首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to design a novel/conceptual delivery system using ibuprofen, anticipated for chronotherapy in arthritis with porous material to overcome the formulation limits (multiple steps, polymers, excipients) and to optimize drug loading for a desired release profile suitable for in vitro investigations. The objective of this delivery system lies in the availability of maximum drug amount for absorption in the wee hours as recommended. Drug loading using 32 factorial design on porous carrier, synthesized by high internal phase emulsion technique using styrene and divinylbenzene, was done via solvent evaporation using methanol and dichloromethane. The system was evaluated in vitro for drug loading, encapsulation efficiency, and surface characterization by scanning electron, atomic force microscopy, and customized drug release study. This study examined critical parameters such as solvent volume, drug amount, and solvent polarity on investigations related to drug adsorption and release mostly favoring low-polarity solvent dichloromethane. Overall release in all batches ranged 0.98–52% in acidic medium and 71–94% in basic medium. These results exhibit uniqueness in achieving the least drug release of 0.98%, an ideal one, without using any release modifiers, making it distinct from other approaches/technologies for time and controlled release and for chronotherapy.  相似文献   

2.
The aim of this study was to investigate the combined influence of three independent variables on the permeation kinetics of lisinopril from hydrogels for transdermal delivery. A three-factor, three-level Box–Behnken design was used to optimize the independent variables, Carbopol 971 P (X 1), menthol (X 2), and propylene glycol (X 3). Fifteen batches were prepared and evaluated for responses as dependent variables. The dependent variables selected were cumulative amount permeated across rat abdominal skin in 24 h (Q 24; Y 1), flux (Y 2), and lag time (Y 3). Aloe juice has been first time investigated as vehicle for hydrogel preparation. The ex vivo permeation study was conducted using Franz diffusion cells. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The regression equation generated for the cumulative permeation of LSP in 24 h (Q 24) was Y 1 = 1,443.3–602.59X 1 + 93.24X 2 + 91.75X 3 − 18.95X 1 X 2 – 140.93X 1 X 3 – 4.43X 2 X 3 – 152.63X 1 2 – 150.03X2 2 − 213.9X 3 2. The statistical validity of the polynomials was established, and optimized formulation factors were selected by feasibility and grid search. Validation of the optimization study with 15 confirmatory runs indicated high degree of prognostic ability of response surface methodology. The use of Box–Behnken design approach helped in identifying the critical formulation parameters in the transdermal delivery of lisinopril from hydrogels.  相似文献   

3.
The purpose of this study was to investigate the combined influence of three-level, three-factor variables on the formulation of dacarbazine (a water-soluble drug) loaded cubosomes. Box–Behnken design was used to obtain a second-order polynomial equation with interaction terms to predict response values. In this study, the selected and coded variables X 1, X 2, and X 3 representing the amount of monoolein, polymer, and drug as the independent variables, respectively. Fifteen runs of experiments were conducted, and the particle size (Y 1) and encapsulation efficiency (Y 2) were evaluated as dependent variables. We performed multiple regression to establish a full-model second-order polynomial equation relating independent and dependent variables. A second-order polynomial regression model was constructed for Y 1 and confirmed by performing checkpoint analysis. The optimization process and Pareto charts were obtained automatically, and they predicted the levels of independent coded variables X 1, X 2, and X 3 (−1, 0.53485, and −1, respectively) and minimized Y 1 while maximizing Y 2. These corresponded to a cubosome formulation made from 100 mg of monoolein, 107 mg of polymer, and 2 mg with average diameter of 104.7 nm and an encapsulation efficiency of 6.9%. The Box–Behnken design proved to be a useful tool to optimize the particle size of these drug-loaded cubosomes. For encapsulation efficiency (Y 2), further studies are needed to identify appropriate regression model.  相似文献   

4.
The present investigation concerns with the development and optimization of an in situ forming formulation using 33 full factorial design experimentation. Metformin, an antidiabetic drug with upper part of gastrointestinal tract as absorption window was used as a model drug. The formulations were designed with an objective to retain in stomach for an extended time period. The effect of three independent factors—concentrations of sodium alginate (X 1), gellan gum (X 2), and metformin (X 3) on in vitro drug release were used to characterize and optimize the formulation. Five dependent variables—release exponent (Y 1), dissolution efficiency (Y 2), drug release at 30 min (Y 3), 210 min (Y 4), and 480 min (Y 5) were considered as optimization factors. The data were statistically analyzed using ANOVA, and a p < 0.05 was considered statistically significant. Three dimensional surface response plots were drawn to evaluate the interaction of independent variables on the chosen dependent variables. Of the prepared 27 formulations, the responses exhibited by batch F17 containing medium level sodium alginate (X 1), low level gellan (X 2), and medium level metformin (X 3) were similar to the predicted responses.  相似文献   

