首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Fully grown meiotically immature (germinal vesicle stage) amphibian oocytes incorporate radioactive protein ([3H]vitellogenin) following in vitro culture. In vitro exposure of such oocytes to exogenous progesterone induces germinal vesicle breakdown and inhibits incorporation of vitellogenin. In the present studies, we have investigated the effects of cytoplasm taken from mature and immature oocytes on incorporation of vitellogenin and nuclear breakdown following microinjection of this material into immature oocytes. Vitellogenin incorporation was markedly suppressed in oocytes which underwent nuclear breakdown following injection with cytoplasm from mature oocytes. Incorporation of vitellogenin into oocytes which did not mature after injection with cytoplasm taken from mature oocytes resembled that seen in oocytes injected with immature cytoplasm. The degree of suppression of vitellogenin incorporation following cytoplasmic injections was similar to that seen in uninjected oocytes treated with progesterone. Oocytes injected with cytoplasm obtained from immature oocytes did not undergo either nuclear breakdown or changes in vitellogenin incorporation. The results suggest that cytoplasm obtained from mature oocytes contains a factor(s) which alters directly or indirectly the capacity of the oocyte cell membrane to incorporate vitellogenin. Enucleated immature oocytes also incorporated [3H]vitellogenin, and injection of such oocytes with mature, but not immature, oocyte cytoplasm suppressed vitellogenin incorporation. Suppressive effects of injected cytoplasm thus appear to be mediated through physiological changes in the recipient oocyte cytoplasm rather than the nuclear component.  相似文献   

3.
研究p21活化蛋白激酶2(p21-activated kinase 2,PAK2)在爪蟾卵母细胞成熟中的作用。利用特异性抑制PAK2活性的PAK2-N端(PAK2-N terminal,PAK2-NT)片段显微注射爪蟾卵母细胞。荧光显微镜下比较PAK2-NT mRNA注射组和未注射对照组卵母细胞胚泡破裂发生。共聚焦显微镜下,时间延迟摄影法观察两组卵母细胞胞质分裂过程中肌动蛋白和纺锤体的变化。与未注射PAK2-N端mRNA的对照组卵母细胞相比,注射组卵母细胞胚泡破裂发生无异常,但未见胞质分裂发生和极体形成。结果提示PAK2可能参与爪蟾卵母细胞胞质分裂过程。  相似文献   

4.
Nuclear-cytoplasmic interactions during ovine oocyte maturation   总被引:5,自引:0,他引:5  
The present studies have been undertaken to investigate the interactions that occur between the nucleus and cytoplasm of ovine oocytes at various stages during meiotic maturation. We report that the nucleus of ovine fully grown dictyate stage oocytes can be efficiently removed by a microsurgical enucleation procedure. It is demonstrated that between the initiation of maturation and germinal vesicle breakdown certain newly synthesized polypeptides are selectively sequestered in the oocyte nucleus and the major sequestered polypeptide has a relative molecular mass of 28,000, which represent at least 9% of the total labelled polypeptides transferred to the oocyte nucleus during the first 4 h of maturation. The experiments provide evidence that the removal of the oocyte nucleus at various times before germinal vesicle breakdown (GVBD) does not prevent the major series of changes in protein synthesis that occurs after entry into a metaphase. We conclude therefore that the mixing of the nucleoplasm and cytoplasm is not essential for the initiation or progression of the protein reprogramming process during maturation. In addition, the experiments show that the development of the ability to condense chromatin during ovine oocyte maturation is independent of the oocyte nucleus. The combined results strongly support the hypothesis that the extensive series of translational changes that occur in oocytes during maturation are controlled by cytoplasmic rather than nuclear factors.  相似文献   

