首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Huntington's disease (HD) is a progressive neurodegenerative disorder with autosomal-dominant inheritance. The disease is caused by a CAG trinucleotide repeat expansion located in the first exon of the HD gene. The CAG repeat is highly polymorphic and varies from 6 to 37 repeats on chromosomes of unaffected individuals and from more than 30 to 180 repeats on chromosomes of HD patients. In this study, we show that the number of CAG repeats in the HD gene can be determined by restriction of the DNA with the endonuclease EcoP15I and subsequent analysis of the restriction fragment pattern by electrophoresis through non-denaturing polyacrylamide gels using the ALFexpress DNA Analysis System. CAG repeat numbers in the normal (30 and 35 repeats) as well as in the pathological range (81 repeats) could be accurately counted using this assay. Our results suggest that this high-resolution method can be used for the exact length determination of CAG repeats in HD genes as well as in genes affected in related CAG repeat disorders.  相似文献   

2.
EcoP15 is a restriction-modification enzyme coded by the P15 plasmid of Escherichia coli. We have determined the sites recognized by this enzyme on pBR322 and simian virus 40 DNA. The enzyme recognizes the sequence:
In restriction, the enzyme cleaves the DNA 25 to 26 base-pairs 3′ to this sequence to leave single-stranded 5′ protrusions two bases long.  相似文献   

3.
The EcoP15 restriction endonuclease forms complexes at specific sites on unmodified DNA both in the presence and in the absence of S-adenosyl-l-methionine. ATP acts as an allosteric effector of EcoP15 and induces DNA cleavage followed by release of the enzyme from the DNA. The efficiency of endonucleolytic scission varies from site to site. The nucleotide sequences at sites that are cleaved at a high frequency were compared.  相似文献   

4.
DNA cleavage by type III restriction endonucleases requires two inversely oriented asymmetric recognition sequences and results from ATP-dependent DNA translocation and collision of two enzyme molecules. Here, we characterized the structure and mode of action of the related EcoP1I and EcoP15I enzymes. Analytical ultracentrifugation and gel quantification revealed a common Res(2)Mod(2) subunit stoichiometry. Single alanine substitutions in the putative nuclease active site of ResP1 and ResP15 abolished DNA but not ATP hydrolysis, whilst a substitution in helicase motif VI abolished both activities. Positively supercoiled DNA substrates containing a pair of inversely oriented recognition sites were cleaved inefficiently, whereas the corresponding relaxed and negatively supercoiled substrates were cleaved efficiently, suggesting that DNA overtwisting impedes the convergence of the translocating enzymes. EcoP1I and EcoP15I could co-operate in DNA cleavage on circular substrate containing several EcoP1I sites inversely oriented to a single EcoP15I site; cleavage occurred predominantly at the EcoP15I site. EcoP15I alone showed nicking activity on these molecules, cutting exclusively the top DNA strand at its recognition site. This activity was dependent on enzyme concentration and local DNA sequence. The EcoP1I nuclease mutant greatly stimulated the EcoP15I nicking activity, while the EcoP1I motif VI mutant did not. Moreover, combining an EcoP15I nuclease mutant with wild-type EcoP1I resulted in cutting the bottom DNA strand at the EcoP15I site. These data suggest that double-strand breaks result from top strand cleavage by a Res subunit proximal to the site of cleavage, whilst bottom strand cleavage is catalysed by a Res subunit supplied in trans by the distal endonuclease in the collision complex.  相似文献   

5.
6.
7.
A closer inspection of the amino acid sequence of EcoP15I DNA methyltransferase revealed a region of similarity to the PDXn(D/E)XK catalytic site of type II restriction endonucleases, except for methionine in EcoP15I DNA methyltransferase instead of proline. Substitution of methionine at position 357 by proline converts EcoP15I DNA methyltransferase to a site-specific endonuclease. EcoP15I-M357P DNA methyltransferase specifically binds to the recognition sequence 5'-CAGCAG-3' and cleaves DNA asymmetrically EcoP151-M357P.DNA methyltransferase specifically binds to the recognition sequence 5'-CAGCAG-3' and cleaves DNA asymmetrically, 5'-CAGCAG(N)(10)-3', as indicated by the arrows, in presence of magnesium ions.  相似文献   

