首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We made a comparative study of the structures of the oligosaccharides on the glycoproteins from Caco-2 human colonic adenocarcinoma cells, before and after differentiation. Enterocytic differentiated Caco-2 cells highly express H type 1 blood group antigen on the cell surface as well as activities of brush border membrane hydrolases, such as dipeptidyl peptidase IV and alkaline phosphatase. A strong correlation was observed between the amounts of H type 1 blood group antigen and the degrees of differentiation. Structural analysis with use of lectin affinity high performance liquid chromatography revealed that typical mucin-type sugar chains of the glycoproteins from undifferentiated cells have H type 2 group, linear polylactosamines, and core 1 structure. On the other hand, differentiated cells newly contain H type 1 and Le(b) groups and core 2 structure. Mucins with H type 1 group make contact with brush border membrane enzymes on differentiated cells. Furthermore benzyl 2-acetamide-2-deoxy-alpha-D-galactopyranoside inhibited both expression of H type 1 group on the cell surface and enhancement of brush border membrane enzyme activities even in the presence of a differentiating inducer. These results suggest that the mucin-type sugar chains with H type 1 group have important functions regarding differentiation of Caco-2 cells.  相似文献   

2.
Several glycoforms of CD43 are known to regulate cellular interactions in the immune system. One such glycoform, the CD43 that bears core 2 O-glycans, is also known to be expressed on T lymphocytes and natural killer cells, but only after their activation. Previous studies have also shown that when Caco-2 cells, which are derived from human colon carcinoma, differentiate into enterocytes, they also express core 2 O-glycans, though proteins bearing this glycan are unknown. To examine whether CD43 glycosylation is altered during enterocytic differentiation of Caco-2 cells, we conducted immunocytochemical studies with a monoclonal antibody, 1D4, that recognizes a glycoform of CD43 bearing core 2 O-glycans. We found that 1D4 could bind to intracellular granules but not the cell surface of differentiated Caco-2 cells, whereas hematopoietic cells expressed 1D4 epitope on the cell surface as previously shown. The reactivity with this antibody increased as the degree of cell differentiation progressed as shown by the activity of the apical enzyme marker, dipeptidyl peptidase IV. 1D4-reactive CD43 was also found in the culture medium of differentiated Caco-2 cells, suggesting this molecule may be stored and secreted. The production and secretion of this CD43 glycoform by enterocyte-like Caco-2 cells was enhanced, and most 1D4 epitope converted to a soluble form when bacterial lipopolysaccharide was present. These observations strongly support the possibility that core 2 O-glycans on mucins such as CD43 are important to primary defense on the intestinal epithelium against infection.  相似文献   

3.
The Sialyl-Tn antigen (Sialyl alpha-Ser/Thr) is expressed as a cancer-associated antigen on the surface of cancer cells. Its presence is associated with a poor prognosis in patients with colorectal and other cancers. We previously reported that Sialyl-Tn expression in LSC human colon cancer cells could be explained by a specific lack of the activity of core 1 beta3-Gal-transferase (Brockhausen et al., Glycoconjugate J. 15, 595-603, 1998) and an inability to synthesize the common O-glycan core structures. To support this mechanism, or find other mechanisms to explain Sialyl-Tn antigen expression, we investigated the O-glycosylation pathways in clonal rat colon cancer cell lines that were selected for positive or negative expression of Sialyl-Tn antigen, and compared these pathways to those in normal rat colonic mucosa. Normal rat colonic mucosa had very active glycosyltransferases synthesizing O-glycan core structures 1 to 4. Several sialyl-, sulfo- and fucosyltransferases were also active. An M type core 2 beta6-GlcNAc-transferase was found to be present in rat colon mucosa and all of the rat colon cancer cells. O-glycosylation pathways in rat colon cancer cells were significantly different from normal rat colonic mucosa; for example, rat colon cancer cells lost the ability to synthesize O-glycan core 3. All rat colon cancer cell lines, regardless of the Sialyl-Tn phenotype, expressed glycosyltransferases assembling complex O-glycans of core 1 and core 2 structures (unlike human LSC colon cancer cells which lack core 1 beta3-Gal-transferase activity). It was the activity of CMP-sialic acid:GalNAc-mucin alpha6-sialyltransferase that coincided with Sialyl-Tn expression. Sialyl-Tn negative cells had a several fold higher activity of core 2 beta6-GlcNAc-transferase which synthesizes complex O-glycans that may mask adjacent Sialyl-Tn epitopes. The results suggest a new mechanism controlling Sialyl-Tn expression in cancer cells.  相似文献   

