首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aid of a synthetic nonapeptide which is a selective substrate for protein kinase C the activity of this enzyme was determined in the crude cytosolic and particulate fractions of rat adrenal glomerulosa cells. When the cells were sonicated in the presence of Ca2+ chelators 65 per cent of their total protein kinase C activity was found in the cytosolic extract. The treatment of cells with angiotensin II under conditions where the maximal stimulation of inositol-lipid hydrolysis was observed did not cause a statistically significant change in the apparent subcellular distribution of protein kinase C. However, when the cytosolic extract was prepared in the presence of Ca2+ the protein kinase C activity was recovered nearly exclusively from the particulate fraction.  相似文献   

2.
Previous studies have shown that external calcium (Ca2+) is required for the effects of angiotensin II (AII) on aldosterone secretion in adrenal glomerulosa zone. Using bovine adrenal glomerulosa cells prepared by collagenase dispersion, we examined whether external Ca2+ is required for the activation of phospholipase C by AII. Adrenal glomerulosa cells were exposed to Ca-EGTA buffered media to provide accurate estimates of external free Ca2+ concentrations. Phospholipase C activation was evaluated by measurement of inositol phosphates production. At 0.1 M Ca2+ and less, sustained AII effects on inositol monophosphate (IP), inositol bisphosphate (IP2) and inositol trisphosphate (IP3) were markedly inhibited. Increasing the Ca2+ concentration to 50kM or greater fully restored All-induced inositol phosphates production. AII-induced increases in cytosolic Ca2+ measured by Quin-2 fluorescence, were diminished at lower external Ca2+ concentrations. Treating adrenal glomerulosa cells with Chelex-100, a strong Ca2+ binding resin, blocked early activation of phospholipase C by AII. Inhibition of IP3 production was also observed when inhibitors of Ca2+ movement across the plasma membrane were used, viz., La2+, TMB-8 and nifedipine. The requirement for Ca2+ during AII-induced activation of phospholipase C may be explained, at least partly by a requirement for Ca2+ at a site between the AII receptor and Phospholipase C.  相似文献   

3.
4.
We analyzed inward Ca2+ currents in single bovine adrenal glomerulosa cell using whole-cell patch clamp techniques. Two types of voltage-gated Ca2+ channel currents were identified. One was a transient (T) type which decayed within 100 ms, characterized by a low threshold voltage (about -70 mv) similar to that seen in rat adrenal glomerulosa cells (Matsunaga, H. et al. (1987) Pflügers Arch. 408, 351-355.) Another was a long-lasting (L) type which shows a more positive threshold potential. The present results suggest that while T type Ca2+ channels may explain initial calcium influx in response to an elevation in extracellular K+, L type Ca2+ channels may allow sustained calcium influx which is necessary for sustained aldosterone secretion.  相似文献   

5.
The present study was undertaken to determine whether an agonist-induced activation of C-kinase leads to an inhibition of phospholipase C in adrenal glomerulosa cells. When cells are treated with 100 nM-TPA (12-O-tetradecanoylphorbol 13-acetate), subsequent angiotensin ('angiotensin II')-induced aldosterone secretion is greatly inhibited. Treatment with TPA completely inhibits the angiotensin-induced increase in both inositol trisphosphate and the cytosolic Ca2+ concentration. The dose-response curve for TPA-induced inhibition reveals that quite a high concentration of TPA is necessary to block angiotensin action compared with that needed to stimulate aldosterone secretion. 1-Oleoyl-2-acetylglycerol has a weak inhibitory effect, whereas neither 4 alpha-phorbol 12,13-didecanoate or 4 beta-phorbol inhibits angiotensin action. When the time course of changes in inositol trisphosphate and diacylglycerol is measured, angiotensin action is sustained for up to 30 min. In addition, 100 nM-TPA added after 20 min of angiotensin addition attenuates production of both inositol trisphosphate and diacylglycerol. These results suggest that high dose of TPA inhibits angiotensin-induced activation of phospholipase C by acting, at least partly, on C-kinase, but that an inhibitory effect of TPA may be a pharmacological effect with little physiological significance in this system.  相似文献   