5.
The aim of this study was to systematically obtain a model of factors that would yield an optimized self-nanoemulsified capsule dosage form (SNCDF) of a highly lipophilic model compound, Coenzyme Q10 (CoQ). Independent variables such as amount of R-(+)-limonene (X 1), surfactant (X 2), and cosurfactant (X 3), were optimized using a 3-factor, 3-level Box-Behnken statistical design. The dependent variables selected were cumulative percentage of drug released after 5 minutes (Y 1) with constraints on drug release in 15 minutes (Y 2), turbidity (Y 3), particle size (Y 4), and zeta potential (Y 5). A mathematical relationship obtained,Y 1=78.503+6.058X 1 +13.738X 2+5.986X 3−25.831X 1 2 +9.12X 1X2−26.03X 1X3−38.67X 2 2 +11.02X 2X3−15.55X 3 3 (r 2=0.97), explained the main and quadratic effects, and the interaction of factors that affected the drug release. Response surface methodology (RSM) predicted the levels of factorsX 1,X 2, andX 3 (0.0344, 0.216, and 0.240, respectively), for a maximized response ofY 1 with constraints of >90% release onY 2. The observed and predicted values ofY 1 were in close agreement. In conclusion, the Box-Behnken experimental design allowed us to obtain SNCDF with rapid (>90%) drug release within 5 minutes with desirable properties of low turbidity and particle size.  相似文献   

6.
The present paper was focused on exploiting Plackett–Burman design to screen the effect of nine factors—poly (ethylene oxide) molecular weight (X 1), poly (ethylene oxide) amount (X 2), ethylcellulose amount (X 4), drug solubility (X 5), drug amount (X 6), sodium chloride amount (X 7), citric acid amount (X 8), polyethylene glycol amount (X 9), and glycerin amount (X 11) on the release of drugs from the extended release extrudates, i.e., release rate and release mechanism. The experiments were carried out according to a nine-factor 12-run statistical model and subjected to an 8-h dissolution study in phosphate buffer pH 6.8. The significance of the model was indicated by the ANOVA and the residual analysis. Poly (ethylene oxide) amount, ethylcellulose amount and drug solubility had significant effect on the T90 values whereas poly (ethylene oxide) amount and ethylcellulose amount had significant effect on the n value.  相似文献   

7.
The aim of the present investigation was to develop and optimize gastroretentive floating system of amoxicillin for the efficient treatment of peptic ulcer induced by Helicobacter pylori infection. Floating microballoons were developed using central composite design (CCD), and optimization was done by employing response surface methodology. The selected independent variables were cellulose acetate phthalate, drug–Eudragit S100 ratio, and the ratio of dichloromethane/ethanol/isopropyl alcohol. The selected dependent variables were yield, mean particle size, buoyancy, encapsulation efficiency, and drug release within 8 h. A quadratic polynomial model was generated which had linear, interaction, and quadratic terms to predict and evaluate the independent variables with respect to the dependent variables. Results showed that selected independent variables significantly affect the yield (30.53–82.71%), particle size (31.62–47.03 μm), buoyancy (42.68–95.75%), encapsulation efficiency (56.96–93.13%), and cumulative drug release from the microballoons (34.01–74.65%). The interaction and quadratic terms were also found to affect the process variables. An excellent agreement was found between the actual value and predicted value. In conclusion, it can be said that CCD is a valuable second-degree design to develop and optimize GFS of amoxicillin which in turn provides a basis to localize the drug release in the gastric region for effective treatment of H. pylori-mediated infection.  相似文献   

