首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It has been proposed that Arp2/3, which promotes nucleation of branched actin, is needed for epithelial junction initiation but is less important as junctions mature. We focus here on how Arp2/3 contributes to the Caenorhabditis elegans intestinal epithelium and find important roles for Arp2/3 in the maturation and maintenance of junctions in embryos and adults. Electron microscope studies show that embryos depleted of Arp2/3 form apical actin-rich microvilli and electron-dense apical junctions. However, whereas apical/basal polarity initiates, apical maturation is defective, including decreased apical F-actin enrichment, aberrant lumen morphology, and reduced accumulation of some apical junctional proteins, including DLG-1. Depletion of Arp2/3 in adult animals leads to similar intestinal defects. The DLG-1/AJM-1 apical junction proteins, and the ezrin-radixin-moesin homologue ERM-1, a protein that connects F-actin to membranes, are required along with Arp2/3 for apical F-actin enrichment in embryos, whereas cadherin junction proteins are not. Arp2/3 affects the subcellular distribution of DLG-1 and ERM-1. Loss of Arp2/3 shifts both ERM-1 and DLG-1 from pellet fractions to supernatant fractions, suggesting a role for Arp2/3 in the distribution of membrane-associated proteins. Thus, Arp2/3 is required as junctions mature to maintain apical proteins associated with the correct membranes.  相似文献   

2.
The Caenorhabditis elegans intestine is a simple and accessible model system to analyze the mechanism of junction assembly. In comparison to Drosophila and vertebrates, the C. elegans apical junction is remarkable because a single electron-dense structure is implicated in complex processes such as epithelial tightness, vectorial transport and cell adhesion. Here we present evidence in support of a heterogeneous molecular assembly of junctional proteins found in Drosophila and vertebrate epithelia associated with different junctions or regions of the plasma membrane. In addition, we show that molecularly diverse complexes participate in different aspects of epithelial maturation in the C. elegans intestine. DLG-1 (Discs large) acts synergistically with the catenin-cadherin complex (HMP-1-HMP-2-HMR-1) and the Ezrin-Radixin-Moesin homolog (ERM-1) to ensure tissue integrity of the intestinal tube. The correct localization of DLG-1 itself depends on AJM-1, a coiled-coil protein. Double depletion of HMP-1 (alpha-catenin) and LET-413 (C. elegans homolog of Drosophila Scribble) suggests that the catenin-cadherin complex is epistatic to LET-413, while additional depletion of subapically expressed CRB-1 (Crumbs) emphasizes a role of CRB-1 concerning apical junction formation in the C. elegans intestine.  相似文献   

3.
Epithelial tubes are basic building blocks of complex organs, but their architectural requirements are not well understood. Here we show that erm-1 is a unique C. elegans ortholog of the ERM family of cytoskeleton-membrane linkers, with an essential role in lumen morphogenesis. ERM-1 localizes to the luminal membranes of those tubular organ epithelia which lack stabilization by cuticle. RNA interference (RNAi), a germline deletion, and overexpression of erm-1 cause cystic luminal phenotypes in these epithelia. Confocal and ultrastructural analyses indicate that erm-1 functions directly in apical membrane morphogenesis, rather than in epithelial polarity and junction assembly as has been previously proposed for ERMs. We also show that act-5/cytoplasmic actin and sma-1/beta-H-spectrin are required for lumen formation and functionally interact with erm-1. Our findings suggest that there are common structural constraints on the architecture of diverse organ lumina.  相似文献   