6.
G protein-coupled receptors (GPCRs) such as angiotensin II, bradykinin and endothelin-1 (ET-1) are critically involved in the regulation of adrenal function, including aldosterone production from zona glomerulosa cells. Whereas, substantial data are available on the signaling mechanisms of ET-1 in cardiovascular tissues, such information in adrenal glomerulosa cells is lacking. Bovine adrenal glomerulosa (BAG) cells express receptors for endothelin-1 (ET-1) and their stimulation caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), extracellularly regulated signal kinases (ERK1/2), and their dependent proteins, p90 ribosomal S6 kinase (RSK-1) and CREB. ET-1 elicited these responses predominantly through activation of a Gi-linked cascade with a minor contribution from the Gq/PKC pathway. Whereas, selective inhibition of EGF-R kinase with AG1478 caused complete inhibition of EGF-induced ERK/RSK-1/CREB activation, it caused only partial reduction (30–40%) of such ET-1-induced responses. Consistent with this, inhibition of matrix metalloproteinases (MMPs) with GM6001 reduced ERK1/2 activation by ET-1, consistent with partial involvement of the MMP-dependent EGF-R activation in this cascade. Activation of ERK/RSK-1/CREB by both ET-1 and EGF was abolished by inhibition of Src, indicating its central role in ET-1 signaling in BAG cells. Moreover, the signaling characteristics of ET-1 in cultured BAG cells closely resembled those observed in clonal adrenocortical H295R cells. The ET-1-induced proliferation of BAG and H295 R cells was much smaller than that induced by Ang II or FGF. These data demonstrate that ET-1 causes ERK/RSK-1/CREB phosphorylation predominantly through activation of Gi and Src, with a minor contribution from MMP-dependent EGF-R transactivation.  相似文献   

7.
The present study was conducted to determine whether protein kinase C was involved in angiotensin II-mediated release of 12-hydroxyeicosatetraenoic acid (12-HETE) from bovine adrenal glomerulosa cells. Activators of protein kinase C, 12-O-tetradecanoylphorbol 4-acetate (TPA) and 1-oleoyl-2-acetylglycerol (OAG), significantly increased release of 12-HETE. The effect of OAG was potentiated by BAYK8644, a stimulator of calcium entry. Sphingosine, H-7 and staurosporine, which inhibited the activity of protein kinase C in vitro, almost completely blocked 12-HETE release induced by TPA. These agents also significantly reduced angiotensin II-mediated 12-HETE release. When time course of the liberation of 12-HETE was measured, angiotensin II elicited sustained release of 12-HETE, which was inhibited by staurosporine. These results indicate that angiotensin II induces sustained release of 12-HETE, a feed forward regulator of aldosterone secretion, and that protein kinase C may be involved in this process.  相似文献   

8.
When angiotensin II stimulates aldosterone secretion, it causes a rapid but transient mobilization of calcium from an intracellular pool and a sustained increase in the influx of calcium in adrenal glomerulosa cells. The present studies were undertaken to determine the respective roles of the two angiotensin II-induced changes in cellular calcium metabolism in modulating events during the sustained phase of cellular response which is thought to be mediated by the C-kinase branch of the calcium messenger system. The sustained response to angiotensin II is only 50% of maximal in cells pretreated with dantrolene in a concentration sufficient to inhibit the angiotensin II-induced mobilization of intracellular calcium. Also, if A23187 is added to cells simultaneously with 1-oleoyl-2-acetylglycerol (OAG), the aldosterone secretory response is similar to that seen after angiotensin II. However, if A23187 is added first and the transient aldosterone secretory response allowed to decay, and OAG then added, the sustained aldosterone secretory response is only 45-50% of maximal. Addition of the calcium channel agonist, BAY K 8644, with OAG leads to an aldosterone secretory response which is only 50% of maximal, but if upon addition of OAG and BAY K 8644 the cells are also exposed for 5 min to media containing 8 mM K+, then the sustained secretory response is maximal. These data imply that the initial transient rise in the [Ca2+] of the cell cytosol plays a role in determining the extent to which C-kinase is shifted from its calcium-insensitive to its calcium-sensitive form. The second group of experiments examined the relationship between the sustained angiotensin II-induced increase in plasma membrane calcium influx and the sustained aldosterone secretory response. The results show that in the presence of 1 microM nitrendipine or 2 mM extracellular K+, angiotensin II causes no increase in calcium influx and only a transient rather than a sustained increase in the rate of aldosterone secretion indicating that the sustained phase of the response is dependent upon a continued high rate of Ca2+ influx which regulates the rate of turnover of the activated C-kinase.  相似文献   