8.
The Type III restriction endonuclease EcoP15I forms a hetero-oligomeric enzyme complex that consists of two modification (Mod) subunits and two restriction (Res) subunits. Structural data on Type III restriction enzymes in general are lacking because of their remarkable size of more than 400 kDa and the laborious and low-yield protein purification procedures. We took advantage of the EcoP15I-overexpressing vector pQEP15 and affinity chromatography to generate a quantity of EcoP15I high enough for comprehensive proteolytic digestion studies and analyses of the proteolytic fragments by mass spectrometry. We show here that in the presence of specific DNA the entire Mod subunit is protected from trypsin digestion, whereas in the absence of DNA stable protein domains of the Mod subunit were not detected. In contrast, the Res subunit is comprised of two trypsin-resistant domains of approximately 77-79 kDa and 27-29 kDa, respectively. The cofactor ATP and the presence of DNA, either specific or unspecific, are important stabilizers of the Res subunit. The large N-terminal domain of Res contains numerous functional motifs that are predicted to be involved in ATP-binding and hydrolysis and/or DNA translocation. The C-terminal small domain harbours the catalytic center. Based on our data, we conclude that both structural Res domains are connected by a flexible linker region that spans 23 amino acid residues. To confirm this conclusion, we have investigated several EcoP15I enzyme mutants obtained by insertion mutagenesis in and around the predicted linker region within the Res subunit. All mutants tolerated the genetic manipulation and did not display loss of function or alteration of the DNA cleavage position.  相似文献   

9.
This paper presents the nucleotide sequence of the mod-res operon of phage P1, which encodes the two structural genes for the EcoP1 type III restriction and modification system. We have also sequenced the mod gene of the allelic EcoP15 system. The mod gene product is responsible for binding the system-specific DNA recognition sequences in both restriction and modification; it also catalyses the modification reaction. A comparison of the two mod gene product sequences shows that they have conserved amino and carboxyl ends but have completely different sequences in the middle of the molecules. Two alleles of the EcoP1 mod gene that are defective in modification but not in restriction were also sequenced. The mutations in both alleles lie within the non-conserved regions.  相似文献   

10.
For efficient DNA hydrolysis, Type III restriction endonuclease EcoP15I interacts with two inversely oriented recognition sites in an ATP-dependent process. EcoP15I consists of two methylation (Mod) subunits and a single restriction (Res) subunit yielding a multifunctional enzyme complex able to methylate or to hydrolyse DNA. Comprehensive sequence alignments, limited proteolysis and mass spectroscopy suggested that the Res subunit is a fusion of a motor or translocase (Tr) domain of superfamily II helicases and an endonuclease domain with a catalytic PD…EXK motif. In the Tr domain, seven predicted helicase motifs (I, Ia, II–VI), a recently discovered Q-tip motif and three additional regions (IIIa, IVa, Va) conserved among Type III restriction enzymes have been identified that are predicted to be involved in DNA binding and ATP hydrolysis. Because DNA unwinding activity for EcoP15I (as for bona fide helicases) has never been found and EcoP15I ATPase rates are only low, the functional importance of the helicase motifs and regions was questionable and has never been probed systematically. Therefore, we mutated all helicase motifs and conserved regions predicted in Type III restriction enzyme EcoP15I and examined the functional consequences on EcoP15I enzyme activity and the structural integrity of the variants by CD spectroscopy. The resulting eleven enzyme variants all, except variant IVa, are properly folded showing the same secondary structure distribution as the wild-type enzyme. Classical helicase motifs I–VI are important for ATP and DNA cleavage by EcoP15I and mutations therein led to complete loss of ATPase and cleavage activity. Among the catalytically inactive enzyme variants three preserved the ability to bind ATP. In contrast, newly assigned motifs Q-tip, Ia and Va are not essential for EcoP15I activity and the corresponding enzyme variants were still catalytically active. DNA binding was only marginally reduced (2–7 fold) in all enzyme variants tested.  相似文献   

