首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The oxidation of [U-14C]hexadecanedionoyl-mono-CoA was stimulated by CoA, by carnitine in the absence of CoA and by the presence of an NAD(+)-regenerating system. 2. Substrate inhibition was observed with respect to [U-14C]hexadecanedionoyl-mono-CoA at concentrations greater than 35 microM. 3. Acetyl-CoA and the dicarboxyl-CoA esters of chain length C6-16 were detected by HPLC under standard incubation conditions. 4. In the absence of the NAD(+)-regenerating system, 2-enoyl-CoA and 3-hydroxacyl-CoA esters were detected. 5. In general, the peroxisomal beta-oxidation of dicarboxylates is very similar to that of monocarboxylates [Bartlett, K., Hovik, R., Eaton, S., Watmough, N. J. & Osmundsen, H. (1990) Biochem. J. 270, 175-180] except that chain shortening does not proceed beyond C6. 6. We conclude that the peroxisomal beta-oxidation of dicarboxylates is regulated by the redox state of the peroxisomal matrix and CoA availability.  相似文献   

2.
An enzymatic method using phenylalanine ammonia-lyase (l-phenylalanine ammonia-lyase, EC 4.3.1.5) for the rapid conversion of l-[U-14C]phenylalanine to the deaminated lignin precursor trans-[U-14C]cinnamic acid is described. The method produces an experimentally useful 14C-labelled deaminated lignin precursor unavailable from radiochemical supply companies.  相似文献   

3.
4.
Female rats were injected i.v. with comparable trace amounts of [U-14C] glycerol, [2-3H] glycerol, [U-14C] glucose, or [1-14C] palmitate, and killed 30 min afterwards. The radioactivity remaining in plasma at that time was maximal in animals receiving [U-14C] glucose while the appearance of radioactive lipids was higher in the [U-14C] glycerol animals than in other groups receiving hydrosoluble substrates. The carcass, more than the liver, was the tissue where the greatest proportion of radioactivity was recovered, while the greatest percentage of radioactivity appeared in the liver in the form of lipids. The values of total radioactivity found in different tissues were very similar when using either labelled glucose or glycerol but the amount recovered as lipids was much greater in the latter. The maximal proportion of radioactive lipids appeared in the fatty-acid form in the liver, carcass, and lumbar fat pads when using [U-14C] glycerol as a hydrosoluble substrate, and the highest lipidic fraction appeared in adipose tissue as labelled, esterified fatty acids. In the spleen, heart, and kidney, most of the lipidic radioactivity from any of the hydrosoluble substrates appeared as glyceride glycerol. The highest proportion of radioactivity from [1-14C] palmitate appeared in the esterified fatty acid in adipose tissue, being followed in decreasing proportion by the heart, carcass, liver, kidney, and spleen. Thus at least in part, both labelled glucose and glycerol are used throughout different routes for their conversion in vivo to lipids. A certain proportion of glycerol is directly utilized by adipose tissue. The fatty acids esterification ability differs among the tissues and does not correspond directly with the reported activities of glycerokinase, suggesting that the alpha-glycerophosphate for esterification comes mainly from glucose and not from glycerol.  相似文献   

5.
1. [14C]Acetylcholine synthesis and 14CO2 production from [U-14C]glucose has been measured in tissue prism preparations from human neocortex. 2. Electron micrographs of prisms from human and rat neocortex show that both contain intact synaptic endings with evenly-distributed vesicles and normal-appearing mitochondria, but only poorly preserved cell body structure. 3. Synthesis of [14C]acetylcholine in prisms from rat neocortex is similar to estimates for turnover in vivo. Synthesis in prisms from human neocortex is 18% of that in rat tissue and 64% of that in tissue from baboon neocortex for incubations performed in 31 mM-K+. 4. Investigations of prisms prepared from rat brains stored at 37 degrees C after death revealed that synthesis of [14C]acetylcholine in the presence of 31 mM-K+ was greatly decreased within 30 min of post-mortem incubation, whereas synthesis at 5 mM-K+ and production of 14CO2 at both K+ concentrations were only significantly affected after longer periods. Changes were similar in neocortex and striatum. Thus human autopsy material is unlikely to be suitable for use with this system. 5. Investigations using animal models suggest that [14C]acetylcholine synthesis and 14CO2 production are not affected by surgical or anaesthetic procedures. 6. Neither [14C]acetylcholine synthesis nor 14CO2 production in human prisms was significantly changed with age between 15 and 68 years. 7. Samples from patients with the dementing condition Alzheimer's disease showed a significant decrease in [14C]acetylcholine synthesis to 47% of normal samples and a significant increase of 39% in production of 14CO2.  相似文献   

