首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Botulinum neurotoxins (BoNTs) internalize into nerve terminals and block the release of neurotransmitters into the synapse. BoNTs are widely used as a therapeutic agent for treatment of movement disorders and recently gained more attention as a biological weapon. Consequently, there is strong interest to develop a cell-based assay platform to screen the toxicity and bioactivity of the BoNTs. In this study, we present an in vitro screening assay for BoNT/A based on differentiated human embryonal carcinoma stem (NT2) cells. The human NT2 cells fully differentiated into mature neurons that display immunoreactivity to cytoskeletal markers (βIII-tubulin and MAP2) and presynaptic proteins (synapsin and synaptotagmin I). We showed that the human NT2 cells undergo a process of exo-endocytotic synaptic vesicle recycling upon depolarization with high K(+) buffer. By employing an antibody directed against light chain of BoNT/A, we detected internalized toxin as a punctate staining along the neurites of the NT2 neurons. Using well-established methods of synaptic vesicle exocytosis assay (luminal synaptotagmin I and FM1-43 imaging) we show that pre-incubation with BoNT/A resulted in a blockade of vesicle release from human NT2 neurons in a dose-dependent manner. Moreover, this blocking effect of BoNT/A was abolished by pre-adsorbing the toxin with neutralizing antibody. In a proof of principle, we demonstrate that our cell culture assay for vesicle release is sensitive to BoNT/A and the activity of BoNT/A can be blocked by specific neutralizing antibodies. Overall our data suggest that human NT2 neurons are suitable for large scale screening of botulinum bioactivity.  相似文献   

2.
Botulinum neurotoxin (BoNT), the most poisonous substance known, causes naturally occurring human disease (botulism) and is one of the top six biothreat agents. Botulism is treated with polyclonal antibodies produced in horses that are associated with a high incidence of systemic reactions. Human monoclonal antibodies (mAbs) are under development as a safer therapy. Identifying neutralizing epitopes on BoNTs is an important step in generating neutralizing mAbs, and has implications for vaccine development. Here, we show that the three domains of BoNT serotype A (BoNT/A) can be displayed on the surface of yeast and used to epitope map six mAbs to the toxin domains they bind. The use of yeast obviates the need to express and purify each domain, and it should prove possible to display domains of other BoNT subtypes and serotypes for epitope mapping. Using a library of yeast-displayed BoNT/A binding domain (H(C)) mutants and selecting for loss of binding, the fine epitopes of three neutralizing BoNT/A mAbs were identified. Two mAbs bind the C-terminal subdomain of H(C), with one binding near the toxin sialoganglioside binding site. The most potently neutralizing mAb binds the N-terminal subdomain of H(C), in an area not previously thought to be functionally important. Modeling the epitopes shows how all three mAbs could bind BoNT/A simultaneously and may explain, in part, the dramatic synergy observed on in vivo toxin neutralization when these antibodies are combined. The results demonstrate how yeast display can be used for domain-level and fine mapping of conformational BoNT antibody epitopes and the mapping results identify three neutralizing BoNT/A epitopes.  相似文献   

3.
Botulinum neurotoxins (BoNTs) are causative agents for botulism and are identified as a category A bioterror agents by the Centers for Disease Control and Prevention (CDC). Current antitoxins against BoNTs intoxication have some limitations including side effects or limited supply. As an alternative, neutralizing monoclonal antibodies will play an increasing role as BoNTs therapeutics. To date, no human anti-BoNT/B neutralizing monoclonal antibodies have yet to be reported. Herein, we describe an improved selection approach and characterization of a human monoclonal antibody, F2, which is capable of binding BoNT/B with high specificity and displays neutralizing activity in an in vitro cell-based assay. Through surface plasmon resonance studies, we have determined its association and dissociation rate constants. In sum, our data demonstrate that monoclonal antibody F2 is a promising BoNT/B therapeutic lead for further development.  相似文献   

