing sources. Different statistical approaches were used to test randomness of chiasma formation. It appeared to be non-random, which showed that the segments involved were non-randomly located and probably limited in number. The nature of these segments is discussed. 相似文献
2.
There is growing evidence that duplications have played a major role in eucaryotic genome evolution. Sequencing data revealed the presence of large duplicated regions in the genomes of many eucaryotic organisms, and comparative studies have suggested that duplication of large DNA segments has been a continuing process during evolution. However, little experimental data have been produced regarding this issue. Using a gene dosage assay for growth recovery in Saccharomyces cerevisiae, we demonstrate that a majority of the revertant strains (58%) resulted from the spontaneous duplication of large DNA segments, either intra- or interchromosomally, ranging from 41 to 655 kb in size. These events result in the concomitant duplication of dozens of genes and in some cases in the formation of chimeric open reading frames at the junction of the duplicated blocks. The types of sequences at the breakpoints as well as their superposition with the replication map suggest that spontaneous large segmental duplications result from replication accidents. Aneuploidization events or suppressor mutations that do not involve large-scale rearrangements accounted for the rest of the reversion events (in 26 and 16% of the strains, respectively). 相似文献
3.
Jeong-Hwan Mun Soo-Jin Kwon Tae-Jin Yang Young-Joo Seol Mina Jin Jin-A Kim Myung-Ho Lim Jung Sun Kim Seunghoon Baek Beom-Soon Choi Hee-Ju Yu Dae-Soo Kim Namshin Kim Ki-Byung Lim Soo-In Lee Jang-Ho Hahn Yong Pyo Lim Ian Bancroft Beom-Seok Park 《Genome biology》2009,10(10):R111
Background
Brassica rapa is one of the most economically important vegetable crops worldwide. Owing to its agronomic importance and phylogenetic position, B. rapa provides a crucial reference to understand polyploidy-related crop genome evolution. The high degree of sequence identity and remarkably conserved genome structure between Arabidopsis and Brassica genomes enables comparative tiling sequencing using Arabidopsis sequences as references to select the counterpart regions in B. rapa, which is a strong challenge of structural and comparative crop genomics.Results
We assembled 65.8 megabase-pairs of non-redundant euchromatic sequence of B. rapa and compared this sequence to the Arabidopsis genome to investigate chromosomal relationships, macrosynteny blocks, and microsynteny within blocks. The triplicated B. rapa genome contains only approximately twice the number of genes as in Arabidopsis because of genome shrinkage. Genome comparisons suggest that B. rapa has a distinct organization of ancestral genome blocks as a result of recent whole genome triplication followed by a unique diploidization process. A lack of the most recent whole genome duplication (3R) event in the B. rapa genome, atypical of other Brassica genomes, may account for the emergence of B. rapa from the Brassica progenitor around 8 million years ago.Conclusions
This work demonstrates the potential of using comparative tiling sequencing for genome analysis of crop species. Based on a comparative analysis of the B. rapa sequences and the Arabidopsis genome, it appears that polyploidy and chromosomal diploidization are ongoing processes that collectively stabilize the B. rapa genome and facilitate its evolution. 相似文献4.
Meiotic drive of chromosomal knobs reshaped the maize genome. 总被引:5,自引:0,他引:5
E S Buckler T L Phelps-Durr C S Buckler R K Dawe J F Doebley T P Holtsford 《Genetics》1999,153(1):415-426
Meiotic drive is the subversion of meiosis so that particular genes are preferentially transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome; however, in maize we propose that meiotic drive is responsible for the evolution of large repetitive DNA arrays on all chromosomes. A maize meiotic drive locus found on an uncommon form of chromosome 10 [abnormal 10 (Ab10)] may be largely responsible for the evolution of heterochromatic chromosomal knobs, which can confer meiotic drive potential to every maize chromosome. Simulations were used to illustrate the dynamics of this meiotic drive model and suggest knobs might be deleterious in the absence of Ab10. Chromosomal knob data from maize's wild relatives (Zea mays ssp. parviglumis and mexicana) and phylogenetic comparisons demonstrated that the evolution of knob size, frequency, and chromosomal position agreed with the meiotic drive hypothesis. Knob chromosomal position was incompatible with the hypothesis that knob repetitive DNA is neutral or slightly deleterious to the genome. We also show that environmental factors and transposition may play a role in the evolution of knobs. Because knobs occur at multiple locations on all maize chromosomes, the combined effects of meiotic drive and genetic linkage may have reshaped genetic diversity throughout the maize genome in response to the presence of Ab10. Meiotic drive may be a major force of genome evolution, allowing revolutionary changes in genome structure and diversity over short evolutionary periods. 相似文献
5.
Between rat and mouse zoo-FISH reveals 49 chromosomal segments that have been conserved in evolution
Mouse single chromosome paints were applied to rat prophase/prometaphase chromosomes to detect homologous chromosome regions. The analysis revealed 49 rat chromosomal regions ranging in size from whole chromosomes down to small bands near the limit of detection with this method, which was estimated to be 2-3 Mb. When all the painted regions were taken into account, the whole rat genome was covered with mouse-homologous regions, with the exception of small segments near the centromeres and the short arms of Chromosomes (Chrs) 3, 11, 12, and 13. These regions were shown to contain high levels of rat-specific repetitive DNA. The number of conserved segments between rat and mouse detected by our high-resolution zoo-FISH method was significantly higher than that reported in previous studies. 相似文献
6.