9.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) between cytosol and membrane fractions was examined in bovine adrenal glomerulosa cells treated with angiotensin II or potassium. Protein kinase C was isolated from cytosol and from detergent-solubilized particulate fractions by DEAE-cellulose chromatography. A major peak of activity for both the soluble and particulate forms of adrenal glomerulosa protein kinase C was eluted at 0.05-0.09 M NaCl. The soluble and particulate forms were found to constitute about 95 and 5%, respectively, of the total enzyme activity in unstimulated cells. A second peak of kinase activity was eluted with 0.15-0.19 M NaCl, which was not dependent on the presence of phospholipids. Exposure of isolated cells for 20 min to 10(-8) M angiotensin II resulted in a decrease in cytosolic activity to 30-40% of control values, and in a corresponding increase in protein kinase C activity associated with the particulate fraction. This hormone-induced redistribution was found to be dose-dependent with an ED50 of 2 nM for angiotensin II, and it occurred rapidly, reaching a plateau within 5-10 min. It was prevented by the specific antagonist [Sar1,Ala8]angiotensin II. By contrast, stimulation with 12 mM KCl did not change the subcellular distribution of protein kinase C activity. These results suggest that redistribution of protein kinase C represents an early step in the post-receptor activation cascade following angiotensin II, but not potassium stimulation of adrenal glomerulosa cells.  相似文献   

10.
When aequorin-loaded glomerulosa cells were incubated in isotonic Na2+-free medium containing N-methyl-D-glucamine instead of NaCl, there was an increase in cytoplasmic free calcium concentration, [Ca2+] c, which was not observed when extracellular calcium concentration was reduced to 1 microM. Upon removal of extracellular sodium, there was nearly five-fold increase in fractional efflux ratio of calcium. The reduction of extracellular sodium resulted in a stimulation of calcium influx rate, the magnitude of which was dependent on extracellular sodium concentration. Similar stimulation of calcium influx was observed when extracellular sodium was replaced with lithium. Nitrendipine did not affect the calcium influx induced by the reduction of extracellular sodium while a derivative of amiloride 3',4'-dichlorobenzamil, which inhibits Na-Ca exchange, attenuated calcium influx observed in sodium-free medium. These results indicate that removal of extracellular sodium leads to an increase in [Ca2+] c by stimulating calcium influx and that calcium enters the cell via Na-Ca exchanger.  相似文献   

11.
In bovine adrenal glomerulosa cells, angiotensin II and extracellular K+ stimulate aldosterone secretion in a calcium-dependent manner. In these cells, physiological concentrations of extracellular potassium activate both T-type (low threshold) and L-type (high threshold) voltage-operated calcium channels. Paradoxically, the cytosolic calcium response to 9 mM K+ is inhibited by angiotensin II. Because K+-induced calcium changes observed in the cytosol are almost exclusively due to L-type channel activity, we therefore studied the mechanisms of L-type channel regulation by angiotensin II. Using the patch-clamp method in its perforated patch configuration, we observed a marked inhibition (by 63%) of L-type barium currents in response to angiotensin II. This effect of the hormone was completely prevented by losartan, a specific antagonist of the AT1 receptor subtype. Moreover, this inhibition was strongly reduced when the cells were previously treated for 1 night with pertussis toxin. An effect of pertussis toxin was also observed on the modulation by angiotensin II of the K+ (9 mM)-induced cytosolic calcium response in fura-2-loaded cells, as well as on the angiotensin II-induced aldosterone secretion, at both low (3 mM) and high (9 mM) K+ concentrations. Finally, the expression of both Go and Gi proteins in bovine glomerulosa cells was detected by immunoblotting. Altogether, these results strongly suggest that in bovine glomerulosa cells, a pertussis toxin-sensitive G protein is involved in the inhibition of L-type channel activity induced by angiotensin II.  相似文献   

12.
To investigate the role of calcium as a second messenger in serotonin-stimulated aldosterone secretion, radiolabelled calcium influx studies were carried out in purified rat adrenal zona glomerulosa cells using 45CaCl2. The results show that serotonin caused calcium influx within 45 seconds of addition and this continued for up to 105 seconds. Angiotensin II also caused calcium influx; however, the effect was significantly smaller than that of serotonin. Serotonin-stimulated calcium influx could be inhibited by the calcium antagonist verapamil and by methysergide, a selective serotonin receptor type-1/2 antagonist. The data indicate that serotonin directly stimulates calcium uptake in zona glomerulosa cells via calcium channels which are coupled to specific serotonin receptors.  相似文献   