5.
An insulin receptor substrate 1 (IRS-1)-like cDNA was isolated from a Xenopus ovary cDNA library by low-stringency hybridization using rat IRS-1 cDNA as a probe. The deduced amino acid sequence encoded by this cDNA (termed XIRS-L) is 67% identical (77% similar) to that of rat IRS-1. Significantly, all the insulin-induced tyrosine phosphorylation sites identified in rat IRS-1, including those responsible for binding to the Src homology domains of phosphatidylinositol (PI) 3-kinase, Syp and Grb2, are conserved in XIRS-L. Both mRNA and protein corresponding to the cloned XIRS-L can be detected in immature Xenopus oocytes. Recombinant XIRS-L protein produced in insect cells or a bacterial glutathione S-transferase fusion protein containing the putative PI 3-kinase binding site can be phosphorylated in vitro by purified insulin receptor kinase (IRK) domain, and the IRK-catalyzed phosphorylation renders both proteins capable of binding PI 3-kinase in Xenopus oocyte lysates. Another glutathione S-transferase fusion protein containing the C terminus of XIRS-L and including several putative tyrosine phosphorylation sites is also phosphorylated by IRK in vitro, but it failed to bind PI 3-kinase. Insulin stimulation of immature Xenopus oocytes activates PI 3-kinase in vivo [as indicated by an elevation of PI(3,4)P2 and PI(3,4,5)P3] as well as oocyte maturation (as indicated by germinal vesicle breakdown). Pretreatment of these oocytes with wortmannin inhibited insulin-induced activation of PI 3-kinase in vivo. The same treatment also abolished insulin-induced, but not progesterone-induced, germinal vesicle breakdown. These results (i) identify an IRS-1-like molecule in immature Xenopus oocytes, suggesting that the use of IRS-1-like Scr homology 2 domain-docking proteins in signal transduction is conserved in vertebrates, and (ii) strongly implicate PI 3-kinase as an essential effector of insulin-induced oocyte maturation.  相似文献   

6.
7.
Xenopus oocytes were prelabeled with 32PO4 and induced to mature by progesterone treatment (1 microM). At the time of the breakdown of the germinal vesicle (nucleus), an alkali stable 45 kDa phosphoprotein appears in the 165 000 X g oocyte supernatant. Phospho-amino acid analysis shows that the 45 kDa protein is phosphorylated at threonine residues.  相似文献   

8.
We have developed a transfection assay to investigate the estrogen-mediated stabilization of cytoplasmic vitellogenin mRNA. A minivitellogenin (MV5) gene containing the 5' and 3' untranslated and coding regions but lacking 5,075 nucleotides of internal coding sequence was constructed. Cotransfection of the MV5 plasmid and a Xenopus estrogen receptor expression plasmid into Xenopus liver tissue culture cells yielded a 529-nucleotide MV5 mRNA, which was specifically stabilized by estrogen. MV5 mRNA exhibited the increased stability indicative of positive regulation when the estradiol-estrogen receptor complex was present and was not destabilized by unliganded estrogen receptor. Transfected estrogen receptor, estradiol, and 529 nucleotides of the 5,604-nucleotide vitellogenin B1 mRNA were sufficient for stabilization.  相似文献   

9.
10.
The amphibian oocyte nucleus is thought to provide a maternal store of protein required in embryogenesis. The fate of germinal vesicle proteins has been studied by comparing polypeptide patterns of oocytes, embryos, and several adult organs of Xenopus laevis on two-dimensional gels. A combination of silver staining and fluorography of radiolabeled protein on gels was used to analyze maternal and newly synthesized polypeptides in embryogenesis. Comparison of protein patterns was facilitated and corroborated by application of monoclonal antibodies against several germinal vesicle proteins. These were characterized by immunoblotting from two-dimensional gels, and polypeptides of identical structure were recognized in oocyte nuclei, embryos, and tadpoles. The following conclusions were drawn: (1) Almost all prevalent germinal vesicle proteins can be continuously traced in embryos up to swimming tadpole stages, although their patterns of new synthesis are greatly different, some are not radiolabeled in the embryo but solely provided by the maternal store. (2) Many of the polypeptides occurring in oocyte nuclei are also found in one or several organs of the adult. (3) Tissue specificities of germinal vesicle proteins, previously detected by immunocytochemistry with monoclonal antibodies, could be confirmed by independent biochemical methods. (4) As has been previously shown by immunohistological methods, oocyte nuclear antigens are shed into the cytoplasm of the maturing egg, and are reaccumulated in the nuclei of the embryonic cells, each at a characteristic developmental stage. These shifts between intracellular compartments are not accompanied by a change of the covalent structure of the antigen.  相似文献   