Structural domains and matrix attachment regions along colinear chromosomal segments of maize and sorghum 总被引:1,自引:0,他引:1
Although a gene's location can greatly influence its expression, genome sequencing has shown that orthologous genes may exist in very different environments in the genomes of closely related species. Four genes in the maize alcohol dehydrogenase (adh1) region represent solitary genes dispersed among large repetitive blocks, whereas the orthologous genes in sorghum are located in a different setting surrounded by low-copy-number DNAs. A specific class of DNA sequences, matrix attachment regions (MARs), was found to be in comparable positions in the two species, often flanking individual genes. If these MARs define structural domains, then the orthologous genes in maize and sorghum should experience similar chromatin environments. In addition, MARs were divided into two groups, based on the competitive affinity of their association with the matrix. The "durable" MARs retained matrix associations at the highest concentrations of competitor DNA. Most of the durable MARs mapped outside genes, defining the borders of putative chromatin loops. The "unstable" MARs lost their association with the matrix under similar competitor conditions and mapped mainly within introns. These results suggest that MARs possess both domain-defining and regulatory roles. Miniature inverted repeat transposable elements (MITEs) often were found on the same fragments as the MARs. Our studies showed that many MITEs can bind to isolated nuclear matrices, suggesting that MITEs may function as MARs in vivo. 相似文献
7.
Structural divergence of chromosomal segments that arose from successive duplication events in the Arabidopsis genome 总被引:2,自引:0,他引:2
Using the extensive segmental duplications of the Arabidopsis thaliana genome, a comparative study of homoeologous segments occurring in chromosomes 1, 2, 4 and 5 was performed. The gene-by-gene BLASTP approach was applied to identify duplicated genes in homoeologues. The levels of synonymous substitutions between duplicated coding sequences suggest that these regions were formed by at least two rounds of duplications. Moreover, remnants of even more ancient duplication events were recognised by a whole-genome study. We describe a subchromosomal organisation of genes, including the tandemly repeated genes, and the distribution of transposable elements (TEs). In certain cases, evidence of the possible mechanisms of structural rearrangements within the segments could be found. We provide a probable scenario of the rearrangements that took place during the evolution of the homoeologous regions. Furthermore, on the basis of the comparative analysis of the chromosomal segments in the Columbia and Landsberg erecta accessions, an additional structural variation in the A.thaliana genome is described. Analysis of the segments, spanning 7 Mb or 5.6% of the genome, permitted us to propose a model of evolution at the subchromosomal level. 相似文献
8.
P. Dufour L. Grivet A. D'Hont M. Deu G. Trouche J. C. Glaszmann P. Hamon 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,92(8):1024-1030
Comparative mapping within maize, sorghum and sugarcane has previously revealed the existence of syntenic regions between the crops. In the present study, mapping on the sorghum genome of a set of probes previously located on the maize and sugarcane maps allow a detailed analysis of the relationship between maize chromosomes 3 and 8 and sorghum and sugarcane homoeologous regions. Of 49 loci revealed by 46 (4 sugarcane and 42 maize) polymorphic probes in sorghum, 42 were linked and were assigned to linkage groups G (28), E (10) and I (4). On the basis of common probes, a complete co-linearity is observed between sorghum linkage group G and the two sugarcane linkage groups II and III. The comparison between the consensus sorghum/sugarcane map (G/II/III) and the maps of maize chromosomes 3 and 8 reveals a series of linkage blocks within which gene orders are conserved. These blocks are interspersed with non-homoeologous regions corresponding to the central part of the two maize chromosomes and have been reshuffled, resulting in several inversions in maize compared to sorghum and sugarcane. The results emphasize the fact that duplication will considerably complicate precise comparative mapping at the whole genome scale between maize and other Poaceae. 相似文献
9.
The paralogous maize proteins EMPTY PERICARP2 (EMP2) and HEAT SHOCK FACTOR BINDING PROTEIN2 (HSBP2) each contain a single recognizable motif: the coiled-coil domain. EMP2 and HSBP2 accumulate differentially during maize development and heat stress. Previous analyses revealed that EMP2 is required for regulation of heat shock protein (hsp) gene expression and also for embryo morphogenesis. Developmentally abnormal emp2 mutant embryos are aborted during early embryogenesis. To analyze EMP2 function during postembryonic stages, plants mosaic for sectors of emp2 mutant tissue were constructed. Clonal sectors of emp2 mutant tissue revealed multiple defects during maize vegetative shoot development, but these sector phenotypes are not correlated with aberrant hsp gene regulation. Furthermore, equivalent phenotypes are observed in emp2 sectored plants grown under heat stress and nonstress conditions. Thus, the function of EMP2 during regulation of the heat stress response can be separated from its role in plant development. The discovery of emp2 mutant phenotypes in postembryonic shoots reveals that the duplicate genes emp2 and hsbp2 encode nonredundant functions throughout maize development. Distinct developmental phenotypes correlated with the developmental timing, position, and tissue layer of emp2 mutant sectors, suggesting that EMP2 has evolved diverse developmental functions in the maize shoot. 相似文献
10.