4.
Mouse monoclonal antibodies against the most acutely toxic substances, botulinum neurotoxins (BoNTs) of types A, B, E, and F, was generated and characterized, that recognize their respective toxins in natural toxin complex. Based on these antibodies, we developed sandwich-ELISA for quantitative detection of these toxins. For each respective toxin the detection limit of the assay was: BoNT/A - 0.4 ng/ml, BoNT/B - 0.5 ng/ml; BoNT/E - 0.1 ng/ml; and for BoNT/F - 2.4 ng/ml. The developed assays permitted quantitative identification of the BoNTs in canned meat and vegetables. The BNTA-4.1 and BNTA-9.1 antibodies possessed neutralizing activity against natural complex of the botulinium toxin type A in vivo, both individually and in mixture, the mixture of the antibodies neutralized the higher dose of the toxin. The BNTA-4.1 antibody binds specifically the light chain (the chain with protease activity) of the toxin, whereas BNTA-9.1 interacts with the heavy chain. We believe that the BNTA-4.1 and BNTA-9.1 monoclonal antibodies are prospective candidates for development of humanized therapeutic antibodies for treatment of BoNT/A-caused botulism.  相似文献   

5.
BackgroundBotulinum neurotoxins (BoNTs) are considered to be the most toxic substances known on earth and are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food-poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agent by the Centers of Disease Control and Prevention (CDC) and are listed among the six agents with the highest risk to be used as bioweapons. Neutralizing antibodies are required for the development of effective anti-botulism therapies to deal with the potential risk of exposure.ResultsIn this study, a macaque (Macaca fascicularis) was immunized with recombinant light chain of BoNT/E3 and an immune phage display library was constructed. After a multi-step panning, several antibody fragments (scFv, single chain fragment variable) with nanomolar affinities were isolated, that inhibited the endopeptidase activity of pure BoNT/E3 in vitro by targeting its light chain. Furthermore, three scFv were confirmed to neutralize BoNT/E3 induced paralysis in an ex vivo mouse phrenic nerve-hemidiaphragm assay. The most effective neutralization (20LD50/mL, BoNT/E3) was observed with scFv ELC18, with a minimum neutralizing concentration at 0.3 nM. Furthermore, ELC18 was highly effective in vivo when administered as an scFv-Fc construct. Complete protection of 1LD50 BoNT/E3 was observed with 1.6 ng/dose in the mouse flaccid paralysis assay.ConclusionThese scFv-Fcs antibodies are the first recombinant antibodies neutralizing BoNT/E by targeting its light chain. The human-like nature of the isolated antibodies is predicting a good tolerance for further clinical development.  相似文献   

6.
Botulinum neurotoxins (BoNTs) are a family of seven toxin serotypes that are the most toxic substances known to humans. Intoxication with BoNT causes flaccid paralysis and can lead to death if untreated with serotype-specific antibodies. Supportive care, including ventilation, may be necessary. Rapid and sensitive detection of BoNT is necessary for timely clinical confirmation of clinical botulism. Previously, our laboratory developed a fast and sensitive mass spectrometry (MS) method termed the Endopep–MS assay. The BoNT serotypes are rapidly detected and differentiated by extracting the toxin with serotype-specific antibodies and detecting the unique and serotype-specific cleavage products of peptide substrates that mimic the sequence of the BoNT native targets. To further improve the sensitivity of the Endopep–MS assay, we report here the optimization of the substrate peptide for the detection of BoNT/A. Modifications on the terminal groups of the original peptide substrate with acetylation and amidation significantly improved the detection of BoNT/A cleavage products. The replacement of some internal amino acid residues with single or multiple substitutions led to further improvement. An optimized peptide increased assay sensitivity 5-fold with toxin spiked into buffer solution or different biological matrices.  相似文献   

7.

Background

There are currently 7 known serotypes of botulinum neurotoxin (BoNT) classified upon non-cross reactivity of neutralizing immunoglobulins. Non-neutralizing immunoglobulins, however, can exhibit cross-reactivities between 2 or more serotypes, particularly mosaic forms, which can hamper the development of highly specific immunoassays, especially if based on polyclonal antisera. Here we employ facile recombinant antibody technology to subtractively select ligands to each of the 7 BoNT serotypes, resulting in populations with very high specificity for their intended serotype.