8.
The aim of the present study was to prepare and evaluate an optimized, self-nanoemulsified drug delivery system of ubiquinone. A 3-factor, 3-level Box-Behnken design was used for the optimization procedure with the amounts of Polyoxyl 35 castor oil (X1), medium-chain mono- and diglyceride (X2), and lemon oil (X3) as the independent variables. The response variable was the cumulative percentage of ubiquinone emulsified in 10 minutes. Different ubiquinone release rates were obtained. The amount released ranged from 11% to 102.3%. Turbidity profile revealed 3 regions that were used to describe the progress of emulsion formation: lag phase, pseudolinear phase, and plateau turbidity. An increase in the amount of surfactant decreased turbidity values and caused a delay in lag time. Addition of cosurfactant enhanced the release rates. Increasing the amount of the eutectic agent was necessary to overcome drug precipitation especially at higher loading of surfactants and cosurfactants. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The regression equation generated for the cumulative percentage emulsified in 10 minutes was Y1=90.9–22.1X1+5.03X2+13.95X3+12.13X1X2+15.13X1X3-14.40X1 2-6.25X3 2. The optimization model predicted a 93.4% release with X1, X2, and X3 levels of 35, 35, and 30 respectively. The observed responses were in close agreement with the predicted values of the optimized formulation. This demonstrated the reliability of the optimization procedure in predicting the dissolution behavior of a self-emulsified drug delivery system. Published: February 8, 2002.  相似文献   

9.
Several matrix tablet formulations (hydrophilic-based, wax-based, and three-layer tablets) were designed for controlling the release of the highly water soluble drug, venlafaxine hydrochloride (VenHCl) for once-daily administration. The three-layer tablets consist of non-swellable, compritol-based middle layers containing the drug to which hydrophilic top and bottom barrier layers were applied. A 23 full-factorial design was employed for optimization and to explore the effect of different variables on the release rate of the drug from the three-layer tablets. The optimized levels of each independent variable were based on the criterion of desirability. The calculated values of f 1 and f 2 were 4.131 and 79.356, respectively; indicating that the release profile of the optimized PEO layered tablet formulation is comparable to that of the target release model. The pharmacokinetic parameters of VenHCl from the optimized three-layer tablet was compared to the marketed extended release capsule as a reference in healthy human subjects using a randomized crossover design. In this study, the 90% confidence interval for AUC0–24 and AUC0−∞ are within (0.8–1.25), which satisfied the bioequivalence criteria. It could be concluded that a promising once-daily extended-release three-layer tablet of the highly water soluble drug, VenHCl, was successfully designed.  相似文献   

10.
The aim of the present study was to enhance the dissolution rate of meloxicam (MLX), a practically water-insoluble drug by preparation of solid dispersion using a hydrophilic polymer, poloxamer 188 (PXM). The kneading technique was used to prepare solid dispersions. A 32 full factorial design approach was used for optimization wherein the drug, polymer ratio (X 1), and the kneading time (X 2) were selected as independent variables and the dissolution efficiency at 60 min (%DE60) and yield percent were selected as the dependent variable. Multiple linear regression analysis revealed that for obtaining higher dissolution of MLX from PXM solid dispersions, a high level of X 1 and a high level of X 2 were suitable. The use of a factorial design approach helped in optimization of the preparation and formulation of solid dispersion. The optimized formula was characterized by solubility studies, angle of repose, and contact angle; Fourier transform infrared spectroscopy, differential scanning calorimetry, x-ray diffraction studies, and scanning electron microscopy demonstrated that enhanced dissolution of MLX from solid dispersion might be due to a decrease in the crystallinity of MLX and PXM. Analysis of dissolution data of optimized formula indicated the best fitting with Korsemeyer–Peppas model and the drug release kinetics as Fickian diffusion. In conclusion, dissolution enhancement of MLX was obtained by preparing its solid dispersion with PXM using kneading technique.  相似文献   

11.
Pal D  Nayak AK 《AAPS PharmSciTech》2011,12(4):1431-1441
The purpose of this work was to develop and optimize gliclazide-loaded alginate–methyl cellulose mucoadhesive microcapsules by ionotropic gelation using central composite design. The effect of formulation parameters like polymer blend ratio and cross-linker (CaCl2) concentration on properties of gliclazide-loaded alginate–methyl cellulose microcapsules like drug encapsulation efficiency and drug release were optimized. The optimized microcapsules were subjected to swelling, mucoadhesive, and in vivo studies. The observed responses coincided well with the predicted values from the optimization technique. The optimized microcapsules showed high drug encapsulation efficiency (83.57 ± 2.59% to 85.52 ± 3.07%) with low T 50% (time for 50% drug release, 5.68 ± 0.09 to 5.83 ± 0.11 h). The in vitro drug release pattern from optimized microcapsules was found to be controlled-release pattern (zero order) with case II transport release mechanism. Particle sizes of these optimized microcapsules were 0.767 ± 0.085 to 0.937 ± 0.086 mm. These microcapsules also exhibited good mucoadhesive properties. The in vivo studies on alloxan-induced diabetic rats indicated the significant hypoglycemic effect that was observed 12 h after oral administration of optimized mucoadhesive microcapsules. The developed and optimized alginate–methyl cellulose microcapsules are suitable for prolonged systemic absorption of gliclazide to maintain lower blood glucose level and improved patient compliance.  相似文献   