11.
DNA cleavage by the type III restriction endonuclease EcoP1I was analysed on circular and catenane DNA in a variety of buffers with different salts. In the presence of the cofactor S-adenosyl methionine (AdoMet), and irrespective of buffer, only substrates with two EcoP1I sites in inverted repeat were susceptible to cleavage. Maximal activity was achieved at a Res2Mod2 to site ratio of approximately 1:1 yet resulted in cleavage at only one of the two sites. In contrast, the outcome of reactions in the absence of AdoMet was dependent upon the identity of the monovalent buffer components, in particular the identity of the cation. With Na+, cleavage was observed only on substrates with two sites in inverted repeat at elevated enzyme to site ratios (>15:1). However, with K+ every substrate tested was susceptible to cleavage above an enzyme to site ratio of approximately 3:1, including a DNA molecule with two directly repeated sites and even a DNA molecule with a single site. Above an enzyme to site ratio of 2:1, substrates with two sites in inverted repeat were cleaved at both cognate sites. The rates of cleavage suggested two separate events: a fast primary reaction for the first cleavage of a pair of inverted sites; and an order-of-magnitude slower secondary reaction for the second cleavage of the pair or for the first cleavage of all other site combinations. EcoP1I enzymes mutated in either the ATPase or nuclease motifs did not produce the secondary cleavage reactions. Thus, AdoMet appears to play a dual role in type III endonuclease reactions: Firstly, as an allosteric activator, promoting DNA association; and secondly, as a "specificity factor", ensuring that cleavage occurs only when two endonucleases bind two recognition sites in a designated orientation. However, given the right conditions, AdoMet is not strictly required for DNA cleavage by a type III enzyme.  相似文献   

12.
Restriction enzymes have previously shown the ability to cleave DNA substrates with mismatched base(s) in recognition sequences; in this study, Ban I endonuclease demonstrated this same ability. Single base substitutions were introduced, and fragments containing various types of unpaired base(s) (heteroduplex fragments) within the Ban I endonuclease recognition sequence, 5′‐G|GPyPuCC‐3′, were generated. Each of the heteroduplex fragments was treated with Ban I endonuclease and analyzed by denaturing gradient gel electrophoresis. Our results showed that heteroduplex fragments containing mismatched bases at either the first or third position of the Ban I recognition sequence or, because of the symmetrical structure of the sequence, the sixth or fourth position on the opposite strand were cleaved by the enzyme. Furthermore, these cleaved fragments contained at least one strand corresponding to the original Ban I recognition sequence. Fragments with mismatches formed by an A (noncanonical , nc ) opposite a purine (canonical , ca ) or a T (nc ) opposite a pyrimidine (ca ) were cleaved more efficiently than other types of mismatched bases. These results may help elucidate the mechanisms by which DNA and protein interact during the process of DNA cleavage by Ban I endonuclease.  相似文献   

13.
Type III restriction enzymes are multifunctional heterooligomeric enzymes that cleave DNA at a fixed position downstream of a non-symmetric recognition site. For effective DNA cleavage these restriction enzymes need the presence of two unmethylated, inversely oriented recognition sites in the DNA molecule. DNA cleavage was proposed to result from ATP-dependent DNA translocation, which is expected to induce DNA loop formation, and collision of two enzyme-DNA complexes. We used scanning force microscopy to visualise the protein interaction with linear DNA molecules containing two EcoP15I recognition sites in inverse orientation. In the presence of the cofactors ATP and Mg(2+), EcoP15I molecules were shown to bind specifically to the recognition sites and to form DNA loop structures. One of the origins of the protein-clipped DNA loops was shown to be located at an EcoP15I recognition site, the other origin had an unspecific position in between the two EcoP15I recognition sites. The data demonstrate for the first time DNA translocation by the Type III restriction enzyme EcoP15I using scanning force microscopy. Moreover, our study revealed differences in the DNA-translocation processes mediated by Type I and Type III restriction enzymes.  相似文献   

14.
15.
A simple and effective method for typing of CAG repeats in the IT-15 gene has been suggested. This method was applied for examination of the CAG allele distribution in Huntington's disease (HD) patients in five different populations from the Commonwealth of Independent States. A total of 21 normal alleles with the sizes ranging from 9 to 32 triplet repeat units were revealed. Moreover, alleles with the size ranging from 16 to 20 repeats predominated constituting from 54.4 to 74.6% of all alleles in different populations. The number of repeats in one allele in HD patients exceeded 38 units (43 triplets on average). In two families an increase in the CAG repeat units number in the mutant allele upon its paternal transmission was recorded.  相似文献   

