首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida glabrata is one of the most frequent organisms isolated from superficial and invasive fungal infections, after Candida albicans. This organism also exhibits intrinsically low susceptibility to azole antifungals and treatment often fails. The microdilution method is not very practical for use in routine susceptibility testing in the clinical laboratory, thus necessitating the use of other methods. In this study, we compared the in vitro activity of five antifungal agents in three different groups (echinocandin, polyene and azole) against 50 C. glabrata isolates by broth microdilution and disk diffusion methods recommended by Clinical Laboratory Standards Institute CLSI M27-A3 and CLSI M44-A, respectively. All the isolates were susceptible to amphotericin B (100%) and 98% of the isolates were susceptible to caspofungin by the broth microdilution method. Within the azole group drugs, voriconazole was the most active followed by fluconazole and itraconazole in vitro. The highest rate of resistance was obtained against itraconazole with a high number of isolates defined as susceptible-dose dependent or resistant. Although the disk diffusion method is easy to use in clinical laboratories, it shows very poor agreement with the reference method for fluconazole and itraconazole against C. glabrata (8% and 14%, respectively).  相似文献   

2.
There is cumulative resistance against antibiotics of many bacteria. Therefore, the development of new antiseptics and antimicrobial agents for the treatment of skin infections is of increasing interest. We have screened six plant extracts and isolated compounds for antimicrobial effects on bacteria and yeasts with dermatological relevance. The following plant extracts have been tested: Gentiana lutea, Harpagophytum procumbens, Boswellia serrata (dry extracts), Usnea barbata, Rosmarinus officinalis and Salvia officinalis (supercritical carbon dioxide [CO2] extracts). Additionally, the following characteristic plant substances were tested: usnic acid, carnosol, carnosic acid, ursolic acid, oleanolic acid, harpagoside, boswellic acid and gentiopicroside. The extracts and compounds were tested against 29 aerobic and anaerobic bacteria and yeasts in the agar dilution test. U. barbata-extract and usnic acid were the most active compounds, especially in anaerobic bacteria. Usnea CO2-extract effectively inhibited the growth of several Gram-positive bacteria like Staphylococcus aureus (including methicillin-resistant strains - MRSA), Propionibacterium acnes and Corynebacterium species. Growth of the dimorphic yeast Malassezia furfur was also inhibited by Usnea-extract. Besides the Usnea-extract, Rosmarinus-, Salvia-, Boswellia- and Harpagophytum-extracts proved to be effective against a panel of bacteria. It is concluded that due to their antimicrobial effects some of the plant extracts may be used for the topical treatment of skin disorders like acne vulgaris and seborrhoic eczema.  相似文献   

3.
Canola is second only to soybean as the most important oilseed crop in the world. The global production of canola is forecast to continue to increase and as a result the canola industry will continue to flourish. However, it is threatened by several fungal diseases that affect canola and cost producers hundreds of millions of dollars a year in reduced yield and quality. Blackleg is the most common and devastating disease of canola and is caused by the fungus Leptosphaeria maculans. The fungus can infect any part of the plant at all growth stages and is a serious threat to the canola industry. Novel and more efficient antifungal agents which interfere with fungal growth and development are clearly needed to control this pathogen. This paper reports the establishment of a simple functional assay system for the screening of antifungal proteins against a virulent strain of L. maculans.  相似文献   

4.
A commercial kit, Frozen Plate for Antifungal Susceptibility Testing of Yeasts, Eiken (Eiken Chemical Co., Ltd., Tokyo), was tested in a multi-institute study to evaluate the agreement between interinstitute MICs and National Committee for Clinical Laboratory Standards (NCCLS) M27-A2 recommendation limits of MIC value. The kit was reported as a method equivalent to the standardized guidelines for antifungal susceptibility testing by the Committee for Clinical Laboratory Standards-1994, the Japanese Society for Medical Mycology, and which is widely used in Japan for amphotericin B, flucytosine, fluconazole, miconazole, and itraconazole. The degrees of inter-institute and NCCLS agreements were good to excellent especially with 48-hr incubation for all antifungal agents. However, the percent agreements to NCCLS recommendations against itraconazole were poor. Overall, MIC values obtained using the frozen plate antifungal susceptibility testing kit, with 48-hr incubation, were thought to be reliable and convenient alternatives to the data obtained by the NCCLS M27-A2 reference macrodilution and microdilution method. This kit will allow matching of results between international laboratories. However, the MIC value for itraconazole requires careful interpretation.  相似文献   

