首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lysosomal acid lipase (LAL) is an essential enzyme that hydrolyzes triglycerides (TGs) and cholesteryl esters (CEs) in lysosomes. Genetic LAL mutations lead to Wolman disease (WD) and cholesteryl ester storage disease (CESD). An LAL-null (lal(-/-)) mouse model resembles human WD/CESD with storage of CEs and TGs in multiple organs. Human LAL (hLAL) was expressed in Nicotiana benthamiana using the GENEWARE expression system (G-hLAL). Purified G-hLAL showed mannose receptor-dependent uptake into macrophage cell lines (J774E). Intraperitoneal injection of G-hLAL produced peak activities in plasma at 60 min and in the liver and spleen at 240 min. The t(1/2) values were: approximately 90 min (plasma), approximately 14 h (liver), and approximately 32 h (spleen), with return to baseline by approximately 150 h in liver and approximately 200 h in spleen. Ten injections of G-hLAL (every 3 days) into lal(-/-) mice produced normalization of hepatic color, decreases in hepatic cholesterol and TG contents, and diminished foamy macrophages in liver, spleen, and intestinal villi. All injected lal(-/-) mice developed anti-hLAL protein antibodies, but suffered no adverse events. These studies demonstrate the feasibility of using plant-expressed, recombinant hLAL for the enzyme therapy of human WD/CESD with general implications for other lysosomal storage diseases.  相似文献   

2.
Characterization of lysosomal acid lipase purified from rabbit liver   总被引:2,自引:0,他引:2  
Lysosomal acid lipase from rabbit liver was solubilized with digitonin and purified 25,000-fold by Bio-Gel A-1.5 m, DEAE Bio-Gel A and phenyl Sepharose column chromatographies, preparative slab gel electrophoresis and finally Affi-Gel Blue affinity column chromatography. The purified enzyme gave a single protein band on polyacrylamide gel electrophoresis both in the presence and absence of sodium dodecyl sulfate. The molecular weight of the acid lipase was estimated to be 42,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis and 40,000 by gel filtration on Bio-Gel A-0.5 m. The enzyme was a hydrophobic glycoprotein with an isoelectric point of 5.15-5.90. The purified enzyme hydrolyzed tri-, di-, and monoolein and cholesterol oleate, with apparent Vmax values of 5.41, 56.1, 21.7, and 3.25 mumol/min/mg protein, and Km values of 50, 70, 200, and 40 microM, respectively. It hydrolyzed 4-methylumbelliferyl esters with fatty acids of different lengths in the order, medium length chains greater than long chains much greater than short chains. It did not hydrolyze dipalmitoylphosphatidylcholine. Its activity was inhibited by micromolar concentrations of p-chloromercuriphenyl sulfonic acid and p-bromophenacyl bromide and millimolar concentrations of Cu2+ and diethylpyrocarbonate. The activities of the enzyme towards the five substrates listed above showed almost identical thermal stabilities, mobilities on polyacrylamide gel electrophoresis and inhibition by several inhibitors. These findings support the idea that one enzyme is involved in the hydrolysis of both acylglycerols and cholesterol esters in lysosomes.  相似文献   

3.
The lysosomal enzyme responsible for cholesteryl ester hydrolysis, acid cholesteryl ester hydrolase, or acid lipase (E.C.3.1.1.13) plays an important role in cellular cholesterol metabolism. Loss of the activity of this enzyme in tissues of individuals with both Wolman disease and cholesteryl ester storage disease is believed to play a causal role in these conditions. The objectives of our studies were not only to directly compare and contrast the clinical features of Wolman disease and cholesteryl ester storage disease but also to determine the reasons(s) for the varied phenotype expression of acid cholesteryl ester hydrolase deficiency. Although both diseases manifest a type II hyperlipoproteinemic phenotype and hepatomegaly secondary to lipid accumulation, a more malignant clinical course with more significant hepatic and adrenal manifestations was observed in the patient with Wolman disease. However, the acid cholesteryl ester hydrolase activity in cultured fibroblasts in both diseases was virtually absent. In addition, fibroblasts from both Wolman disease and cholesteryl ester storage disease were able to utilize exogenously supplied enzyme, suggesting that neither disease was due to defective enzyme delivery by the mannose-6-phosphate receptor pathway. Coculture and cell fusion of fibroblasts from Wolman disease and cholesteryl ester storage disease subjects did not lead to correction of the enzyme deficiency, indicating that these disorders are allelic. However, the activities of the hepatic acid and neutral lipase in these two clinical variants were quite different. Hepatic acid lipase activity was only 4% normal in Wolman disease, but the activity was 23% normal in cholesteryl ester storage disease. The hepatic neutral lipase activity was normal in Wolman disease but increased more than twofold in cholesteryl ester storage disease. These combined results indicate that the clinical heterogeneity in acid cholesteryl ester hydrolase deficiency can be explained by a varied hepatic metabolic response to an allelic mutation.  相似文献   