11.
Cytoplasmic extracts of meiotically mature mouse oocytes were injected into immature Xenopus laevis oocytes, which underwent germinal vesicle breakdown within 2 h. Germinal vesicle breakdown was not inhibited by incubation of the Xenopus oocytes in cycloheximide (20 micrograms/ml). Identically prepared extracts of meiotically immature mouse oocytes, arrested at the germinal vesicle stage by dibutyryl cyclic AMP (100 micrograms/ml), did not induce germinal vesicle breakdown in Xenopus oocytes. The results show that maturation-promoting factor activity appears during the course of oocyte maturation in the mouse.  相似文献   

12.
In somatic cells, the Raf-1 serine/threonine protein kinase is activated by several polypeptide growth factors. We investigated the role of Raf-1 in progesterone-induced meiotic maturation of Xenopus laevis oocytes. Raf-1 enzymatic activity and phosphorylation (reflected by a mobility shift on sodium dodecyl sulfate gels) were increased in oocytes following progesterone stimulation. The increase in Raf-1 activity was concurrent with an elevation in the activity of mitogen-activated protein (MAP) kinase. When RNA encoding an oncogenic form of Raf-1 (v-Raf) was injected into immature oocytes, MAP kinase mobility shift, germinal vesicle breakdown, and histone H1 phosphorylation increased markedly. When RNA encoding a dominant-negative version of Raf-1 was injected, progesterone-induced oocyte maturation was blocked. When RNA encoding Xenopus mos (mosxe) was injected into oocytes, Raf-1 and MAP kinase mobility shifts were observed after several hours. Also, when antisense mosxe oligonucleotides were injected into oocytes, progesterone-induced Raf-1 and MAP kinase mobility shifts were blocked. Finally, when antisense mosxe oligonucleotides were coinjected with v-Raf RNA into oocytes, histone H1 kinase activation, germinal vesicle breakdown, and MAP kinase mobility shift occurred. These findings suggest that Raf-1 activity is required for progesterone-induced oocyte maturation and that Raf-1 is downstream of mosxe activity.  相似文献   

13.
Isolated fully grown mouse oocytes, arrested in dictyate of the first meiotic prophase, synthesize a protein with an apparent molecular weight of 28,000 which is localized in the germinal vesicle of the oocyte (germinal vesicle-associated protein; GVAP). Analyses of the distribution of GVAP have been carried out on SDS-polyacrylamide gels using oocytes cultured in vitro in the presence of [35S]methionine or [3H]lysine and germinal vesicles isolated individually from these cultured oocytes. The results of such analyses show that GVAP contains only about 2% of the total radiolabel incorporated into mouse oocyte proteins, but as much as 40% of the total radiolabel incorporated into proteins associated with isolated germinal vesicles. These measurements indicate that GVAP is at least 1000-fold more concentrated in the germinal vesicle than in the cytoplasm of the oocyte. Furthermore, the synthesis and phosphorylation of GVAP are apparently terminated at a time which coincides with germinal vesicle breakdown during spontaneous meiotic maturation of mouse oocytes in vitro. Although the exact nature of GVAP is not known as yet, it appears to be an example of a protein that is selectively sequestered in the germinal vesicle of the oocyte during oogenesis and whose synthesis and modification are dependent upon the presence of an intact germinal vesicle.  相似文献   