5.
In the present study, antibacterial, antifungal, and antiviral properties of 15 lipohylic extracts obtained from different parts (leaf, branch, stem, kernel, shell skins, seeds) of Pistacia vera were screened against both standard and the isolated strains of Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Candida albicans and C. parapsilosis by microdilution method. Both Herpes simplex (DNA) and Parainfluenza viruses (RNA) were used for the determination of antiviral activity of the P. vera extracts by using Vero cell line. Ampicilline, ofloxocine, ketoconazole, fluconazole, acyclovir and oseltamivir were used as the control agents. The extracts showed little antibacterial activity between the range of 128-256 microg/ml concentrations whereas they had noticeable antifungal activity at the same concentrations. Kernel and seed extracts showed significant antiviral activity compared to the rest of the extracts as well as the controls.  相似文献   

6.
Olea europaea preparations are traditionally employed in a variety of troubles, including skin infections. Olive extracts and some of their pure compounds have shown antimicrobial activity in vitro. The present study deals with the antifungal activity of some aliphatic aldehydes from olive fruit [hexanal, nonanal, (E)-2-hexenal, (E)-2-heptenal, (E)-2-octenal, (E)-2-nonenal] against Tricophyton mentagrophytes (6 strains), Microsporum canis (1 strains) and Candida spp. (7 strains). The capability of these substances to inhibit elastase, a virulence factor essential for the dermatophytes colonization, and their cytotoxicity on cultures of reconstructed human epidermis, are also described. Aldehydes tested, inhibited the growth of T. mentagrophytes and M. canis in the range of concentration between <1.9 and 125 microg/ml; the unsaturated aldehydes showed the most broad spectrum of activity in that inhibited all strains tested. None of the aldehydes exhibited activity against Candida spp. strains. (E)-2-octenal and (E)-2-nonenal inhibited the elastase activity in a concentration-dependent manner; the anti-elastase activity suggests an additional target of the antimicrobial activity of these compounds. Aldehydes were devoid of cytotoxicity on cultures of human reconstructed epidermis. The antifungal activity of the aldehydes from olive fruit here reported, substantiates the use of olive and olive oil in skin diseases and suggests that these natural compounds could be useful agents in the topical treatment of fungal cutaneous infections.  相似文献   

7.
Selection and evaluation of microbial strains for their antifungal activity in natural environments is time- and energy-consuming. We have adapted a PCR-based method to avoid these inconveniences. Soils that are naturally suppressive to plant disease were chosen as a source of antibiotic-producing bacteria. The screening was performed by means of PCR amplification using degenerate primers corresponding to peptide synthetase genes. Amplification fragments were obtained using template DNA from the rhizosphere of three different soybean fields. In order to assay their potential utility in pathogen control, several Bacillus strains were analysed for their in vitro antifungal activity by testing growth inhibition of Sclerotinia sclerotiorum. Four Bacillus sp. isolates gave a positive amplification signal, and three of them had an inhibitory effect on S. sclerotiorum growth, whereas two strains that failed to give an amplification signal did not inhibit fungal growth. These results show that PCR-based techniques could be useful to assess the presence of strains with potential use as biocontrol agents.  相似文献   

8.
Studies of induced systemic resistance using strains of plant growth-promoting rhizobacteria (PGPR) have concentrated on the use of individual PGPR as inducers against multiple diseases of a single crop. To date, few reports have examined the potential of PGPR strain mixtures to induce systemic resistance against diseases of several different plant hosts. The objective of this study was to select mixtures of compatible PGPR strains with the capacity to elicit induced systemic resistance in four hosts. The specific diseases and hosts tested in this study included: bacterial wilt of tomato (Lycopersicon esculentum) caused by Ralstonia solanacearum, anthracnose of long cayenne pepper (Capsicum annuum var. acuminatum) caused by Colletotrichum gloeosporioides, damping off of green kuang futsoi (Brassica chinensis var. parachinensis) caused by Rhizoctonia solani, and cucumber mosaic virus (CMV) on cucumber (Cucumis sativus). To examine compatibility, seven selected PGPR strains were individually tested for in vitro antibiosis against all other PGPR strains and against three of the tested pathogens (R. solanacearum, C. gloeosporioides, and R. solani). No in vitro antibiosis was observed among PGPR strains or against pathogens. Twenty-one combinations of PGPR and seven individual PGPR were tested in the greenhouse for induced resistance activity. Results indicated that four mixtures of PGPR and one individual strain treatment significantly reduced the severity of all four diseases compared to the nonbacterized control: 11 mixtures reduced CMV of cucumber, 16 mixtures reduced bacterial wilt of tomato, 18 mixtures reduced anthracnose of long cayenne pepper, and 7 mixtures reduced damping off of green kuang futsoi. Most mixtures of PGPR provided a greater disease suppression than individual PGPR strains. These results suggest that mixtures of PGPR can elicit induced systemic resistance to fungal, bacterial, and viral diseases in the four hosts tested.  相似文献   