4.
The nematode Caenorhabditis elegans is an excellent model system in which to study in vivo organization and function of the intermediate filament (IF) system for epithelial development and function. Using a transgenic ifb-2::cfp reporter strain, a mutagenesis screen was performed to identify mutants with aberrant expression patterns of the IF protein IFB-2, which is expressed in a dense network at the subapical endotube just below the microvillar brush border of intestinal cells. Two of the isolated alleles (kc2 and kc3) were mapped to the same gene, which we refer to as ifo-1 (intestinal filament organizer). The encoded polypeptide colocalizes with IF proteins and F-actin in the intestine. The apical localization of IFO-1 does not rely on IFB-2 but is dependent on LET-413, a basolateral protein involved in apical junction assembly and maintenance of cell polarity. In mutant worms, IFB-2 and IFC-2 are mislocalized in cytoplasmic granules and accumulate in large aggregates at the C. elegans apical junction (CeAJ) in a DLG-1-dependent fashion. Electron microscopy reveals loss of the prominent endotube and disordered but still intact microvilli. Semiquantitative fluorescence microscopy revealed a significant decrease of F-actin, suggesting a general role of IFO-1 in cytoskeletal organization. Furthermore, downregulation of the cytoskeletal organizer ERM-1 and the adherens junction component DLG-1, each of which leads to F-actin reduction on its own, induces a novel synthetic phenotype in ifo-1 mutants resulting in disruption of the lumen. We conclude that IFO-1 is a multipurpose linker between different cytoskeletal components of the C. elegans intestinal terminal web and contributes to proper epithelial tube formation.  相似文献   

5.
Apically enriched Rab11-positive recycling endosomes (Rab11-REs) are important for establishing and maintaining epithelial polarity. Yet, little is known about the molecules controlling trafficking of Rab11-REs in an epithelium in vivo. Here, we report a genome-wide, image-based RNA interference screen for regulators of Rab11-RE positioning and transport of an apical membrane protein (PEPT-1) in C. elegans intestine. Among the 356 screen hits was the 14-3-3 and partitioning defective protein PAR-5, which we found to be specifically required for Rab11-RE positioning and apicobasal polarity maintenance. Depletion of PAR-5 induced abnormal clustering of Rab11-REs to ectopic sites at the basolateral cortex containing F-actin and other apical domain components. This phenotype required key regulators of F-actin dynamics and polarity, such as Rho GTPases (RHO-1 and the Rac1 orthologue CED-10) and apical PAR?proteins. Our data suggest that PAR-5 acts as a regulatory hub for a polarity-maintaining network required for apicobasal asymmetry of F-actin and proper Rab11-RE positioning.  相似文献   

6.
We wish to understand how organ-specific structures assemble during embryonic development. In the present paper, we consider what determines the subapical position of the terminal web in the intestinal cells of the nematode Caenorhabditis elegans. The terminal web refers to the organelle-depleted, intermediate filament-rich layer of cytoplasm that underlies the apical microvilli of polarized epithelial cells. It is generally regarded as the anchor for actin rootlets protruding from the microvillar cores. We demonstrate that: (i) the widely used monoclonal antibody MH33 reacts (only) with the gut-specific intermediate filament protein encoded by the ifb-2 gene; (ii) IFB-2 protein accumulates near the gut lumen beginning at the lima bean stage of embryogenesis and remains associated with the gut lumen into adulthood; and (iii) as revealed by immunoelectron microscopy, IFB-2 protein is confined to a discrete circumferential subapical layer within the intestinal terminal web (known in nematodes as the "endotube"); this layer joins directly to the apical junction complexes that connect adjacent gut cells. To investigate what determines the disposition of the IFB-2-containing structure as the terminal web assembles during development, RNAi was used to remove the functions of gene products previously shown to be involved in the overall apicobasal polarity of the developing gut cell. Removal of dlg-1, ajm-1, or hmp-1 function has little effect on the overall position or continuity of the terminal web IFB-2-containing layer. In contrast, removal of the function of the let-413 gene leads to a basolateral expansion of the terminal web, to the point where it can now extend around the entire circumference of the gut cell. The same treatment also leads to concordant basolateral expansion of both gut cell cortical actin and the actin-associated protein ERM-1. LET-413 has previously been shown to be basolaterally located and to prevent the basolateral expansion of several individual apical proteins. In the present context, we conclude that LET-413 is also necessary to maintain the entire terminal web or brush border assembly at the apical surface of C. elegans gut cells, a dramatic example of the so-called "fence" function ascribed to epithelial cell junctions. On the other hand, LET-413 is not necessary to establish this apical location during early development. Finally, the distance at which the terminal web intermediate filament layer lies beneath the gut cell surface (both apical and basolateral) must be determined independently of apical junction position.  相似文献   