Methods and Findings

A single llama was immunized with a cocktail of 7 BoNT toxoids to generate a phage display library of single domain antibodies (sdAb, VHH or nanobodies) which were selected on live toxins. Resulting sdAb were capable of detecting both toxin and toxin complex with the best combinations able to detect 100s-10s of pg per 50 µL sample in a liquid bead array. The most sensitive sdAb were combined in a heptaplex assay to identify each of the BoNT serotypes in buffer and milk and to a lesser extent in carrot juice, orange juice and cola. Several anti-A(1) sdAb recognized A2 complex, showing that subtype cross-reactivity within a serotype was evident. Many of our sdAb could act as both captor and tracer for several toxin and toxin complexes suggesting sdAb can be used as architectural probes to indicate BoNT oligomerisation. Six of 14 anti-A clones exhibited inhibition of SNAP-25 cleavage in the neuro-2A assay indicating some sdAb had toxin neutralizing capabilities. Many sdAb were also shown to be refoldable after exposure to high temperatures in contrast to polyclonal antisera, as monitored by circular dichroism.

Conclusions

Our panel of molecularly flexible antibodies should not only serve as a good starting point for ruggedizing assays and inhibitors, but enable the intricate architectures of BoNT toxins and complexes to be probed more extensively.  相似文献   

8.
A sensitive and specific immunoassay for the simultaneous detection of Clostridium botulinum type C (BoNT/C) and type D neurotoxin was developed. Goat anti-mouse immunoglobulin G was bound to polyethylene disks in a small disposable column used for this assay. The sample was preincubated together with monoclonal antibodies specific for the heavy chain of BoNT/C and D and affinity-purified, biotinylated polyclonal antibodies against these neurotoxins. This complex was captured on the assay disk. Streptavidin-poly-horseradish peroxidase was used as a conjugate, and a precipitating substrate allowed the direct semiquantitative readout of the assay, if necessary. For a more accurate quantitative detection, the substrate can be eluted and measured in a photometer. Depending on the preincubation time, a sensitivity of 1 mouse lethal dose ml(-1) was achieved in culture supernatants.  相似文献   

9.
A sensitive and specific immunoassay for the simultaneous detection of Clostridium botulinum type C (BoNT/C) and type D neurotoxin was developed. Goat anti-mouse immunoglobulin G was bound to polyethylene disks in a small disposable column used for this assay. The sample was preincubated together with monoclonal antibodies specific for the heavy chain of BoNT/C and D and affinity-purified, biotinylated polyclonal antibodies against these neurotoxins. This complex was captured on the assay disk. Streptavidin-poly-horseradish peroxidase was used as a conjugate, and a precipitating substrate allowed the direct semiquantitative readout of the assay, if necessary. For a more accurate quantitative detection, the substrate can be eluted and measured in a photometer. Depending on the preincubation time, a sensitivity of 1 mouse lethal dose ml−1 was achieved in culture supernatants.  相似文献   

10.
Botulinum neurotoxins (BoNTs) are among the most toxic substances known. Surveillance and diagnostics require methods for rapid detection of BoNTs in complex media such as foodstuffs and human serum. We have developed in vitro assays to specifically detect the protease activity of botulinum neurotoxin B (BoNT/B) on a time scale of minutes. Cleavage of the BoNT/B substrate VAMP2, a membrane SNARE protein associated with synaptic vesicles, was monitored using real-time surface plasmon resonance to measure vesicle capture by specific antibodies coupled to microchips. The assay is functional in low-ionic-strength buffers and stable over a wide range of pH values (5.5–9.0). Endoproteolytic cleavage of VAMP2 was detected in 10 min with 2 pM native BoNT/B holotoxin. Contamination of liquid food products such as carrot juice, apple juice, and milk with low picomolar amounts of BoNT/B was revealed within 3 h. BoNT/B activity was detected in sera from patients with type B botulism but not in healthy controls or patients with other neurological diseases. This robust, sensitive, and rapid protein chip assay is appropriate for monitoring BoNT/B in food products and diagnostic tests for type B botulism and could replace the current in vivo mouse bioassay.  相似文献   