11.
12.
Donghai Mao Huihui Yu Touming Liu Gaiyu Yang Yongzhong Xing 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,122(2):373-383
The main objective of this study was to identify the genes causing etiolation in a rice mutant, the thylakoids of which were scattered. Three populations were employed to map the genes for etiolation using bulked segregant analysis. Genetic analysis confirmed that etiolation was controlled by two recessive genes, et11 and et12, which were fine mapped to an approximately 147-kb region and an approximately 209-kb region on the short arms of chromosomes 11 and 12, respectively. Both regions were within the duplicated segments on chromosomes 11 and 12. They possessed a highly similar sequence of 38 kb at the locations of a pair of duplicated genes with protein sequences very similar to that of HCF152 in Arabidopsis that are required for the processing of chloroplast RNA. These genes are likely the candidates for et11 and et12. Expression profiling was used to compare the expression patterns of paralogs in the duplicated segments. Expression profiling indicated that the duplicated segments had been undergone concerted evolution, and a large number of the paralogs within the duplicated segments were functionally redundant like et11 and et12. 相似文献
13.
14.
15.
16.
The Arabidopsis thaliana genome sequence provides a catalogue of reference genes that can be used for comparative analysis of other species thereby
facilitating map-based cloning in economically important crops. We made use of a coffee bacterial artificial chromosome (BAC)
contig linked to the SH3 leaf rust resistance gene to assess microsynteny between coffee (Coffea arabica L.) and Arabidopsis. Microsynteny was revealed and the matching counterparts to C. arabica contigs were seen to be scattered throughout four different syntenic segments of Arabidopsis on chromosomes (Ath) I, III, IV and V. Coffee BAC filter hybridizations were performed using coffee putative conserved orthologous
sequences to Arabidopsis predicted genes located on the different Arabidopsis syntenic regions. The coffee BAC contig related to the SH3 region was successfully consolidated and later on validated by fingerprinting. Furthermore, the anchoring markers appeared
in same order on the coffee BAC contigs and in all Arabidopsis segments with the exception of a single inversion on AtIII and AtIV Arabidopsis segments. However, the SH3 coffee region appears to be closer to the ancestral genome segment (before the divergence of Arabidopsis and coffee) than any of the duplicated counterparts in the present-day Arabidopsis genome. The genome duplication events at the origin of its Arabidopsis counterparts occurred most probably after the separation (i.e. 94 million years ago) of Euasterid (Coffee) and Eurosid (Arabidopsis). 相似文献
17.
Sequencing the maize genome 总被引:2,自引:0,他引:2
Martienssen RA Rabinowicz PD O'Shaughnessy A McCombie WR 《Current opinion in plant biology》2004,7(2):102-107
Sequencing of complex genomes can be accomplished by enriching shotgun libraries for genes. In maize, gene-enrichment by copy-number normalization (high C(0)t) and methylation filtration (MF) have been used to generate up to two-fold coverage of the gene-space with less than 1 million sequencing reads. Simulations using sequenced bacterial artificial chromosome (BAC) clones predict that 5x coverage of gene-rich regions, accompanied by less than 1x coverage of subclones from BAC contigs, will generate high-quality mapped sequence that meets the needs of geneticists while accommodating unusually high levels of structural polymorphism. By sequencing several inbred strains, we propose a strategy for capturing this polymorphism to investigate hybrid vigor or heterosis. 相似文献
18.
Clifton SW Minx P Fauron CM Gibson M Allen JO Sun H Thompson M Barbazuk WB Kanuganti S Tayloe C Meyer L Wilson RK Newton KJ 《Plant physiology》2004,136(3):3486-3503
The NB mitochondrial genome found in most fertile varieties of commercial maize (Zea mays subsp. mays) was sequenced. The 569,630-bp genome maps as a circle containing 58 identified genes encoding 33 known proteins, 3 ribosomal RNAs, and 21 tRNAs that recognize 14 amino acids. Among the 22 group II introns identified, 7 are trans-spliced. There are 121 open reading frames (ORFs) of at least 300 bp, only 3 of which exist in the mitochondrial genome of rice (Oryza sativa). In total, the identified mitochondrial genes, pseudogenes, ORFs, and cis-spliced introns extend over 127,555 bp (22.39%) of the genome. Integrated plastid DNA accounts for an additional 25,281 bp (4.44%) of the mitochondrial DNA, and phylogenetic analyses raise the possibility that copy correction with DNA from the plastid is an ongoing process. Although the genome contains six pairs of large repeats that cover 17.35% of the genome, small repeats (20-500 bp) account for only 5.59%, and transposable element sequences are extremely rare. MultiPip alignments show that maize mitochondrial DNA has little sequence similarity with other plant mitochondrial genomes, including that of rice, outside of the known functional genes. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly three-fourths of the maize NB mitochondrial genome is still of unknown origin and function. 相似文献
19.