12.
The purpose of this study was to formulate drug-loaded polyelectrolyte matrices constituting blends of pectin, chitosan (CHT) and hydrolyzed polyacrylamide (HPAAm) for controlling the premature solvation of the polymers and modulating drug release. The model drug employed was the highly water-soluble antihistamine, diphenhydramine HCl (DPH). Polyelectrolyte complex formation was validated by infrared spectroscopy. Matrices were characterized by textural profiling, porositometry and SEM. Drug release studies were performed under simulated gastrointestinal conditions using USP apparatus 3. FTIR spectra revealed distinctive peaks indicating the presence of –COO symmetrical stretching (1,425–1,390 cm−1) and -NH3+ deformation (1,535 cm−1) with evidence of electrostatic interaction between the cationic CHT and anionic HPAAm corroborated by molecular mechanics simulations of the complexes. Pectin–HPAAm matrices showed electrostatic attraction due to residual –NH2 and –COO groups of HPAAm and pectin, respectively. Textural profiling demonstrated that CHT-HPAAm matrices were most resilient at 6.1% and pectin–CHT–HPAAm matrices were the least (3.9%). Matrix hardness and deformation energy followed similar behavior. Pectin–CHT–HPAAm and CHT–HPAAm matrices produced type IV isotherms with H3 hysteresis and mesopores (22.46 nm) while pectin–HPAAm matrices were atypical with hysteresis at a low P/P0 and pore sizes of 5.15 nm and a large surface area. At t 2 h, no DPH was released from CHT–HPAAm matrices, whereas 28.2% and 82.2% was released from pectin–HPAAm and pectin–CHT–HPAAm matrices, respectively. At t 4 h, complete DPH release was achieved from pectin–CHT–HPAAm matrices in contrast to only 35% from CHT–HPAAm matrices. This revealed the release-modulating capability of each matrix signifying their applicability in controlled oral drug delivery applications.  相似文献   

13.
The purpose of this research was to prepare a gastroretentive drug delivery system of ranitidine hydrochloride. Guar gum, xanthan gum, and hydroxypropyl methylcellulose were evaluated for gel-forming properties. Sodium bicarbonate was incorporated as a gas-generating agent. The effects of citric acid and stearic acid on drug release profile and floating properties were investigated. The addition of stearic acid reduces the drug dissolution due to its hydrophobic nature. A 32 full factorial design was applied to systemically optimize the drug release profile. The amounts of citric acid anhydrous (X1) and stearic acid (X2) were selected as independent variables. The times required for 50% (t50) and 80% drug dissolution (t80), and the similarity factor f2 were selected as dependent variables. The results of the full factorial design indicated that a low amount of citric acid and a high amount of stearic acid favors sustained release of ranitidine hydrochloride from a gastroretentive formulation. A theoretical dissolution profile was generated using pharmacokinetic parameters of ranitidine hydrochloride. The similarity factor f2 was applied between the factorial design batches and the theoretical dissolution profile. No significant difference was observed between the desired release profile and batches F2, F3, F6, and F9. Batch F9 showed the highest f2 (f2=75) among all the batches, and this similarity is also reflected in t50 (∼214 minutes) and t80 (∼537 minutes) values. These studies indicate that the proper balance between a release rate enhancer and a release rate retardant can produce a drug dissolution profile similar to a theoretical dissolution profile.  相似文献   