9.
Wild yeasts were isolated from process surfaces of two breweries. In total, 41 strains were obtained and differentiated by cultivation on CuSO4 or crystal violet containing selective media, by fatty acid profiling and by a restriction analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene. The restriction analysis showed the highest differentiating capacity and resulted in eleven groups. These groups were identified by the API ID 32 C kit or by sequencing the D1/D2 region of the 26S rRNA gene. Most of the wild yeasts were identified as Saccharomyces cerevisiae (46% of all isolates) and Candida pelliculosa (anamorph: Pichia anomala) (24%). No obvious differences were detected between the two breweries. While all of the S. cerevisiae isolates were able to grow in beer, only six out of 10 C. pelliculosa strains were able to tolerate this substrate. However, most of the C. pelliculosa strains showed biofilm formation in a microplate assay, but none of the S. cerevisiae isolates. Therefore, it is assumed that the former species is involved in attachment and primary biofilm formation on beer bottling plants, while S. cerevisiae is a late colonizer of a preformed biofilm but increased the beer spoiling potential of the biofilm.  相似文献   

10.
During the course of screening to discover antitrypanosomal compounds, 24 known plant terpenes (6 sesquiterpenes, 14 sesquiterpene lactones and 4 diterpenes) were evaluated for in vitro antitrypanosomal activity against Trypanosoma brucei brucei. Among them, 22 terpenes exhibited antitrypanosomal activity. In particular, α-eudesmol, hinesol, nardosinone and 4-peroxy-1,2,4,5-tetrahydro-α-santonin all exhibited selective and potent antitrypanosomal activities in vitro. Detailed here in an in vitro antitrypanosomal properties and cytotoxicities of the 24 terpenes compared with two therapeutic antitrypanosomal drugs (eflornithine and suramin). This finding represents the first report of promising trypanocidal activity of these terpenes. Present results also provide some valuable insight with regard to structure–activity relationships and the possible mode of action of the compounds.  相似文献   

11.
The effect of chitosan on Saccharomyces cerevisiae (the yeast that carries out alcohol fermentation), Brettanomyces bruxellensis and Brettanomyces intermedius (contaminants of alcohol fermentations), was investigated. The effect of chitosan was tested on each yeast, as well as on mixed cultivations of S. cerevisiae + B. bruxellensis and S. cerevisiae + B. intermedius. Chitosan enhanced the lag period of both strains of Brettanomyces (80 h for B. bruxellensis and 170 h for B. intermedius with 6 and 2 g/l chitosan, respectively). The growth rate of S. cerevisiae was inversely proportional to the chitosan concentration; the former was 50% when 6 g/l polysaccharide was used. Moreover, in mixed cultivations of S. cerevisiae and Brettanomyces strains, it was found that both B. bruxellensis and B. intermedius failed to grow while growth of S. cerevisiae was not affected (using 3 and 6 g/l chitosan, respectively). An interesting collateral result was that the presence of chitosan accelerated the consumption of glucose in the mixed cultivations (60 h instead of 120 h).  相似文献   

12.
Summary Sch 40873, a novel antifungal compound isolated from the fermentation broth of anActinomadura spp. was discovered in an assay designed to detect compounds with preferential activity against the invasive mycelial form ofCandida albicans. The geometric mean MIC of Sch 40873 against sevenCandida spp. in Sabouraud dextrose broth (yeast phase) was 58 g/ml and in Eagles minimum essential medium (mycelial phase) was <0.03 g/ml. Sch 40873 demonstrated slight in vivo topical activity in a hamster vaginal model.  相似文献   

13.
We evaluated 151 coded isolates of medically important yeast species belonging to the genera Candida, Cryptococcus, Geotrichum, Rhodoturula, Saccharomyces and Torulopsis using the newly developed rapid Pro-Lab Identification Ring, PL 960 system (PLID-Ring). All isolates were concurrently identified by the API 20C and conventional procedures comprising macro- and micromorphology, assimilation and fermentation of various carbon and nitrogen compounds. The PLID-Ring system identified isolates of Candida albicans, C. kefyr, C. krusei, C. lusitaniae, C. parapsilosis, Rhodotorula rubra, and Torulopsis glabrata with 100% accuracy in 24 h. This system identified C guilliermondii and S. cerevisiae isolates with an accuracy of 90% and 86%, respectively, while those belonging to Cr. neoformans, T. candida (= C. famata), C. rugosa and C. tropicalis were identified with 38.4%, 50%, 12.5% and 50% accuracy, respectively. Three isolates of Cr. laurentii were not identified by the PLID-Ring system. The overall accuracy of the PLID-Ring system was 81.45% (123 of 151 isolates). However, the system does not include species such as Cr. laurentii in its data base. When these three Cr. laurentii isolates were excluded from the evaluation, the accuracy of the PLID-Ring system increased from 81.45% to 83.1%.  相似文献   