11.
Mouse‐human chimeric monoclonal antibodies that could neutralize botulinum neurotoxins were developed and an attempt was made to establish mouse hybridoma cell clones that produced monoclonal antibodies that neutralized botulinum neurotoxin serotype A (BoNT/A). Four clones (2–4, 2–5, 9–4 and B1) were selected for chimerization on the basis of their neutralizing activity against BoNT/A and the cDNA of the variable regions of their heavy (VH) and light chains (VL) were fused with the upstream regions of the constant counterparts of human kappa light and gamma 1 heavy chain genes, respectively. CHO‐DG44 cells were transfected with these plasmids and mouse‐human chimeric antibodies (AC24, AC25, AC94 and ACB1) purified to examine their binding and neutralizing activities. Each chimeric antibody exhibited almost the same capability as each parent mouse mAb to bind and neutralize activities against BoNT/A. From the chimeric antibodies against BoNT/A, shuffling chimeric antibodies designed with replacement of their VH or VL domains were constructed. A shuffling antibody (AC2494) that derived its VH and VL domains from chimeric antibodies AC24 and AC94, respectively, showed much higher neutralizing activity than did other shuffling antibodies and parent counterparts. This result indicates that it is possible to build high‐potency neutralizing chimeric antibodies by selecting and shuffling VH and VL domains from a variety of repertoires. A shuffling chimeric antibody might be the best candidate for replacing horse antitoxin for inducing passive immunotherapy against botulism.  相似文献   

12.
Botulinum neurotoxins (BoNTs) are the most toxic proteins in nature. Rapid and sensitive detection of BoNTs is achieved by the endopeptidase–mass spectrometry (Endopep–MS) assay. In this assay, BoNT cleaves a specific peptide substrate and the cleaved products are analyzed by MS. Here we describe the design of a new peptide substrate for improved detection of BoNT type B (BoNT/B) in the Endopep–MS assay. Our strategy was based on reported BoNT/B–substrate interactions integrated with analysis method efficiency considerations. Incorporation of the new peptide led to a 5-fold increased sensitivity of the assay both in buffer and in a clinically relevant human spiked serum.  相似文献   

13.
Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are the most poisonous substances known to humankind. It is essential to have a simple, quick, and sensitive method for the detection and quantification of botulinum toxin in various media, including complex biological matrices. Our laboratory has developed a mass spectrometry-based Endopep–MS assay that is able to rapidly detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Botulinum neurotoxin type E (BoNT/E) is a member of a family of seven distinctive BoNT serotypes (A–G) and is the causative agent of botulism in both humans and animals. To improve the sensitivity of the Endopep–MS assay, we report here the development of novel peptide substrates for the detection of BoNT/E activity through systematic and comprehensive approaches. Our data demonstrate that several optimal peptides could accomplish 500-fold improvement in sensitivity compared with the current substrate for the detection of both not-trypsin-activated and trypsin-activated BoNT/E toxin complexes. A limit of detection of 0.1 mouse LD50/ml was achieved using the novel peptide substrate in the assay to detect not-trypsin-activated BoNT/E complex spiked in serum, stool, and food samples.  相似文献   

14.
《MABS-AUSTIN》2013,5(2):446-459
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease.  相似文献   

15.
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease.  相似文献   

16.
Clostridial botulinum neurotoxin (BoNT) causes a neuroparalytic condition recognized as botulism by arresting synaptic vesicle exocytosis. Although the crystal structures of full-length BoNT/A and BoNT/B holotoxins are known, the molecular architecture of the five other serotypes remains elusive. Here, we present the structures of BoNT/A and BoNT/E using single particle electron microscopy. Labeling of the particles with three different monoclonal antibodies raised against BoNT/E revealed the positions of their epitopes in the electron microscopy structure, thereby identifying the three hallmark domains of BoNT (protease, translocation, and receptor binding). Correspondingly, these antibodies selectively inhibit BoNT translocation activity as detected using a single molecule assay. The global structure of BoNT/E is strikingly different from that of BoNT/A despite strong sequence similarity. We postulate that the unique architecture of functionally conserved modules underlies the distinguishing attributes of BoNT/E and contributes to differences with BoNT/A.  相似文献   