13.
This study has investigated the role of protein kinase C (PKC) activation in IgG-mediated phagocytosis by human monocytes. Incubation of monocytes with IgG-opsonized targets increased membrane-associated PKC approximately 2-fold. Kinetic studies showed that the translocation of PKC to membrane occurred before significant ingestion took place. The pharmacologic PKC inhibitor H7 inhibited IgG-dependent ingestion with ID50 of 20 microM, while the structurally related isoquinoline sulfonamide HA1004 had no effect at this concentration. Staurosporine and calphostin C, PKC inhibitors which have different mechanisms of actions than H7, also inhibited ingestion. Depletion of PKC by prolonged incubation with phorbol esters also inhibited phagocytosis, and dose-response curves showed a strong correlation between the extent of PKC depletion and the extent of inhibition of ingestion. Finally, phagosomes were isolated by sucrose density centrifugation of cells disrupted 5 min after the initiation of phagocytosis. Measurement of PKC activity and immunoreactivity in the phagosomes showed that PKC was concentrated in the phagosome membrane approximately 5-fold compared to the uninvolved plasma membrane. Together, these data suggest that PKC activation is an early, essential step in the efficient ingestion of IgG-opsonized targets by monocytes.  相似文献   

14.
Angiotensin II acts on adrenal glomerulosa cells to induce the phospholipase C-mediated generation of inositol trisphosphate and sn-1,2-diacylglycerol as the major products of inositol phospholipid breakdown. This last product is known to activate protein kinase C, but its role in the action of angiotensin II on steroidogenesis has not been defined. We report herein that, in bovine adrenal glomerulosa cells, protein kinase C activators, such as phorbol 12,13-dibutyrate, 12-O-tetradecanoylphorbol-13-acetate, mezerein and sn 1,2 oleoyl acetoylglycerol, each failed to increase steroidogenesis. These results contrast with our recent report on the enhancement of aldosterone output by sn-1,2-dioctanoylglycerol (DiC8) [J. Steroid Biochem. 35 (1990) 19-33]. In addition, the difference between DiC8 and the other protein kinase activators was also observed in the pattern of 86Rb efflux from preloaded glomerulosa cells; only DiC8 mimicked the effect of angiotensin II on ion fluxes. Furthermore, staurosporine, a potent inhibitor of protein kinase C, was capable of amplifying the aldosterone output induced by a maximally effective concentration of DiC8 or angiotensin II. These data suggest that the effect of the cell permeant DiC8 on aldosterone biosynthesis either is not mediated by protein kinase C activation, or is mediated by a phorbol ester-insensitive isoenzyme of protein kinase C.  相似文献   

15.
Effects of ACTH on the production of diacylglycerol (DAG) and translocation of protein kinase C were studied in primary cultures of calf adrenal glomerulosa cells. To study DAG production two different labeling protocols were used: (a) cells were prelabeled for 3 days with [2-3H]glycerol before ACTH addition; (b) ACTH and [2-3 H]glycerol were added simultaneously to cells. In both cases, ACTH provoked rapid increases in the labeling of DAG which were maximal in 2 min, dose-dependent, and paralleled by increases in DAG mass. ACTH also increased the labeling of total glycerolipids including phosphatidic acid (PA), phosphatidylinositol, phosphatidylethanolamine, phosphatidylcholine and triacylglycerol. In both labeling protocols, the rates of increase in the labeling of DAG and PA were greater than those of other glycerolipids. Our results indicate that ACTH rapidly increases DAG, at least partly by stimulating the de novo synthesis of PA. In addition, we found that ACTH, like phorbol esters, stimulated the apparent translocation of immunoreactive protein kinase C from the cytosol to the membrane fraction.  相似文献   

16.
A small quantity of unsaturated diacylglycerol (DG) sharply decreased the Ca2+ and phospholipid concentrations needed for full activation of a Ca2+-activated, phospholipid-dependent multifunctional protein kinase described earlier (Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T. and Nishizuka, Y. (1979)J.Biol.Chem.254. 3692–3695). In the presence of unsaturated DG and micromolar order of Ca2+, phosphatidylserine (PS) was most relevant with the capacity to activate the enzyme, whereas phosphatidylethanolamine and phosphatidylinositol (PI) were far less effective. Phosphatidylcholine was practically inactive. It is possible, therefore, that unsaturated DG, which may be derived from PI turnover provoked by various extracellular stimulators, acts as a messenger for activating the enzyme, and that Ca2+ and various phospholipids such as PI and PS seem to play a role cooperatively in this unique receptor mechanism.  相似文献   