6.
A very potent anticholinesterase compound, 7-(diethoxyphosphinyloxy)-N-methylquinolinium fluorosulfate, has been used to determine the normality of acetylcholinesterase solutions. The inhibitor reacts rapidly and completely with acetylcholinesterase. The bimolecular rate constant is 2.5 × 108m?1 min?1 and the equilibrium constant is about 106. The reaction produces an inactive diethylphosphoryl enzyme in which the active serine is phosphorylated. The reaction produces the highly fluorescent 1-methyl-7-hydroxyquinolinium dipolar ion as a leaving group. The inhibited enzyme is quite stable and hydrolyzes to produce active enzyme only at the rate of 0.04%/min. The inhibitor was used in two ways for measuring the normality of acetylcholinesterase solutions: (1) The very fast reaction of the inhibitor with cholinesterase makes it convenient to determine the normality of enzyme solutions by measuring the decrease in enzyme activity caused by the addition of an accurately known quantity of the inhibitor. (2) The highly fluorescent nature of the leaving group makes it possible to measure the low concentration that is produced by the reaction of excess inhibitor with the enzyme. The two methods yielded activities per site of 6.9 × 105 min?1 and 7.3 × 105 min?1 using enzyme normalities of 1–2 × 10?8m and 1–5 × 10?m, respectively, using a commercial 11 S enzyme preparation from electric eel and acetylthiocholine as the enzyme substrate.  相似文献   

7.
The purpose of this study was to assess the level of agreement between two techniques commonly used to measure exogenous carbohydrate oxidation (CHO(EXO)). To accomplish this, seven healthy male subjects (24 +/- 3 yr, 74.8 +/- 2.1 kg, V(O2(max)) 62 +/- 4 ml x kg(-1) x min(-1)) exercised at 50% of their peak power for 120 min on two occasions. During these exercise bouts, subjects ingested a solution containing either 144 g glucose (8.7% wt/vol glucose) or water. The glucose solution contained trace amounts of both [U-13C]glucose and [U-14C]glucose to allow CHO(EXO) to be quantified simultaneously. The water trial was used to correct for background 13C enrichment. 13C appearance in the expired air was measured using isotope ratio mass spectrometry, whereas 14C appearance was quantified by trapping expired CO(2) in solution (using hyamine hydroxide) and adding a scintillator before counting radioactivity. CHO(EXO) measured with [13C]glucose ([13C]CHO(EXO)) was significantly greater than CHO(EXO) measured with [14C]glucose ([14C]CHO(EXO)) from 30 to 120 min. There was a 15 +/- 4% difference between [13C]CHO(EXO) and [14C]CHO(EXO) such that the absolute difference increased with the magnitude of CHO(EXO). Further investigations suggest that the difference is not because of losses of CO2 from the trapping solution before counting or an underestimation of the "strength" of the trapping solution. Previous research suggests that the degree of isotopic fractionation is small (S. C. Kalhan, S. M. Savin, and P. A. Adam. J Lab Clin Med89: 285-294, 1977). Therefore, the explanation for the discrepancy in calculated CHO(EXO) remains to be fully understood.  相似文献   

8.
9.
Studies have been made on the intensity of oxidation of [U-14C]-palmitate, [1-14C]- and [6-14C]-glucose by slices of the liver and skeletal muscles of new-born, 1-day, 5-day and adult Wistar rats and domestic pigs. It was found that the level of 14CO2 production from these substrates is higher in tissues of rats than in those of pigs. At early stages of ontogenesis, in tissues of both species intensive oxidation of glucose is observed together with oxidation of fatty acids. In the course of ontogenetic development, the intensity of glucose utilization significantly decreases, whereas the level of fatty acid catabolism remains relatively unaffected.  相似文献   