14.
This is the first report to investigate the antifungal susceptibility of 21 clinical isolates of seven Candida species to epigallocatechin 3-O-gallate (EGCg) and to compare with six antifungal agents, amphotericin B (AMPH), fluconazole (FLCZ), flucytosin (5FC), itraconazole (ITCZ), micafungin (MCFG), and miconazole (MCZ), using a method following the National Committee for Clinical Laboratory Standards (NCCLS) M27-A guidelines. Among the tested species, Candida glabrata exhibited the highest susceptibility to EGCg (MIC50, 0.5-1 microg/ml and MIC90, 1-2 microg/ml) compared favorably with FLCZ, although they were slightly less susceptible than to AMPH, 5FC, MCFG, ITCZ, and MCZ. Candida guilliemondii and Candida parapsilosis (MIC50, 1-4 microg/ml and MIC90, 2-16 microg/ml) were also susceptible to EGCg, although they appear to be slightly less susceptible to EGCg than C. glabrata and the other antifungal agents tested. Moreover, the susceptibility of Candida krusei strains (MIC50, 2 microg/ml and MIC90, 4-8 microg/ml) to EGCg was approximately 2- to 8-fold higher than those of 5FC and FLCZ. Our data indicate that EGCg can inhibit clinically pathogenic Candida species, although the concentrations of EGCg for antifungal susceptibility were slightly higher than those of tested antifungal agents on the whole. Based on these results, we suggest that EGCg may be effectively used as a possible agent or adjuvant for antifungal therapy in Candidiasis.  相似文献   

15.
The in vitro antimicrobial activity against pathogenic bacteria, yeast, and molds were examined in extracts of the Agave species A. lecheguilla, A. picta, A. scabra and A. lophanta using an agar diffusion technique. The extracts of A. picta produced zones of inhibition of 9–13 mm for E. coli, L. monocytogenes, S. aureus, and V. cholerae, while B. cereus and Y. enterocolitica were not inhibited. The other Agave species did not show any detectable inhibitory activity against the bacteria tested; however, all four Agave sp. were inhibitory against all yeast and molds analyzed as evident by 9–20 mm zones of inhibition. The minimum microbicidal concentration (MMC) of the active extract ranged from 1.8 to 7.0 mg/ml for the sensitive bacteria, and 2.0–3.0 mg/ml for yeast. In the case of molds, the minimum inhibitory concentration (MIC) of the active extracts ranged from 3.0 to 6.0 mg/ml. Together, these data suggest that the Agave sp. analyzed are potential antimicrobial candidates with a broad range of activity.  相似文献   

16.
The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus .  相似文献   

17.
为探明爵床(Justicia procumbens)甲醇提取物对小菜蛾的生物活性,采用室内生测法测定了爵床甲醇提取物对小菜蛾的触杀、拒食、胃毒、生长发育抑制和产卵忌避作用。结果表明,爵床甲醇提取物对小菜蛾幼虫具有较强的触杀、拒食、胃毒和生长发育抑制活性,对小菜蛾成虫具有较强的产卵忌避活性。在触杀试验中,药后1、2 d和3 d爵床甲醇提取物对小菜蛾3龄幼虫的致死中浓度(LC50)分别为5.17、4.05和3.06 mg/m L;在拒食试验中,药后1 d和2 d提取物对3龄幼虫的选择性拒食中浓度(AFC50)分别为2.64和3.13 mg/m L,药后1 d和2 d提取物对3龄幼虫的非选择性拒食中浓度(AFC50)分别为3.70、4.54 mg/m L;在胃毒试验中,药后4、5、6 d和7 d提取物对3龄幼虫的致死中浓度(LC50)分别为8.13、3.65、2.88、2.23 mg/m L;在生长发育抑制试验中,药后1 d和2 d提取物对3龄幼虫的抑制中浓度(IC50)分别为2.02、1.40 mg/m L;在产卵忌避试验中,药后1、2 d和3 d提取物对小菜蛾成虫的选择性产卵忌避中浓度(AOC50)分别为2.61、3.66、4.58 mg/m L,药后1、2和3 d提取物对小菜蛾成虫的非选择性产卵忌避中浓度(AOC50)分别为3.19、4.52、5.65 mg/m L。由此证实,爵床提取物对小菜蛾具有显著的毒杀活性,具有开发为新型高效、低毒植物源农药的潜在价值。  相似文献   