17.
The most effective protection against toxin is inducing protective immune response through vaccination that will produce neutralizing antibodies. Antibodies will bind to and clear toxin from the circulation before it can enter nerve cells and block neurotransmission and can also be used for development of detection system. In the present study we constructed a deletion mutant of the binding domain (1098-1296) to produce smallest toxin fragment as vaccine candidate against BoNT/A. The BoNT/A-HCC protein was highly expressed in Escherichia coli SG13009 and found to form inclusion bodies. The purified inclusion bodies were solubilized in 6 M guanidine-HCl containing 10 mM β-mercaptoethanol and 20 mM imidazole and the rBoNT/A-HCC was purified and refolded in a single step on Ni2+ affinity column. The purified protein was ~98 % pure as assessed by SDS-polyacrylamide gel with the yield of 8 mg/L and showed binding to polysialoganglioside (GT1b). The rBoNT/A-HCC at dose of 40 μg/mouse generated high IgG antibody titre with predominance of IgG1 subtype, but failed to protect animals against BoNT/A challenge. Antibody titre in serum was determined by enzyme linked immunosorbent assay and specific binding to rBoNT/A-HCC was demonstrated by surface plasmon resonance (SPR), with a dissociation constant of 0.8 pM.  相似文献   

18.

Background

Botulinum neurotoxins (BoNT) are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC), a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored.

Methods and Findings

We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A). The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro.

Conclusions

An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components of an antibody antidote for BoNT exposure.  相似文献   

19.
C Chen  S Wang  H Wang  X Mao  T Zhang  G Ji  X Shi  T Xia  W Lu  D Zhang  J Dai  Y Guo 《PloS one》2012,7(8):e43845

Background

Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. Monoclonal antibody (mAb) therapeutics hold considerable promise as BoNT therapeutics, but the potencies of mAbs against BoNTs are usually less than that of polyclonal antibodies (or oligoclonal antibodies). The confirmation of key epitopes with development of effective mAb is urgently needed.

Methods and Findings

We selected 3 neutralizing mAbs which recognize different non-overlapping epitopes of BoNT/B from a panel of neutralizing antibodies against BoNT/B. By comparing the neutralizing effects among different combination groups, we found that 8E10, response to ganglioside receptor binding site, could synergy with 5G10 and 2F4, recognizing non-overlapping epitopes within Syt II binding sites. However, the combination of 5G10 with 2F4 blocking protein receptor binding sites did not achieve synergistical effects. Moreover, we found that the binding epitope of 8E10 was conserved among BoNT A, B, E, and F, which might cross-protect the challenge of different serotypes of BoNTs in vivo.

Conclusions

The combination of two mAbs recognizing different receptors'' binding domain in BoNTs has a synergistic effect. 8E10 is a potential universal partner for the synergistical combination with other mAb against protein receptor binding domain in BoNTs of other serotypes.  相似文献   

20.
Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing respiratory failure leading to long-term intensive care or death. The best treatment for botulism includes serotype-specific antitoxins, which are most effective when administered early in the course of the intoxication. Early confirmation of human exposure to any serotype of BoNT is an important public health goal. In previous work, we focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating the seven serotypes (BoNT/A-G) in buffer and BoNT/A, /B, /E, and /F (the four serotypes that commonly affect humans) in clinical samples. We have previously reported the success of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. However, to check for any one of the four serotypes of BoNT/A, /B, /E, or /F, each sample is split into 4 aliquots, and tested for the specific serotypes separately. The discovery of a unique monoclonal antibody that recognizes all four serotypes of BoNT/A, /B, /E and /F allows us to perform simultaneous detection of all of them. When applied in conjunction with the Endopep-MS assay, the detection limit for each serotype of BoNT with this multi-specific monoclonal antibody is similar to that obtained when using other serotype-specific antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号