4.
Sialyl Lewis A (SLe(a)), Lewis A (Le(a)), and Lewis B (Le(b)) have been studied in many different biological contexts, for example in microbial adhesion and cancer. Their biosynthesis is complex and involves beta1,3-galactosyltransferases (beta3Gal-Ts) and a combined action of alpha2- and/or alpha4-fucosyltransferases (Fuc-Ts). Further, O-glycans with different core structures have been identified, and the ability of beta3Gal-Ts and Fuc-Ts to use these as substrates has not been resolved. Therefore, to examine the in vivo specificity of enzymes involved in SLe(a), Le(a), and Le(b) synthesis, we have transiently transfected CHO-K1 cells with relevant human glycosyltransferases and, on secreted reporter proteins, detected the resulting Lewis antigens on N- and O-linked glycans using western blotting and Le-specific antibodies. beta3Gal-T1, -T2, and -T5 could synthesize type 1 chains on N-linked glycans, but only beta3Gal-T5 worked on O-linked glycans. The latter enzyme could use both core 2 and core 3 precursor structures. Furthermore, the specificity of FUT5 and FUT3 in Le(a) and Le(b) synthesis was different, with FUT5 fucosylating H type 1 only on core 2, but FUT3 fucosylating H type 1 much more efficient on core 3 than on core 2. Finally, FUT1 and FUT2 were both found to direct alpha2-fucosylation on type 1 chains on both N- and O-linked structures. This knowledge enables us to engineer recombinant glycoproteins with glycan- and core chain-specific Lewis antigen substitution. Such tools will be important for investigations on the fine carbohydrate specificity of Le(b)-binding lectins, such as Helicobacter pylori adhesins and DC-SIGN, and may also prove useful as therapeutics.  相似文献   

5.
Porcine aortic endothelial cells (PAECs) produce glycoproteins with important biological functions, such as the control of cell adhesion, blood clotting, blood pressure, the immune system, and apoptosis. Cell surface glycoproteins play important roles in these biological activities. To understand the control of cell surface glycosylation, we elucidated biosynthetic pathways leading to N- and O-glycans in PAECs. Based on the enzyme activities, PAECs should be rich in complex biantennary N-glycans. In addition, the enzymes synthesizing complex O-glycans with core 1 and 2 structures are present in PAECs. The first enzyme of the O-glycosylation pathway, polypeptide GalNAc-transferase, was particularly active. Its specificity toward synthetic peptide substrates was found to be similar to that of purified bovine colostrum enzyme T1. A significant fraction of PAECs treated with tumour necrosis factor alpha or human serum detached from the culture plate, and most of these cells were apoptotic. The apoptotic cell population exhibited decreased core 2 beta 6-GlcNAc-transferase activity. In contrast, the activities of core 1 beta 3-Gal-transferase, which synthesizes O-glycan core 1, and of alpha 3-sialyltransferase (O), which sialylates core 1, were increased in apoptotic PAECs. Thus, apoptotic PAECs are predicted to have fewer complex O-glycans and a higher proportion of short, sialylated core 1 chains.  相似文献   