10.
β-[U-14C]Alanine can be synthesized in >95% yield from l-[U-14C]aspartic acid using the aspartate 1-decarboxylase of Escherichia coli and converted to d-[1,2,3-14C]pantothenate in a 10–20% yield using the pantothenate synthetase of E. coli. Sufficiently pure preparations of both enzymes are readily obtained.  相似文献   

11.
The hormonal control of [14C]glucose synthesis from [U-14C-A1dihydroxyacetone was studied in hepatocytes from fed and starved rats. In cells from fed rats, glucagon lowered the concentration of substrate giving half-half-maximal rates of incorporation while it had little or no effect on the maximal rate. Inhibitors of gluconeogenesis from pyruvate had no effect on the ability of the hormone to stimulate the synthesis of [14C]glucose from dihydroxyacetone. The concentrations of glucagon and epinephrine giving half-maximal stimulation from dihydroxacetone were 0.3 to 0.4 mM and 0.3 to 0.5 muM, respectively. The meaximal catecholamine stimulation was much less than the maximal stimulation by glucagon and was mediated largely by the alpha receptor. Insulin had no effect on the basal rate of [14C]clucose synthesis but inhibited the effect of submaximal concentration of glucagon or of any concentration of catecholamine. Glucagon had no effect on the uptake of dihydroxyacetone but suppressed its conversion to lactate and pyruvate. This suppression accounted for most of the increase in glucose synthesis. In cells from gasted rats, where lactate production is greatly reduced and the rate of glucose synthesis is elevated, glucagon did not stimulate gluconeogenesis from dihydroxyacetone. Findings with glycerol as substrate were similar to those with dihyroxyacetone. Ethanol also stimulated glucose production from dihydroxyacetone while reducing proportionately the production of lactate. Ethanol is known to generate reducing equivalents fro clyceraldehyde-3-phosphate dehydrogenase and presumably thereby inhibits carbon flux to lactate at this site. Its effect was additive with that of glucagon. Estimates of the steady state levels of intermediary metabolites and flux rates suggested that glucagon activated conversion of fructose diphosphate to fructose 6-phosphate and suppressed conversion of phosphoenolpyruvate to pyruvate. More direct evidence for an inhibition of pyruvate kinase was the observation that brief exposure of cells to glucagon caused up to 70% inhibition of the enzyme activity in homogenates of these cells. The inhibition was not seen when the enzyme was assayed with 20 muM fructose diphosphate. The effect of glucagon to lower fructose diphosphate levels in intact cells may promote the inhibition of pyruvate kinase. The inhibition of pyruvate kinase may reduce recycling in the pathway of gluconeogenesis from major physiological substrates and probably accounts fromsome but not all the stimulatory effect of glucagon.  相似文献   

12.
Autoradiographs of mature cotton bolls which earlier had radioglucoseintroduced via a thin incision into their peduncles show a markedasymmetry in distribution of the label. Radio-assay shows thespecific activity of the cotton fibres on the treated side tobe as much as 30-fold that on the opposite side.  相似文献   

13.
A simple and sensitive radiochemical procedure to assay argininosuccinate synthetase activity in crude tissue homogenates and lysates of cultured cells is described. The new method depends on the location of 14C, uniformly, in the four carbons of aspartate. On incubation in the presence of excess of L-[U-14C]aspartate, L-citrulline, ATP, and an ATP-generating system, argininosuccinase and arginase, the [14C]fumarate formed is measured as the sum of malate and fumarate. After acidification the latter two acids are separated from [14C]aspartate on a small Dowex-50 column by elution with a few milliliters of water; the unutilized amino acid substrates remain on the column. With a specific radioactivity of 9 X 10(4) cpm, 1 to 2 nmol of product can be accurately measured under kinetically optimum conditions.  相似文献   

14.
15.
Specific radioactivities of molecular species of phosphatidyl choline(PC), phosphatidyl ethanolamine(PE) and 1,2-diacylglycerol were determined in rabbit brain 15 and 30 min after intraventricular injection of 10OpCi of either [U-14C]glucose or [U-14C]glycerol. The rate of de nouo synthesis of glycerophospholipids and their molecular species could be determined after glycerol labelling, since 94.0–99.7% of 14C activity was recovered in glyceryl moieties of brain lipids. After injection of glucose radioactivity was measured in both glyccrol and acyl residues of lipids. High incorporation rates were measured in species of PC, PE and 1,2-diacylglycerol with oleic acid in position 2 and with palmitic, stearic or oleic acids in position 1. The conclusion may therefore be drawn that these molecular species were preferably synthesized de novo by selective acylation of glycerol 3-phosphate. The lowest specific activities were observed for 1,2-dipalmitoyl- and l-stearoyl-2- arachidonoyl-glycerol, -PC and -PE. These turnover rates point to incorporation of arachidonate, and probably also of palmitate in dipalmitoyl-PC, amounting to 20% of total PC, via deacylation-acylation- cycle.  相似文献   