7.
Epithelial cell junctions are essential for cell polarity, adhesion and morphogenesis. We have analysed VAB-9, a cell junction protein in Caenorhabditis elegans. VAB-9 is a predicted four-pass integral membrane protein that has greatest similarity to BCMP1 (brain cell membrane protein 1, a member of the PMP22/EMP/Claudin family of cell junction proteins) and localizes to the adherens junction domain of C. elegans apical junctions. Here, we show that VAB-9 requires HMR-1/cadherin for localization to the cell membrane, and both HMP-1/alpha-catenin and HMP-2/beta-catenin for maintaining its distribution at the cell junction. In vab-9 mutants, morphological defects correlate with disorganization of F-actin at the adherens junction; however, localization of the cadherin-catenin complex and epithelial polarity is normal. These results suggest that VAB-9 regulates interactions between the cytoskeleton and the adherens junction downstream of or parallel to alpha-catenin and/or beta-catenin. Mutations in vab-9 enhance adhesion defects through functional loss of the cell junction genes apical junction molecule 1 (ajm-1) and discs large 1 (dlg-1), suggesting that VAB-9 is involved in cell adhesion. Thus, VAB-9 represents the first characterized tetraspan adherens junction protein in C. elegans and defines a new family of such proteins in higher eukaryotes.  相似文献   

8.
The mRNA export pathway is highly conserved throughout evolution. We have used RNA interference (RNAi) to functionally characterize bona fide RNA export factors and components of the exon-exon junction complex (EJC) in Caenorhabditis elegans. RNAi of CeNXT1/p15, the binding partner of CeNXF1/TAP, caused early embryonic lethality, demonstrating an essential function of this gene during C. elegans development. Moreover, depletion of this protein resulted in nuclear accumulation of poly(A)(+) RNAs, supporting a direct role of NXT1/p15 in mRNA export in C. elegans. Previously, we have shown that RNAi of CeSRm160, a protein of the EJC complex, resulted in wild-type phenotype; in the present study, we demonstrate that RNAi of CeY14, another component of this complex, results in embryonic lethality. In contrast, depletion of the EJC component CeRNPS1 results in no discernible phenotype. Proteins of the REF/Aly family act as adaptor proteins mediating the recruitment of the mRNA export factor, NXF1/TAP, to mRNAs. The C. elegans genome encodes three members of the REF/Aly family. RNAi of individual Ref genes, or codepletion of two Ref genes in different combinations, resulted in wild-type phenotype. Simultaneous suppression of all three Ref genes did not compromise viability or progression through developmental stages in the affected progeny, and only caused a minor defect in larval mobility. Furthermore, no defects in mRNA export were observed upon simultaneous depletion of all three REF proteins. These results suggest the existence of multiple adaptor proteins that mediate mRNA export in C. elegans.  相似文献   

9.
During studies of the actin cytoskeleton in cultured endothelial cells we have observed that the luminal side of many cells contains F-actin microdomains that are rich in the hyaluronan receptor CD44 and in ezrin-radixin-moesin (ERM) proteins. A small subpopulation of the domains are also enriched in tyrosine phosphorylated proteins and signaling molecules. Confocal microscopy of rat aortic endothelial cells in situ demonstrated that similar microdomains occur in vivo. During healing of endothelial wounds, characteristic alterations of the actin cytoskeleton occurred. Thus, in many cells close to the wound, focal F-actin branching points appeared. The branching points were similar to the microdomains in that they colocalized with CD44 and ERM proteins, but, in addition, they formed centers for actin filament branching and were associated with phosphorylated protein kinase C /II. These colocalization data are consonant with the view that activated PKC is responsible for activating ERM-mediated crosslinking between CD44 and the actin cytoskeleton. Importantly, inhibition of PKC activity decreased staining for phosphorylated ERM proteins, decreased the frequency of F-actin branching points, and inhibited monolayer wound healing. Together, our data show that endothelial cells contain a novel actin cytoskeletal structure, the F-actin microdomain, and suggest that during wound healing such structures become associated with activated signaling molecules and thereby enhance actin cytoskeletal remodeling.  相似文献   