6.
7.
The N- and O-glycans of recombinant amyloid precursor protein (APP), purified from Chinese hamster ovary cells transfected with the human 695-amino acid form of APP, were separately released by hydrazinolysis under different conditions. The reducing ends of the released N- and O-glycans were reduced with NaB3H4 and derivatized with 2-aminobenzamide (2AB), respectively. After acidic N-glycans were obtained by anion-exchange column chromatography, these were converted to neutral oligosaccharides by sialidase digestion, demonstrating that their acidic nature was entirely due to sialylation. The sialidase-treated N-glycans were then fractionated by lectin column chromatography and their structures were determined by linkage-specific sequential exoglycosidase digestion. These results demonstrated that recombinant APP has bi- and triantennary complex type N-glycans with fucosylated and nonfucosylated trimannosyl cores. In a similar fashion, the 2AB-labeled O-glycans derived from APP were determined to be mono- and disialylated core type 1 structures. Taken together, these results indicate that recombinant APP has sialylated bi- and triantennary N-glycans with fucosylated and nonfucosylated cores and sialylated O-glycans with core type 1 structures.  相似文献   

8.
Poly-N-acetyllactosamine extension has been found in O-glycans in addition to N-glycans and glycosphingolipids. Attempts were made in HL-60 and K562 cells to determine the amount of poly-N-acetyllactosaminyl O-glycans in the major sialoglycoprotein, leukosialin. Leukosialin was immunoprecipitated from [3H]glucosamine-labeled HL-60 and K562 cells. Glycopeptides were prepared by Pronase digestion, and O-glycan-containing glycopeptides were isolated by affinity chromatography using Jacalin-agarose. The glycopeptides bound to Jacalin-agarose and those unbound were treated with alkaline borohydride, and the released O-glycans were fractionated by Bio-Gel P-4 filtration. Sequential glycosidase digestion of the O-glycans, with or without pretreatment by fucosidase or neuraminidase, revealed the following conclusions. 1) Leukosialin from HL-60 cells contains about 1-2 poly-N-acetyllactosaminyl O-glycan chains/molecule. 2) About 50% of these poly-N-acetyllactosaminyl O-glycans contain sialyl Le(x) termini, NeuNAc alpha 2-->3Gal beta 1-->4 (Fuc alpha 1-->3)GlcNAc beta 1-->R. The amount of sialyl Le(x) structure in leukosialin is roughly equivalent to that on cell surfaces of HL-60 cells. 3) Leukosialin from K562 cells, on the other hand, contains no detectable amount of poly-N-acetyllactosaminyl O-glycans. 4) The presence of poly-N-acetyllactosamine in O-glycans is dependent on the core 2 beta 1,6-N-acetylglucosaminyl transferase. 5) Jacalin-agarose binds to sialylated small oligosaccharides such as NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->6) GalNAc but not the hexasaccharide NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->6) GalNAc. These results indicate that the formation of polylactosaminyl O-glycans and sialyl Le(x) structure in O-glycans is dependent on the core 2 formation.  相似文献   

9.
The core 1 beta1-3-galactosyltransferase (T-synthase) transfers Gal from UDP-Gal to GalNAcalpha1-Ser/Thr (Tn antigen) to form the core 1 O-glycan Galbeta1-3GalNAcalpha1-Ser/Thr (T antigen). The T antigen is a precursor for extended and branched O-glycans of largely unknown function. We found that wild-type mice expressed the NeuAcalpha2-3Galbeta1-3GalNAcalpha1-Ser/Thr primarily in endothelial, hematopoietic, and epithelial cells during development. Gene-targeted mice lacking T-synthase instead expressed the nonsialylated Tn antigen in these cells and developed brain hemorrhage that was uniformly fatal by embryonic day 14. T-synthase-deficient brains formed a chaotic microvascular network with distorted capillary lumens and defective association of endothelial cells with pericytes and extracellular matrix. These data reveal an unexpected requirement for core 1-derived O-glycans during angiogenesis.  相似文献   