14.
In starfish, oocyte maturation is induced by 1-methyladenine (1-MeAde). 1-MeAde acts on the oocyte surface to produce a cytoplasmic maturation-promoting factor (MPF), which in turn brings about germinal vesicle breakdown and subsequent process of oocyte maturation. The participation of germinal vesicle material in the production of MPF was investigated with oocytes of the starfish, Asterina pectinifera. When enucleated oocytes or oocyte fragments without germinal vesicles were treated with 1-MeAde, MPF was found to be produced. However, the amount of MPF produced was small as compared with that in the case of intact oocytes with germinal vesicles. The capacity of the enucleated oocytes to produce MPF was restored when germinal vesicle material was injected. On the other hand, it has been known that the amount of MPF increases when MPF is injected into intact oocytes (amplification of MPF). However, in the case of enucleated oocytes such increase of MPF was no longer observed, suggesting that germinal vesicle material is required for MPF amplification.  相似文献   

15.
16.
Testosterone, progesterone, and estradiol-17 beta each inhibit cAMP phosphodiesterase activity of mouse oocyte extracts in a concentration-dependent manner. This finding provides an explanation for the inhibitory effect of steroid hormones on germinal vesicle breakdown (GVBD) of mouse oocytes in vitro. Furthermore, it raises the possibility that steroid hormones present in follicular fluid participate in maintaining meiotic arrest in vivo by acting in a nonclassical manner.  相似文献   

17.
18.
Inhibition of mos-induced oocyte maturation by protein kinase A   总被引:12,自引:1,他引:11       下载免费PDF全文
《The Journal of cell biology》1993,120(5):1197-1202
The relationship between the mos protooncogene protein and cAMP- dependent protein kinase (PKA) during the maturation of Xenopus oocytes was investigated. Microinjection of the PKA catalytic subunit (PKAc) into Xenopus oocytes inhibited oocyte maturation induced by the mos product but did not markedly affect the autophosphorylation activity of injected mos protein. By contrast, PKAc did not inhibit maturation promoting factor (MPF) activation or germinal vesicle breakdown (GVBD) that was initiated by injecting crude MPF preparations. In addition, inhibiting endogenous PKA activity by microinjecting the PKA regulatory subunit (PKAr) induced oocyte maturation that was dependent upon the presence of the endogenous mos product. Moreover, PKAr potentiated mos protein-induced MPF activation in the absence of progesterone and protein synthesis. These data are consistent with the hypothesis that progesterone-induced release from G2/M is regulated via PKAc and that PKAc negatively regulates a downstream target that is positively regulated by mos.  相似文献   

19.
L A Nikitina  T A Detlaf 《Ontogenez》1986,17(3):243-247
The karyoplasm (the contents of germinal vesicle) of the Bufo viridis, Xenopus laevis, and Acipenser stellatus oocytes maturing under the influence of progesterone acquires the ability to induce the maturation (germinal vesicle breakdown) of the full grown oocytes, when injected into them. This ability arises in the karyoplasm earlier than in the cytoplasm and is preserved until the germinal vesicle breakdown.  相似文献   

20.
The mechanisms involved in the regulation of gene expression in eukaryote cells, although an area of active research, are still largely unknown. This is at least partly due to the lack of good experimental model systems. One type of system which is being exploited with some considerable success is the induction of proteins by steroid hormones. Studies on the effects of estrogen and progesterone on the synthesis of the egg white proteins in the chick oviduct, for instance, have yielded substantial insight into both the regulation of protein synthesis by steroid hormones [1] and the arrangement of the DNA sequences coding for these proteins [2, 3].
The need for other good inducible systems clearly exists and the induction of vitellogenin, the precursor of the major egg yolk proteins, by estrogen in the livers of the chicken and frog ( Xenopus laevis ) is one that is attracting increasing interest. In common with the chick oviduct, large amounts of a specific protein are synthesised in response to a well defined hormonal stimulus. However, the induction of vitellogenin also has the advantage that the response is not complicated by the extensive hyperplasia that follows estrogen treatment in the chick oviduct [4, 5] and that vitellogenin may be induced in vitro [6–11].
The aims of this review are first to discuss recent data on the induction of vitellogenin and vitellogenin mRNA both in vivo and in vitro and then to relate this data to the properties of the estrogen receptor, present in chicken and Xenopus liver, which is thought to mediate the induction of vitellogenin by estrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号