4.
Material cross-reacting with antibodies to acid lipase was demonstrated in fibroblasts of three patients with Wolman disease and three with cholesterol ester storage disease. Quantitation of the immunologically cross-reacting material (CRM) by a single radial immunodiffusion method revealed normal levels in both mutant cell types. CRM specific activity toward triolein and cholesteryl oleate was reduced about 200-fold in the Wolman disease fibroblasts and 50- to 100-fold in the cholesterol ester storage disease cells when compared to normal.  相似文献   

5.
Oligonucleotide-directed site-specific mutagenesis was used to study the structure-function relationship of the positively charged amino terminus of the Escherichia coli outer membrane protein OmpA signal peptide. Mutations were isolated which reduced the overall charge of the amino-terminal region from +2 (wild type) to +1, 0, and -1, as well as one mutation from Thr to Ser at position 4. DNA encoding the wild type and mutant OmpA signal peptides was then fused in-frame to DNA encoding the mature regions of Staphylococcus aureus nuclease A and TEM beta-lactamase. In the case of both the beta-lactamase and nuclease fusions, normal processing was no longer observed when the charge at the amino terminus was reduced to zero or made negative. Differences between the two hybrid proteins were observed in the case of the Thr to Ser mutation. As expected, this mutation had no effect on the beta-lactamase hybrid; however, the processing rate of the nuclease hybrid protein was reduced to nearly one-half. Furthermore, this effect was essentially reversed when a Lys residue at position 3 was deleted. A model is presented which explains the differing effects of a signal peptide mutation on the secretion of different hybrid proteins based on kinetic differences in the translocation of the nuclease and beta-lactamase proteins.  相似文献   

6.
Genetic lipid storage disease with lysosomal acid lipase deficiency in rats   总被引:2,自引:0,他引:2  
We describe a new animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected Donryu rats, who inherited the disease in an autosomal recessive mode, manifested marked hepatosplenomegaly, lymph node enlargement, and thickened, dilated intestine. Morphologically, many characteristic foam cells were observed in livers and spleens. No adrenal calcification could be found in affected rats. Biochemical studies on spleen and liver tissues showed massive accumulation of esterified cholesterol and triglycerides, and deficiency of acid lipase for [14C]-cholesteryl oleate. This animal model could contribute greatly to the clarification of the physiological and pathological roles of lysosomal acid lipase in the metabolism of lipoproteins and cholesterol, and of the pathogenesis of atherosclerosis.  相似文献   

7.
Lysosomal acid lipase (LAL) deficiency produces two well defined inborn disorders, Wolman disease (WD) and cholesteryl ester storage disease (CESD). WD is a severe, early-onset condition involving massive storage of triglycerides and cholesteryl esters in the liver, with death usually occurring before one year of life. CESD is a more attenuated, later-onset disease that leads to a progressive and variable liver dysfunction. Diagnosis of LAL deficiency is mainly based on the enzyme assay of LAL activity in fibroblasts. Recently, a selective acid lipase inhibitor was used for the determination of enzyme activity in dried-blood filter paper (DBFP) samples. To extend and to validate these studies, we tested LAL activity with selective inhibition on DBFP samples, leukocytes and fibroblasts. Our results showed a clear discrimination between patients with LAL deficiency and healthy controls when using DBFP, leukocytes or fibroblasts (p < 0.001). Deficiency of LAL was also demonstrated in individuals referred to our laboratory with suspected clinical diagnosis of WD, CESD, and Niemann–Pick type B. We conclude that the assay of LAL using selective inhibitor is a reliable and useful method for the identification of LAL deficiency, not only in DBFP samples but also in leukocytes and fibroblasts. This is important as enzyme replacement therapy for LAL deficiency is currently being developed, making the correct diagnosis a critical issue.  相似文献   