10.
Leukocyte trafficking involves specific recognition between P-selectin and L-selectin and PSGL-1 containing core 2-based O-glycans expressing sialyl Lewis x (SLe(x)) antigen. However, the structural identity of the glycan component(s) displayed by murine neutrophil PSGL-1 that contributes to its P-selectin counter-receptor activity has been uncertain, since these cells express little if any SLe(x) antigen, and because there have been no direct studies to examine murine PSGL-1 glycosylation. To address this uncertainty, we studied PSGL-1 glycosylation in the murine cell line WEHI-3 using metabolic-radiolabeling with (3)H-monosaccharide precursors to detect low-abundance O-glycan structures. We report that PSGL-1 from WEHI-3 cells expresses a di-sialylated core 2 O-glycan containing the SLe(x) antigen. This fucosylated O-glycan is scarce on PSGL-1 and essentially undetectable in total leukocyte glycoproteins from WEHI-3 cells. These results demonstrate that WEHI-3 cells selectively fucosylate PSGL-1 to generate functionally important core 2-based O-glycans containing the SLe(x) antigen.  相似文献   

11.
As described for a long time, carcinoma-derived Caco-2 cells form a polarized epithelium in culture, whereas HT29-D4 cells are nonpolarized and undifferentiated but can form a polarized monolayer when cultured in a galactose-supplemented medium. Using NF-kappaB translocation and IL-8 and ICAM-1 gene activation as an index, we have studied the relationship between the differentiation state and the cell response to cytokines. We found that differentiated Caco-2 and HT29-D4 cells were responsive to both cytokines TNFalpha- and IL-1beta-mediated activation of NF-kappaB but that undifferentiated HT29-D4 cells were unresponsive to IL-1beta. However, the expression of endogenous ICAM-1 and IL-8 genes was upregulated by these cytokines in either cell lines differentiated or not. Upregulation of ICAM-1 gene occurred when IL-1beta or TNFalpha was added to the basal, but not apical surface of the differentiated epithelia. Finally, it appeared that in polarized HT29-D4 cells, the IL-1beta-induced translocation of NF-kappaB was connected to PKCdelta translocation.  相似文献   

12.
We have previously described the construction of a P-selectin glycoprotein ligand-1-mouse immunoglobulin Fc fusion protein, which when transiently coexpressed with the porcine alpha1,3 galactosyltransferase in COS cells becomes a very efficient adsorber of xenoreactive, anti-pig antibodies. To relate the adsorption capacity with the glycan expression of individual fusion proteins produced in different cell lines, stable CHO-K1, COS, and 293T cells producing this fusion protein have been engineered. On alpha1,3 galactosyltransferase coexpression, high-affinity adsorbers were produced by both COS and 293T cells, whereas an adsorber of lower affinity was derived from CHO-K1 cells. Stable coexpression of a core 2 beta1,6 N-acetylglucosaminyltransferase in CHO-K1 cells led to increased alpha-Gal epitope density and improved anti-pig antibody adsorption efficacy. ESI-MS/MS of O-glycans released from PSGL-1/mIgG(2b) produced in an alpha1,3 galactosyl- and core 2 beta1,6 N-acetylglucosaminyltransferase expressing CHO-K1 cell clone revealed a number of structures with carbohydrate sequences consistent with terminal Gal-Gal. In contrast, no O-glycan structures with terminal Gal-Gal were identified on the fusion protein when expressed alone or in combination with the alpha1,3 galactosyltransferase in CHO-K1 cells. In conclusion, the density of alpha-Gal epitopes on PSGL-1/mIgG(2b) was dependent on the expression of O-linked glycans with core 2 structures and lactosamine extensions. The structural complexity of the terminal Gal-Gal expressing O-glycans with both neutral as well as sialic acid-containing structures is likely to contribute to the high adsorption efficacy.  相似文献   