17.
Angiotensin II-induced activation of aldosterone secretion in adrenal glomerulosa cells is mediated by an increase of intracellular calcium. We describe here a new Ca2+-regulatory pathway involving the inhibition by angiotensin II of calcium extrusion through the Na+/Ca2+ exchanger. Caffeine reduced both the angiotensin II-induced calcium signal and aldosterone production in bovine glomerulosa cells. These effects were independent of cAMP or calcium release from intracellular stores. The calcium response to angiotensin II was more sensitive to caffeine than the response to potassium, suggesting that the drug interacts with a pathway specifically elicited by the hormone. In calcium-free medium, calcium returned more rapidly to basal levels after angiotensin II stimulation in the presence of caffeine. Thapsigargin had no effect on these kinetics, but diltiazem, which inhibits the Na+/Ca2+ exchanger, markedly reduced the rate of calcium decrease and abolished caffeine action. The involvement of this exchanger was supported by the effect of cell depolarization and of a reduction of extracellular sodium on the rate of calcium extrusion. We also determined the mechanism of angiotensin II action on the exchanger. Phorbol esters reduced the rate of calcium extrusion, which was increased by baicalein, an inhibitor of lipoxygenases, and by SB 203580, an inhibitor of the p38 MAPK. Finally, we showed that angiotensin II acutely activates, in a caffeine-sensitive manner, p38 MAPK in glomerulosa cells. In conclusion, in bovine glomerulosa cells, the Na+/Ca2+ exchanger plays a crucial role in extruding calcium, and, by reducing its activity, angiotensin II influences the amplitude of the calcium signal. The hormone exerts its action on the exchanger through a caffeine-sensitive pathway involving the p38 MAPK and lipoxygenase products.  相似文献   

18.
We have previously shown the existence of the major substrate protein of Mr 100,000 (substrate 100 K protein) for Ca2+/calmodulin (CaM)-dependent protein kinase in rat adrenal glomerulosa cells. In the present study, the identity of the substrate 100 K protein to elongation factor 2 (EF-2) was investigated. In a 105,000 g-supernatant fraction (cytosol), the protein of Mr 100,000 with the pI (isoelectric point) value of 6.7 was phosphorylated in the presence of calcium and CaM. The optical densities of this phosphorylated band were greatly enhanced in the presence of the EF-2 purified from pig liver (1 microgram) [20-23-fold, n = 5] when compared with those in the absence of the component. In the presence of the purified EF-2, the phosphorylation of Mr 100,000 was detected only in the presence of calcium alone or calcium plus CaM. This phosphorylation in the presence of calcium alone was completely inhibited in the presence of the CaM antagonist pimozide (500 microM), showing the existence of endogenous CaM in the cytosol. In the same fraction, the ADP-ribosylated protein of Mr 100,000 was detected in the presence of diphtheria toxin (fragment A) and (adenylate-32P) NAD, indicating the presence of EF-2 in the cytosol from rat adrenal glomerulosa cells. These results suggest that the substrate 100 K protein may be identical to EF-2 in rat adrenal glomerulosa cells.  相似文献   

19.
20.
Stimulation of aldosterone production by angiotensin II in the adrenal glomerulosa cell is mediated by increased phosphoinositide turnover and elevation of intracellular Ca2+ concentration. In cultured bovine glomerulosa cells, angiotensin II caused rapid increases in inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) levels and cytosolic Ca2+ during the first minute of stimulation, when both responses peaked between 5 and 10 s and subsequently declined to above-baseline levels. In addition to this temporal correlation, the dose-response relationships of the angiotensin-induced peak increases in cytosolic Ca2+ concentrations and Ins-1,4,5-P3 levels measured at 10 s were closely similar. However, at later times (greater than 1 min) there was a secondary elevation of Ins-1,4,5-P3, paralleled by increased formation of inositol 1,3,4,5-tetrakisphosphate that was associated with cytosolic Ca2+ concentrations only slightly above the resting value. These results are consistent with the primary role of Ins-1,4,5-P3 in calcium mobilization during activation of the glomerulosa cell by angiotensin II. They also suggest that Ins-1,4,5-P3 participates in the later phase of the target-cell response, possibly by acting alone or in conjunction with its phosphorylated metabolites to promote calcium entry and elevation of cytosolic Ca2+ during the sustained phase of aldosterone secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号