14.
The aim of this work was the formulation and characterization of alginate (ALG)–doxycycline (DOX) hydrogel microparticles (MPs) embedded into Pluronic F127 thermogel for DOX intradermal sustained delivery. ALG–DOX MPs were formed by adding a solution of the drug into a 1.5% polymer solution while stirring. The MPs were cross-linked by dispersion into a 1.2% CaCl2 solution. Free MPs were characterized in terms of size, drug content, and release behavior by HPLC and UV–vis. DOX and hydrogel MPs were embedded into PF127, PF127-HPMC, and PF127-Methocel thermogels. The thermogels were characterized in terms of gelling time, morphology, and release behavior. A target release period of 4–7 days was considered optimal. The hydrogel MPs were about 20 μm in size with 90% of the population <59 μm. Drug content was about 35% (w/w). DOX released rapidly from the MPs, 90% within 2 days. An expected faster release was observed for free DOX from the thermogels with 80–90% of drug released after 3.5–4 h even in the presence of 1% HPMC or Methocel. The release was sustained after embedding the MPs into PF127 and PF127-HPMC thermogels. In particular, the PF127-HPMC thermogel showed an almost linear release, reaching 80% after 3 days and 90% up to 6 days. Although a further characterization and formulation assessment is required to optimize MP characteristics, ALG/DOX-loaded hydrogel MPs, when embedded into a PF127-HPMC thermogel, show a potential for achieving a 7-day sustained release formulation for DOX intradermal delivery.  相似文献   

15.
The aim of the present investigation was to evaluate microemulsion as a vehicle for dermal drug delivery and to develop microemulsion-based gel of terbinafine for the treatment of onychomycosis. D-optimal mixture experimental design was adopted to optimize the amount of oil (X 1), Smix (mixture of surfactant and cosurfactant; X 2) and water (X 3) in the microemulsion. The formulations were assessed for globule size (in nanometers; Y 1) and solubility of drug in microemulsion (in milligrams per milliliter; Y 2). The microemulsion containing 5.75% oil, 53.75% surfactant–cosurfactant mixture and 40.5% water was selected as the optimized batch. The globule size and solubility of the optimized batch were 18.14 nm and 43.71 mg/ml, respectively. Transmission electron microscopy showed that globules were spherical in shape. Drug containing microemulsion was converted into gel employing 0.75% w/w carbopol 934P. The optimized gel showed better penetration and retention in the human cadaver skin as compared to the commercial cream. The cumulative amount of terbinafine permeated after 12 h was 244.65 ± 18.43 μg cm−2 which was three times more than the selected commercial cream. Terbinafine microemulsion in the gel form showed better activity against Candida albicans and Trichophyton rubrum than the commercial cream. It was concluded that drug-loaded gel could be a promising formulation for effective treatment of onychomycosis.  相似文献   

16.
The purpose of this research was to study whether the bioavailability of ursodeoxycholic acid could be improved by administering ursodeoxycholic acid–phospholipid complex (UDCA–PLC) orally to rats. A central composite design approach was used for process optimization in order to obtain the acceptable UDCA–PLC. The physicochemical properties of the complex obtained by optimal parameters were investigated by means of scanning electron microscopy and X-ray diffraction. The pharmacokinetic parameters and bioavailability studies were conducted in rats of UDCA after oral administration of UDCA–PLC and UDCA tablet. Multiple linear regression analysis for process optimization revealed that the acceptable UDCA–PLC was obtained wherein the optimal values of X 1, X 2 and X 3 were 3, 60°C and 3 h, respectively. The XRD studies of UDCA–PLC obtained by the optimal parameters demonstrated that UDCA and phospholipids in the UDCA–PLC were combined by non-covalent bonds, not form new compounds. But pharmacokinetic parameters of the complex in rats were T max 1.6 h, C max 0.1346 μg/ml, 11.437 μg·h/ml, respectively. The relative bioavailability of UDCA of UDCA–PLC was increased by 241%,compared with the reference ursodeoxycholic acid tablet.  相似文献   

17.
The exudates from the incised trunk of Terminalia randii has been evaluated as controlled release excipient in comparison with xanthan gum and hydroxypropylmethylcellulose (HPMC) using carvedilol (water insoluble) and theophylline (water soluble) as model drugs. Matrix tablets were prepared by direct compression and the effects of polymer concentration and excipients—spray dried lactose, microcrystalline cellulose and dicalcium phosphate dihydrate on the mechanical (crushing strength (CS) friability (F) and crushing strength–friability ratio (CSFR)) and drug release properties of the matrix tablets were evaluated. The drug release data were fitted into different release kinetics equations to determine the drug release mechanism(s) from the matrix tablets. The results showed that the CS and CSFR increased with increase in polymer concentration while F decreased. The ranking of CS and CSFR was HPMC > terminalia > xanthan while the ranking was reverse for F. The ranking for t 25 (i.e. time for 25% drug release) at a polymer concentration of 60% was xanthan > terminalia = HPMC. The dissolution time, t 25, of theophylline matrices was significantly lower (p < 0.001) than those of carvedilol matrix tablets. Drug release from the matrices was by swelling, diffusion and erosion. The mechanical and drug release properties of the tablets were significantly (p < 0.05) dependent on the type and concentration of polymer and excipients used with the release mechanisms varying from Fickian to anomalous. Terminalia gum compared favourably with standard polymers when used in controlled release matrices and could serve as a suitable alternative to the standard polymers in drug delivery.  相似文献   