8.
A subgroup of neutral lipid storage disease has been recently associated with myopathy (NLSDM) and attributed to mutations in the gene (PNPLA2) encoding an adipose triglyceride lipase involved in the degradation of intracellular triglycerides. Five NLSDM patients have been described thus far and we reported three additional patients. A 44-year old Iranian woman and two Italian brothers, aged 40 and 35, presented with exercise intolerance and proximal limb weakness, elevated CK levels, and Jordan’s anomaly. Muscle biopsies showed marked neutral lipid accumulation in all patients. The 10 exons and the intron-exon junctions of the PNPLA2 gene were sequenced. Two novel homozygous mutations in exon 5 of PNPLA2 gene were found (c.695delT and c.542delAC). Both mutations resulted in frameshifts leading to premature stop codons (p.L255X and p.I212X, respectively). These mutations predict a truncated PNPLA2 protein lacking the C-terminal hydrophobic domain. These findings indicate that NLSDM is rare, but genetically heterogeneous.  相似文献   

9.
The hydrophobic region of the signal peptide of the OmpA protein of the Escherichia coli outer membrane was extensively altered in its hydrophobicity and predicted secondary structure by site-specific mutagenesis. The mutated signal peptides were fused to nuclease A from Staphylococcus aureus, and the function of the signal peptide was examined by measuring the rate of processing of the signal peptide. Six of the 12 mutated signal peptides in the nuclease hybrid were processed faster than the wild-type. In particular, the processing of the mutated signal peptide in which the alanine residue at position 9 was substituted with a valine residue was enhanced almost twofold over the processing of the wild-type signal peptide. In addition, the production of nuclease A fused with this mutated signal peptide also increased twofold. However, these effects were not observed when the mutated signal peptide was fused to TEM beta-lactamase. Analysis of the present mutations suggests that both overall hydrophobicity and distinct structural requirements in the hydrophobic region have important roles in signal peptide function.  相似文献   

10.
Lysosomal acid lipase (LAL) is essential for the intracellular degradation of cholesteryl esters (CE) and triacylglycerols (TG) that are delivered to lysosomes by low density lipoprotein (LDL) receptor mediated endocytosis. We have analysed the difference in the catalytic properties and substrate specificity of human and mouse LALs. LAL activities were measured in human and mouse fibroblasts and in HeLa cells transiently expressing wild-type or site-directed mutant LALs of the two species using the T7 vaccinia system. Cholesteryl esterase and triacylglycerol lipase activities were determined in cellular homogenates with a phospholipid/detergent vesicle assay, an assay frequently used to diagnose human LAL deficiency syndromes, and with LDL particles, a more physiological substrate. Characterisation of human and mouse LAL using these two assays demonstrated marked differences in their TG and CE hydrolysing activities. Compared to human LAL mouse LAL showed a much lower cholesteryl esterase activity in both assays used. The difference was more pronounced in the vesicle assay. The lower cholesteryl esterase activity of mouse LAL did not affect the LDL-CE degradation in intact fibroblasts. The analysis of site-directed mutants suggests a role of the non-conserved cysteine residue at position 240 in cholesteryl esterase activity in human LAL. Our results show a significant difference between human and mouse LAL in their specificity toward cholesteryl esters. The low cholesteryl esterase activity does not result in reduced LDL-cholesterol ester degradation in mouse fibroblasts in situ. In addition, this work emphasises the importance of the physical state of substrates in studies of the specificity and properties of lipolytic enzymes.  相似文献   