18.
R.D. Reeleder 《BioControl》2004,49(5):583-594
Yeasts are promising biological control agents(BCAs) for a number of plant diseases. Studieswere carried out to evaluate various adjuvantsand nutrients for their ability to supportgrowth of a yeast BCA (Cryptococcusalbidus). Hydroxyethylcellulose (HEC) andinvert emulsions were found to stimulate growthof C. albidus in vitro. Severalcommercial spray adjuvants were compatible withC. albidus although they did not markedlystimulate growth. Other adjuvants were lethalto the yeast. In controlled environmentand field trials, the yeasts C. albidusand Pichia anomala provided low levels ofcontrol of white mould, a disease of bean (Phaseolus vulgaris) caused by the fungus Sclerotinia sclerotiorum. However, they weregenerally inferior in performance when comparedto either the biocontrol fungus Epicoccumnigrum or to the fungicide iprodione.  相似文献   

19.
Microbial modification of polyunsaturated fatty acids can often lead to special changes in their structure and in biological potential. Therefore, the aim of this study was to develop potential antifungal agents through the microbial conversion of docosahexaenoic acid (DHA). Bioconverted oil extract of docosahexaenoic acid (bDHA), obtained from the microbial conversion of docosahexaenoic acid (DHA) by Pseudomonas aeruginosa PR3, was assessed for its in vitro and in vivo antifungal potential. Mycelial growth inhibition of test plant pathogens, such as Botrytis cinerea, Colletotrichum capsici, Fusarium oxysporum, Fusarium solani, Phytophthora capsici, Rhizoctonia solani and Sclerotinia sclerotiorum, was measured in vitro. bDHA (5 μl disc−1) inhibited 55.30–65.90% fungal mycelium radial growth of all the tested plant pathogens. Minimum inhibitory concentrations (MICs) of bDHA against the tested plant pathogens were found in the range of 125–500 μg ml−1. Also, bDHA had a strong detrimental effect on spore germination for all the tested plant pathogens. Further, three plant pathogenic fungi, namely C. capsici, F. oxysporum and P. capsici, were subjected to an in vivo antifungal screening. bDHA at higher concentrations revealed a promising antifungal effect in vivo as compared to the positive control oligochitosan. Furthermore, elaborative study of GC-MS analysis was conducted on bioconverted oil extract of DHA to identify the transformation products present in bDHA. The results of this study indicate that the oil extract of bDHA has potential value of industrial significance to control plant pathogenic fungi.  相似文献   

20.
Leishmaniasis and Chagas disease afflict the poorest countries in the world. The Brazilian flora represents a rich source for the screening of potential antiparasitic compounds. In this work, we tested the total alkaloid and ethanol extracts of nine different plants from Brazilian families which produce isoquinoline alkaloids, to determine their in vitro antiparasitic effect against L. chagasi and T. cruzi parasites. Promastigotes of L. chagasi were shown to be susceptible only to the total alkaloid extracts of A. crassiflora (EC50 value = 24.89 microg/ml), A. coriacea (EC50 value = 41.60 microg/ml), C. ovalifolia (EC50 value = 63.88 microg/ml) and G. australis (EC50 value = 37.88 microg/ml). Except for the G. australis total alkaloids, all the three extracts presented a considerable activity when tested against intracellular amastigotes. The most effective alkaloid extracts were those from A. crassiflora and C. ovalifolia, which reduced the number of infected macrophages at 25 microg/ml by 86.1% and 89.8%, respectively. Among the 18 tested extracts, 16 showed anti-Trypanosoma activity. Eight extracts (A. crassiflora, A. coriacea, C. ovalifolia, D. furfuracea, D. lanceolata, S. guianensis, X. emarginata and G. australis) were the most effective against the trypomastigotes, killing approximately 100% of the parasites at the maximal concentration of 100 microg/ml. Cytotoxicity against mammalian cells was evaluated for all extracts, but potential ones showed little or no cytotoxicity and a considerable antiparasitic effect, including D. furfuracea, D. lanceolata, G. australis, S. guianensis and X. emarginata. Plants are a rich source of natural compounds, and a powerful tool for the development of new arsenals for the therapy of protozoan diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号