10.
Dynamic remodeling of intercellular junctions is a critical determinant of epithelial barrier function in both physiological and pathophysiological states. While the disassembly of epithelial tight junctions (TJ) and adherens junctions (AJ) has been well-described in response to pathogens and other external stressors, the role of stress-related signaling in TJ/AJ regulation remains poorly understood. The aim of this study was to define the role of stress-activated c-Jun N-terminal kinase (JNK) in disruption of intercellular junctions in model intestinal epithelia. We show that rapid AJ/TJ disassembly triggered by extracellular calcium depletion of T84 and SK-CO15 cell monolayers was accompanied by activation (phosphorylation) of JNK, and prevented by pharmacological inhibitors of JNK. The opposite process, TJ/AJ reassembly, was accelerated by JNK inhibition and suppressed by the JNK activator anisomycin. JNK1 but not JNK2 was found to colocalize with intercellular junctions, and siRNA-mediated down-regulation of JNK1 attenuated the TJ/AJ disruption caused by calcium depletion. JNK inhibition also blocked formation of characteristic contractile F-actin rings in calcium-depleted epithelial cells, suggesting that JNK regulates junctions by remodeling the actin cytoskeleton. In this role JNK acts downstream of the actin-reorganizing Rho-dependent kinase (ROCK), since ROCK inhibition abrogated JNK phosphorylation and TJ/AJ disassembly after calcium depletion. Furthermore, JNK acts upstream of F-actin-membrane linker proteins of the ERM (ezrin-radixin-moesin) family, but in a complex relationship yet to be fully elucidated. Taken together, our findings suggest a novel role for JNK in the signaling pathway that links ROCK and F-actin remodeling during disassembly of epithelial junctions.  相似文献   

11.
Mammalian WASP and N-WASP are involved in reorganization of the actin cytoskeleton through activation of the Arp2/3 complex and in regulation of cell motility or cell shape changes. In the present study, we identified WASP-interacting protein homologue (WIP)-1 in Caenorhabditis elegans. WIP-1 contains the domains and sequences conserved among mammalian WIP family proteins. Yeast two-hybrid analysis detected a physical interaction between WIP-1 and WSP-1, the sole homologue of WASP/N-WASP in C. elegans. Western analysis of embryo lysates showed that RNA interference (RNAi) treatment for wip-1 decreased levels of WSP-1 protein, and wsp-1(RNAi) treatment decreased levels of WIP-1 protein. However, wsp-1 mRNA levels were not decreased in wip-1(RNAi)-treated embryos, and wip-1 mRNA levels were not decreased in wsp-1(RNAi)-treated embryos. Furthermore, disruption of WIP-1 by RNAi resulted in embryonic lethality with morphologic defects in hypodermal cell migration, a process known as ventral enclosure. This phenotype was similar to that observed in RNAi experiments for wsp-1. Immunostaining showed that WIP-1 was expressed by migrating hypodermal cells, as was WSP-1. This expression during ventral enclosure was reduced in wip-1(RNAi)-treated embryos and wsp-1(RNAi)-treated embryos. Our results suggest that C. elegans WIP-1 may function in hypodermal cell migration during ventral enclosure by maintaining levels of WSP-1.  相似文献   

12.
Ezrin, Radixin, and Moesin (the ERM proteins) supply regulated linkage between membrane proteins and the actin cytoskeleton. The study of mammalian ERM proteins has been hampered by presumed functional overlap. We have found that Ezrin, the only ERM detected in epithelial cells of the developing intestine, provides an essential role in configuring the mouse intestinal epithelium. Surprisingly, Ezrin is not absolutely required for the formation of brush border microvilli or for the establishment or maintenance of epithelial polarity. Instead, Ezrin organizes the apical terminal web region, which is critical for the poorly understood process of de novo lumen formation and expansion during villus morphogenesis. Our data also suggest that Ezrin controls the localization and/or function of certain apical membrane proteins that support normal intestinal function. These in vivo studies highlight the critical function of Ezrin in the formation of a multicellular epithelium rather than an individual epithelial cell.  相似文献   