11.
Atherosclerosis is one of the major causes of morbidity and mortality in the western world. The existing data of elevated expression levels of proteins like DNA damage and DNA repair enzymes in human atherosclerotic plaques are reviewed. From the literature, the effect of overexpression of different proteins using adenoviral vectors or the model of transgenic mice on the development of atherosclerosis will be discussed. Special focus is placed on the lysosomal acid lipase (LAL), because LAL connects extra-cellular with intra-cellular lipid metabolism and is the only hydrolase for cleavage of cholesteryl esters delivered to the lysosomes. Patients with a deficiency of LAL show an accumulation of lipids in the cells and develop pre-mature atherosclerosis. To answer the question of the influence of LAL in atherosclerosis if overexpressed, we show for the first time data of transgenic mice overexpressing LAL and the effect on the lipid level.  相似文献   

12.
13.
Summary Export of the outer membrane protein, OmpA, across the cytoplasmic membrane of Escherichia coli was severely inhibited by the presence of two, three, four or six additional basic residues at the N-terminus of the mature polypeptide, but not by three similarily positioned acidic residues. Because a few bacterial proteins do possess basic residues close to the leader peptidase cleavage site and because the type of inhibition described here could pose problems in the construction of hybrid secretory proteins, we also studied means of alleviating this form of export incompatibility. Inhibition was abolished when basic residues were preceded by acidic ones. Also, the processing rates of the mutants with two or six basic residues could be partially restored by increasing the length of the hydrophobic core of the signal peptide. Taking this as a precedent, it is suggested that the structure of the signal peptide is an important feature for maintenance of a reasonable rate of translocation of those exported proteins which possess basic residue(s) at the N-terminus of the mature polypeptide.  相似文献   

14.
It was found that the inhibition of the lysosomal acid lipase activity by rat apolipoprotein A-I (apo A-I) was increased with the degradation of apo A-I by the lysosomal proteases. We demonstrated that apo A-I could effectively inhibit the acid lipase activity even in the presence of the lysosomal proteases using the hepatic lysosomal fraction.  相似文献   

15.
Trinitrophenylaminolauric acid (TNPAL) was linked to glycerol or cholesterol and the resulting yellow compounds were used as substrates for several lipases and cholesteryl esterase in cells from normal individuals and patients with Wolman's or cholesteryl ester storage diseases. Normal cells (lymphoid cell lines or skin fibroblasts) showed two peaks of lipase or cholesteryl esterase activity at about pH 4.0 and 6.0 each. The activity of the most acidic enzyme, which hydrolyzed natural or synthetic triacylglycerols as well as cholesteryl esters, was considerably reduced in cells derived from patients with Wolman's or cholesteryl ester storage diseases. Simple spectrophotometric procedures were developed for using tri-TNPAL glycerol or TNPAL cholesterol to identify homozygotes of these two respective diseases.  相似文献   

16.
17.
Recent studies demonstrated reduced blood lysosomal acid lipase (LAL) activity in patients with nonalcoholic fatty liver disease (NAFLD). We aimed to verify hepatic LAL protein content and activity in in vitro and in vivo models of fat overload and in NAFLD patients. LAL protein content and activity were firstly evaluated in Huh7 cells exposed to high-glucose/high-lipid (HGHL) medium and in the liver of C57BL/6 mice fed with high-fat diet (HFD) for 4 and 8 months. LAL protein was also evaluated by immunohistochemistry in liver biopsies from 87 NAFLD patients and 10 controls, and correlated with hepatic histology. Huh7 cells treated with HGHL medium showed a significant reduction of LAL activity, which was consistent with reduced LAL protein levels by western blotting using an antibody towards the N-term of the enzyme. Conversely, antibodies towards the C-term of the enzyme evidenced LAL accumulation, suggesting a post-translational modification that masks the LAL N-term epitope and affects enzymatic activity. Indeed, we found a high rate of ubiquitination and extra-lysosomal localization of LAL protein in cells treated with HGHL medium. Consistent with these findings, inhibition of proteasome triggered dysfunctional LAL accumulation and affected LAL activity. Accumulation of ubiquitinated/dysfunctional LAL was also found in the liver of HFD fed mice. In NAFLD patients, hepatic levels of non-ubiquitinated/functional LAL were lower than in controls and inversely correlated with disease activity and some of the hallmarks of reduced LAL. Fat overload leads to LAL ubiquitination and impairs its function, possibly reducing hepatic fat disposal and promoting NAFLD activity.Subject terms: Non-alcoholic fatty liver disease, Translational research  相似文献   