16.
For efficient DNA cleavage, the Type III restriction endonuclease EcoP15I communicates with two inversely oriented recognition sites in an ATP-dependent process. EcoP15I consists of methylation (Mod) and restriction (Res) subunits forming a multifunctional enzyme complex able to methylate or to cleave DNA. In this study, we determined by different analytical methods that EcoP15I contains a single Res subunit in a Mod(2)Res stoichiometry. The Res subunit comprises a translocase (Tr) domain carrying functional motifs of superfamily 2 helicases and an endonuclease domain with a PD..D/EXK motif. We show that the isolated Tr domain retains ATP-hydrolyzing activity and binds single- and double-stranded DNA in a sequence-independent manner. To localize the regions of DNA binding, we screened peptide arrays representing the entire Res sequence for their ability to interact with DNA. We discovered four DNA-binding regions in the Tr domain and two DNA-binding regions in the endonuclease domain. Modelling of the Tr domain shows that these multiple DNA-binding regions are located on the surface, free to interact with DNA. Interestingly, the positions of the DNA-binding regions are conserved among other Type III restriction endonucleases.  相似文献   

17.
Modes of DNA cleavage by the EcoRV restriction endonuclease   总被引:6,自引:0,他引:6  
S E Halford  A J Goodall 《Biochemistry》1988,27(5):1771-1777
The mechanism of action of the EcoRV restriction endonuclease at its single recognition site on the plasmid pAT153 was analyzed by kinetic methods. In reactions at pH 7.5, close to the optimum for this enzyme, both strands of the DNA were cut in a single concerted reaction: DNA cut in only one strand of the duplex was neither liberated from the enzyme during the catalytic turnover nor accumulated as a steady-state intermediate. In contrast, reactions at pH 6.0 involved the sequential cutting of the two strands of the DNA. Under these conditions, DNA cut in a single strand was an obligatory intermediate in the reaction pathway and a fraction of the nicked DNA dissociated from the enzyme during the turnover. The different reaction profiles are shown to be consistent with a single mechanism in which the kinetic activity of each subunit of the dimeric protein is governed by its affinity for Mg2+ ions. At pH 7.5, Mg2+ is bound to both subunits of the dimer for virtually the complete period of the catalytic turnover, while at pH 6.0 Mg2+ is bound transiently to one subunit at a time. The kinetics of the EcoRV nuclease were unaffected by DNA supercoiling.  相似文献   

18.
OBJECTIVE: To gain insights on the molecular mechanisms of mutation that led to the emergence of expanded alleles in the MJD gene, by studying the behavior of wild-type alleles and testing the association of its distribution with the representation of the disease. METHODS: The number of CAG motifs in the MJD gene was determined in a representative sample of 1000 unrelated individuals. Associations between the repeat size and the epidemiological representation of MJD were tested. RESULTS: The allelic profile of the total sample was in the normal range (13-41 repeats), with mode (CAG)23. No intermediate alleles were present. Allelic size distribution showed a negative skew. The correlation between the epidemiological representation of MJD in each district and the frequency of small, medium and large normal alleles was not significant. Further correlations performed grouping the districts also failed to produce significant results. CONCLUSIONS: The absence of association between the size of the repeats and the representation of MJD demonstrates that prevalence is not an indirect reflection of the frequency of large normal alleles. Globally the results obtained are in accordance with a model that postulates the occurrence of a few mutations on the basis of most of the MJD cases worldwide.  相似文献   

19.
The concentration of homocarnosine (γ-aminobutyryl-L-histidine) in the cerebrospinal fluid (CSF) of ten patients with Huntington's disease (HD) and 24 control subjects was determined by high-performance cation exchange chromatography. The mean CSF homocarnosine level was significantly lower in HD patients (0.86 ± 0.16 nmo1/m1) than in controls (1.69 ± 0.18 nmo1/m1).  相似文献   

20.
Huntington’s disease (HD) is a devastating polyglutamine disorder characterized by extensive neurodegeneration and metabolic abnormalities at systemic, cellular and intracellular levels. Metabolic alterations in HD manifest as abnormal body weight, dysregulated biomolecule levels, impaired adipocyte functions, and defective energy state which exacerbate disease progression and pose acute threat to the health of challenged individuals in form of insulin resistance, cardiovascular disease, and energy crisis. To colossally mitigate disease symptoms, we tested the efficacy of curcumin in Drosophila model of HD. Curcumin is the bioactive component of turmeric (Curcuma longa Linn), well-known for its ability to modulate metabolic activities. We found that curcumin effectively managed abnormal body weight, dysregulated lipid content, and carbohydrate level in HD flies. In addition, curcumin administration lowered elevated reactive-oxygen-species levels in adult adipose tissue of diseased flies, and improved survival and locomotor function in HD flies at advanced disease stage. Altogether, these findings clearly suggest that curcumin efficiently attenuates metabolic derangements in HD flies and can prove beneficial in alleviating the complexities associated with HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号