13.
Disassembly of the epithelial apical junctional complex (AJC), composed of the tight junction (TJ) and adherens junction (AJ), is important for normal tissue remodeling and pathogen-induced disruption of epithelial barriers. Using a calcium depletion model in T84 epithelial cells, we previously found that disassembly of the AJC results in endocytosis of AJ/TJ proteins. In the present study, we investigated the role of the actin cytoskeleton in disassembly and internalization of the AJC. Calcium depletion induced reorganization of apical F-actin into contractile rings. Internalized AJ/TJ proteins colocalized with these rings. Both depolymerization and stabilization of F-actin inhibited ring formation and disassembly of the AJC, suggesting a role for actin filament turnover. Actin reorganization was accompanied by activation (dephosphorylation) of cofilin-1 and its translocation to the F-actin rings. In addition, Arp3 and cortactin colocalized with these rings. F-actin reorganization and disassembly of the AJC were blocked by blebbistatin, an inhibitor of nonmuscle myosin II. Myosin IIA was expressed in T84 cells and colocalized with F-actin rings. We conclude that disassembly of the AJC in calcium-depleted cells is driven by reorganization of apical F-actin. Mechanisms of such reorganization involve cofilin-1-dependent depolymerization and Arp2/3-assisted repolymerization of actin filaments as well as myosin IIA-mediated contraction.  相似文献   

14.
Activated ezrin-radixin-moesin (ERM) proteins link the plasma membrane to the actin cytoskeleton to generate apical structures, including microvilli. Among many kinases implicated in ERM activation are the homologues LOK and SLK. CRISPR/Cas9 was used to knock out all ERM proteins or LOK/SLK in human cells. LOK/SLK knockout eliminates all ERM-activating phosphorylation. The apical domains of cells lacking LOK/SLK or ERMs are strikingly similar and selectively altered, with loss of microvilli and with junctional actin replaced by ectopic myosin-II–containing apical contractile structures. Constitutively active ezrin can reverse the phenotypes of either ERM or LOK/SLK knockouts, indicating that a central function of LOK/SLK is to activate ERMs. Both knockout lines have elevated active RhoA with concomitant enhanced myosin light chain phosphorylation, revealing that active ERMs are negative regulators of RhoA. As RhoA-GTP activates LOK/SLK to activate ERM proteins, the ability of active ERMs to negatively regulate RhoA-GTP represents a novel local feedback loop necessary for the proper apical morphology of epithelial cells.  相似文献   

15.
埃兹蛋白(Ezrin)/根蛋白(Radixin)/膜突蛋白(Moesin)(ERM)是细胞膜与胞内骨架的连接蛋白,具有高度同源性。细胞外刺激因子可通过多种信号通路磷酸化ERM蛋白,使细胞骨架重构,从而调控微血管内皮细胞通透性,在感染、炎症、代谢异常等病理过程中发挥作用。ERM功能调节的一个重要环节就是其羧基末端苏氨酸残基磷酸化后引起ERM构象的改变,暴露的羧基末端尾部的肌动蛋白(actin)-细胞骨架结合位点;故通过ERM的桥接作用,可将肌动蛋白微丝与细胞膜相连,使血管内皮细胞屏障功能发生变化。目前已知能使ERM磷酸化的激酶有蛋白激酶C(PKC)、促分裂原活化蛋白激酶(MAPK)、Rho相关激酶(ROCK),分别通过p38-MAPK、Rho/ROCK、PKC信号通路参与微血管内皮屏障功能的调控。本文旨在阐述ERM及其相关信号通路在微血管内皮细胞通透性调控中发挥的作用。  相似文献   

16.
Ezrin is a member of the ezrin-radixin-moesin family (ERM) of adapter proteins that are localized at the interface between the cell membrane and the cortical actin cytoskeleton, and they regulate a variety of cellular functions. The structure representing a dormant and closed conformation of an ERM protein has previously been determined by x-ray crystallography. Here, using contrast variation small angle neutron scattering, we reveal the structural changes of the full-length ezrin upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and to F-actin. Ezrin binding to F-actin requires the simultaneous binding of ezrin to PIP2. Once bound to F-actin, the opened ezrin forms more extensive contacts with F-actin than generally depicted, suggesting a possible role of ezrin in regulating the interfacial structure and dynamics between the cell membrane and the underlying actin cytoskeleton. In addition, using gel filtration, we find that the conformational opening of ezrin in response to PIP2 binding is cooperative, but the cooperativity is disrupted by a phospho-mimic mutation S249D in the 4.1-ezrin/radixin/moesin (FERM) domain of ezrin. Using surface plasmon resonance, we show that the S249D mutation weakens the binding affinity and changes the kinetics of 4.1-ERM to PIP2 binding. The study provides the first structural view of the activated ezrin bound to PIP2 and to F-actin.  相似文献   