18.
Goel H  Vora N  Rana V 《AAPS PharmSciTech》2008,9(3):774-781
The aim of this study was to optimize and formulate fast disintegrating tablets (FDTs) for nausea and vomiting using aminoacetic acid, carmellose and sodium alginate with enough mechanical strength. Ondansetron HCl (water soluble) or domperidone (water insoluble) drug were added to FDTs and their disintegration behaviour was evaluated. Plackett Burman Screening Design was used to screen the independent active process variables [concentration of aminoacetic acid (X 1), concentration of carmellose (X 2) and tablet crushing strength (X 3)] which were found to actively influence the dependent variables [disintegration time in the mouth (DT), wetting time (WT), and water absorption ratio (WAR)] for both the drugs. Also, the coefficients of active variables (DT, WT and WAR) of FDTs containing domperidone was found to be significantly different (P < 0.05) from the coefficients of active factors (X 1, X 2 and X 3) containing ondansetron HCl FDTs. Further, FDTs containing domperidone was prepared according to central composite design for estimating the effect of active factors (X 1, X 2, X 3) in extended spherical domain. The regression analysis of quadratic fit revealed that DT, WT and WAR were 98% correlated with active factors (X 1, X 2 or X 3). The optimized domperidone FDTs were further compared with superdisintegrants (croscarmellose sodium or crospovidone). The data revealed that optimized domperidone FDTs were better than domperidone FDTs containing croscarmellose or crospovidone. Hence, this novel excipients combination can be used for delivery of water insoluble drugs in place of superdisintegrants.  相似文献   

19.
This work presents equilibrium and dynamic aspects for the adsorption at the oil–water interface of pea (Pisum sativum L.) protein isolate (PPI). Dynamic interfacial tension, γ, and surface viscoelasticity modulus, ε, were determined using pendant-drop method. Adsorption kinetics studies revealed that pea proteins adsorb faster at pH 7.0 than at acidic pH (pH 2.4). On the other hand, the measured ε is lower at pH 7.0. This is probably due to fast adsorption, leading to the formation of inhomogeneous film structures. In fact, compared with pHs above the isoelectric point (pI ~ 4.3), acidic conditions slow down the adsorption, but the modulus is increased. Pea-protein-stabilized emulsions are more stable to creaming at acidic pH and their particle-size distributions are more homogeneous in these conditions. Effect of pH on interfacial properties and on properties of oil-in-water emulsions stabilized by PPI was interpreted in terms of pea protein solubility, globulin dissociation, and oil-droplet surface electrostatic charge. We propose that at acidic conditions, adsorbed dissociated globulins form stronger and denser viscoelastic networks when adsorbed at oil–water interface. Consequently, the pH-dependence of pea-globulin-stabilized emulsions properties could be of great interest to tune barrier properties of oil/water interfacial membranes for several applications such as encapsulation and controlled release of lipophilic bioactive components within the food, medical, and pharmaceutical industries.  相似文献   

20.
The objective of this study was to develop solid lipid nanoparticles (SLNs) of simvastatin and to optimize it for independent variables (amount of glycerol monostearate, concentration of poloxamer, and volume of isopropyl alcohol) in order to achieve desired particle size with maximum percent entrapment efficiency (% EE) and percent cumulative drug release (% CDR). To achieve our goal, eight formulations (F 1F 8) of SLNs were prepared by solvent injection technique and optimized by 23 full-factorial design. The design was validated by extra design checkpoint formulation (F 9), and the possible interactions between independent variables were studied. The responses of the design were analyzed using Design Expert 7.1.6. (Stat-Ease, Inc, USA), and the analytical tools of software were used to draw Pareto charts and response surface plots. On the basis of software analysis, formulation F 10 with a desirability factor of 0.611 was selected as optimized formulation and was evaluated for the independent parameters. Optimized formulation showed particle size of 258.5 nm, % EE of 75.81%, with of 82.67% CDR after 55 h. The release kinetics of the optimized formulation best fitted the Higuchi model, and the recrystallization index of optimized formulation was found to be 65.51%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号