16.
The experiment was performed on rats to which a single injection of [U-14C]glucose had been administered. Results were observed from the 7th to the 281st day following contamination. At 280 days only the lipids in the brain contained radioactivity, the highest degree of specific activity being found in the cerebrosides.  相似文献   

17.
In brain perfusion experiments conducted with blood containing [U-14C]glucose the relative specific activity (RSA) of blood glucose carbon incorporated in brain intermediate metabolites was measured. It was demonstrated that the so-called metabolic pattern of Geiger is not constant, but it bears a close relation to the function of the brain. The results of the study may be summarized briefly as follows. (1) In a group (A) of cats with a high level of brain function, the RSA of lactic acid was 75 per cent; that of glutamic acid 80 per cent; aspartic acid 75 per cent; glutamine 61 per cent; GABA 43 per cent; and respiratory CO2 55 per cent. It was observed that the major part of the carbon of amino acids, such as glutamic acid and aspartic acid, which are directly associated with the tricarboxylic acid cycle are derived from blood glucose. (2) In a group (B) showing a low level of brain function, the RSA of each amino acid was considerably lowered. The RSA of glutamic acid and aspartic acid was about 50 per cent and that of respiratory CO2 was 27 per cent. (3) In a group (C) with a still lower level of brain function, each amino acid as well as the respiratory CO2 had still lower RSA values. (4) The metabolic pattern of Geiger corresponds to values obtained during low functional activity of the brain in our experiment.  相似文献   

18.
The rate of [2-14C]glucose uptake has been used as an indication of the status of energy consumption by the rat brain, but the cost of this radiolabel can be prohibitive and the surgical manipulation involved in published methods is extensive. A method for measuring glucose utilization in vivo in mouse brain with [U-14C]glucose is described in this article. Glucose consumption in whole mouse brain obtained with [U-14C]glucose or [2-14C]glucose was 0.650±0.022 and 0.716±0.36 nmol/mg/min, respectively. In all instances the rate obtained with the uniformly labeled isotope was somewhat lower than that found with [2-14C]glucose. The rate of glucose utilization measured with either isotope was significantly depressed in sodium pentobarbital anesthetized mice. The method described here is advantageous because [U-14C]glucose is substantially less expensive than [2-14C]glucose and surgical intervention is avoided.  相似文献   

19.
20.
Thermophilic (55°C) anaerobic enrichment cultures were incubated with [14C-lignin]lignocellulose, [14C-polysaccharide]lignocellulose, and kraft [14C]lignin prepared from slash pine, Pinus elliottii, and 14C-labeled preparations of synthetic lignin and purified cellulose. Significant but low percentages (2 to 4%) of synthetic and natural pine lignin were recovered as labeled methane and carbon dioxide during 60-day incubations, whereas much greater percentages (13 to 23%) of kraft lignin were recovered as gaseous end products. Percentages of label recovered from lignin-labeled substrates as dissolved degradation products were approximately equal to percentages recovered as gaseous end products. High-pressure liquid chromatographic analyses of CuO oxidation products of sound and degraded pine lignin indicated that no substantial chemical modifications of the remaining lignin polymer, such as demethoxylation and dearomatization, occurred during biodegradation. The polysaccharide components of pine lignocellulose and purified cellulose were relatively rapidly mineralized to methane and carbon dioxide; 31 to 37% of the pine polysaccharides and 56 to 63% of the purified cellulose were recovered as labeled gaseous end products. An additional 10 to 20% of the polysaccharide substrates was recovered as dissolved degradation products. Overall, these results indicate that elevated temperatures can greatly enhance rates of anaerobic degradation of lignin and lignified substrates to methane and low-molecular-weight aromatic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号