17.
Recent studies have revealed an important role for tight junction protein complexes in epithelial cell polarity. One of these complexes contains the apical transmembrane protein, Crumbs, and two PSD95/discs large/zonula occludens domain proteins, protein associated with Lin seven 1 (PALS1)/Stardust and PALS1-associated tight junction protein (PATJ). Although Crumbs and PALS1/Stardust are known to be important for cell polarization, recent studies have suggested that Drosophila PATJ is not essential and its function is unclear. Here, we find that PATJ is targeted to the apical region and tight junctions once cell polarization is initiated. We show using RNAi techniques that reduction in PATJ expression leads to delayed tight junction formation as well as defects in cell polarization. These effects are reversed by reintroduction of PATJ into these RNAi cells. This study provides new functional information on PATJ as a polarity protein and increases our understanding of the Crumbs-PALS1-PATJ complex function in epithelial polarity.  相似文献   

18.
A fundamental property of many plasma-membrane proteins is their association with the underlying cytoskeleton to determine cell shape, and to participate in adhesion, motility and other plasma-membrane processes, including endocytosis and exocytosis. The ezrin-radixin-moesin (ERM) proteins are crucial components that provide a regulated linkage between membrane proteins and the cortical cytoskeleton, and also participate in signal-transduction pathways. The closely related tumour suppressor merlin shares many properties with ERM proteins, yet also provides a distinct and essential function.  相似文献   

19.
Understanding how epithelial organs form during morphogenesis is a major problem in developmental biology. In the present paper, we provide a detailed analysis of vang-1, the only homolog of the planar cell polarity protein Strabismus/Van Gogh in Caenorhabditis elegans. We demonstrate that during organogenesis of the intestine, (i) VANG-1 specifically interacts with PDZ 2 domain of DLG-1 (Discs large) and becomes phosphorylated by the kinase domain of the FGF-like receptor tyrosine kinase EGL-15; (ii) VANG-1 is predominantly restrained to the cell cortex but relocates to the apical junction; and (iii) in vang-1 embryos epithelial cells of the intestine are not correctly arranged along the anterior-posterior axis. To investigate what determines the disposition of the VANG-1 protein, either truncated protein forms were expressed in the intestine or RNAi was used to remove the functions of gene products previously shown to be involved in apical junction formation. Removal of the VANG-1 PDZ binding motif “− ESAV” and depletion of dlg-1 or let-413 gene functions interferes with the localization of VANG-1. In addition, egl-15 embryos show a premature relocation of VANG-1 to the apical junction, causing defects that resemble those observed in mutant vang-1 embryos and after intestine-specific overexpression of full-length vang-1. Finally, the localization of VANG-1 depends on DSH-2, a homolog of the planar cell polarity protein Dishevelled and depletion phenocopies vang-1 and egl-15 phenotypes in the embryonic intestine.  相似文献   

20.
Ezrin-radixin-moesin (ERM) proteins are involved in the linkage of membranes to theactin filament (F-actin) cytoskeleton. Phosphorylation of the C-terminus activates the F-actin binding domain of ERM proteins by preventing the action of an autoinhibitory domain. In this study, we investigated whether a growth cone collapsing signal, semaphorin 3A (Sema3A), alters the state of ERM C-terminus phosphorylation. In the growth cones of dorsal root ganglion axons, phosphorylated ERM proteins localize to filopodia. We report that Sema3A inhibits ERM protein phosphorylation in growth cone filopodia. Significantly, Sema3A decreased ERM phosphorylation prior to the onset of growth cone collapse. Over-expression of the F-actin binding fragment of ERM proteins, which competes with endogenous ERM proteins for binding to F-actin, inhibited filopodial initiation and dynamics. Sema3A has been previously shown to inhibit phosphoinositide 3-kinase (PI3K) activity. Inhibition of PI3K resulted in the loss of phosphorylated ERM proteins from growth cone filopodia, and treatment with a PI3K activating peptide blocked the effects of Sema3A on ERM phosphorylation. Collectively, these observations demonstrate that inactivation of PI3K in response to Sema3A results in decreased phosphorylation of ERM proteins in filopodia thereby contributing to growth cone collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号