18.
19.
Although Gaucher's disease occurs in three distinct forms with greatly varying degrees of severity, there is no correlation between the clinical course of the disease and levels of residual glucocerebrosidase, the fundamental enzymatic deficiency. In an effort to study secondary changes which might contribute to the pathology of Gaucher's disease, homogenates of spleen, liver, and brain tissue, as well as serum from patients with Gaucher's disease were analyzed for their content of a number of lysosomal enzymes. Extracts of 8 Gaucher spleens contained 3- to 4-fold increases in acid phosphatase activity as well as 5-to 10-fold increases in galactocerebrosidase5 activity. The marked elevation in galactocerebrosidase activity in Gaucher spleen was documented using various [3H]galactose labeled galactocerebrosides as substrates and with [3H]galactose labeled lactocerebroside under the “lactosylceramidase I”5 assay conditions established by Suzuki (Tanaka, H., and Suzuki, K., 1975, J. Biol. Chem., 250, 2324–2332) that measure galactocerebrosidase activity specifically in the presence of Gmi-ganglioside β-galactosidase. Acid phosphatase determinations using extracts of liver from a case of infantile, neuropathic Gaucher's disease revealed a 2-fold elevation in this activity, whereas brain acid phosphatase activity in this case was similar to that of control tissue. Separation of hexosaminidase A and B activities on DEAE-Sephadex columns indicated increases in both forms of the enzyme in Gaucher tissue with the major increase occurring in the hexosaminidase B component. Glucuronidase and nonspecific esterase were observed to be elevated approximately 2-fold. However, not all lysosomal enzyme activities were increased. Levels of splenic arylsulfatase A and B, α-arabinosidase, sphingomyelinase, α-mannosidase, and Gmi-ganglioside β-galactosidase activities in Gaucher spleen were unremarkable. Gmi-ganglioside β-galactosidase was measured using 4-methylumbelliferyl-β-d-galactopyranoside and [3H]galactose labeled lactocerebroside under the specific assay conditions described by Suzuki for the determination of “lactosylceramidase II” activity. Although levels of arylsulfatase A and B in Gaucher spleen were similar to those of control tissue, arylsulfatase A activity was markedly reduced (20% of control) in homogenates of brain from the case of infantile (type 2) Gaucher's disease. The metabolic and pathologic consequences of these changes in lysosomal enzymes in Gaucher's disease are discussed.  相似文献   

20.
Fat digestion in humans requires not only the classical pancreatic lipase but also gastric lipase, which is stable and active despite the highly acidic stomach environment. We report here the structure of recombinant human gastric lipase at 3.0-A resolution, the first structure to be described within the mammalian acid lipase family. This globular enzyme (379 residues) consists of a core domain belonging to the alpha/beta hydrolase-fold family and a "cap" domain, which is analogous to that present in serine carboxypeptidases. It possesses a classical catalytic triad (Ser-153, His-353, Asp-324) and an oxyanion hole (NH groups of Gln-154 and Leu-67). Four N-glycosylation sites were identified on the electron density maps. The catalytic serine is deeply buried under a segment consisting of 30 residues, which can be defined as a lid and belonging to the cap domain. The displacement of the lid is necessary for the substrates to have access to Ser-153. A phosphonate inhibitor was positioned in the active site that clearly suggests the location of the hydrophobic substrate binding site. The lysosomal acid lipase was modeled by homology, and possible explanations for some previously reported mutations leading to the cholesterol ester storage disease are given based on the present model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号