13.
Retinoic acid induced differentiation of TERA-2-derived human embryonal carcinoma cells is accompanied by a dramatic reduction of extended globo-series glycolipids, including galactosyl globoside, sialylgalactosyl globoside, and globo-A antigen (each recognized by specific MoAbs). Associated with these glycolipid changes, the activities of two key enzymes, alpha 1----4 galactosyltransferase (for synthesis of globotriaosyl core structure) and beta 1----3 galactosyltransferase (for synthesis of galactosyl globoside), were found to be reduced 3- to 4-fold. The latter enzyme plays a key role in the synthesis of extended globo-series structures, and its characterization has not been reported previously. Therefore, its catalytic activity was studied in detail, including substrate specificity, detergent and phospholipid effects, pH and cation requirements, and apparent Km. During retinoic acid induced differentiation, a series of Lex glycolipid antigens (recognized by anti-SSEA-1 antibody) and their core structures (lacto-series type 2 chains) increase dramatically. In parallel with these changes in glycolipid expression, the activities of two key enzymes, beta 1----3 N-acetylglucosaminyltransferase (for extension of lacto-series type 2 chain) and alpha 1----3 fucosyltransferase (for synthesis of Lex structure), were found to increase by 4- and 2-fold, respectively. Similarly, an increase in the expression of several gangliosides (e.g., GD3 and GT3) during retinoic acid induced differentiation was mirrored by a 4-fold increase in the activity of alpha 2----3 sialyltransferase (for synthesis of ganglio core structure, GM3). The results suggest a coordinate regulation of key glycosyltransferases involved in core structure assembly and terminal chain modification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Carbohydrate chains of cancer glycoprotein antigens contain major outer changes dictated by tissue-specific regulation of glycosyltransferase genes, the availability of sugar nucleotides, and competition between enzymes for acceptor intermediates during glycan elongation. However, it is evident from recent studies with recombinant mucin probes that the final glycosylation profiles of mucin glycoproteins are mainly determined by the cellular repertoire of glycosyltransferases. Hence, we examined various cancer cell lines for the levels of fucosyl-, beta-galactosyl, beta-N-acetylgalactosaminyl-, sialyl-, and sulfotransferase activities that generate the outer ends of the oligosaccharide chains. We have identified glycosyltransferases activities at the levels that would give rise to O-glycan chains as reported by others in breast cancer cell lines, T47D, ZR75-1, MCF-7, and MDA-MB-231. Most breast cancer cells express Gal-3-O-sulfotransferase specific for T-hapten Gal beta1-->3GalNAc alpha-, whereas the enzyme from colon cancer cells exhibits a vast preference for the Gal beta1,4GlcNAc terminal unit in O-glycans. We also studied ovarian cancer cells SW626 and PA-1 and hepatic cancer cells HepG2. Our studies show that alpha1,2-L-fucosyl-T, alpha(2,3) sialyl-T, and 3-O-Sulfo-T capable of acting on the mucin core 2 tetrasaccharide, Gal beta1,4GlcNAc beta1,6(Gal beta1,3)GalNAc alpha-, can also act on the Globo H antigen backbone, Gal beta1,3GalNAc beta1,3Gal alpha-, suggesting the existence of unique carbohydrate moieties in certain cancer-associated glycolipids. Briefly, our study indicates the following: (i) 3'-Sulfo-T-hapten has an apparent relationship to the tumorigenic potential of breast cancer cells; (ii) the 3'-sulfo Lewis(x), the 3-O-sulfo-Globo unit, and the 3-fucosylchitobiose core could be uniquely associated with colon cancer cells; (iii) synthesis of a polylactosamine chain and T-hapten are favorable in ovarian cancer cells due to negligible sialyltransferase activities; and (iv) a 6'-sialyl LacNAc unit and 3'-sialyl T-hapten appear to be prevalent structures in hepatic cancer cell glycans. Thus, it is apparent that different cancer cells are expressing unique glycan epitopes, which could be novel targets for cancer diagnosis and treatment.  相似文献   

15.
16.
H H Huang  P L Tsai  K H Khoo 《Glycobiology》2001,11(5):395-406
The glycobiology of Schistosoma mansoni is dominated by developmentally regulated expression of various fucosylated structures, most notably the Lewis X epitope and a multifucosylated sequence, Fuc alpha1-->2Fuc alpha1-->, in its various forms. For the infective cercarial stage, Lewis X has been structurally identified on glycosphingolipids and N-glycans of total glycoprotein extracts, and a population of multifucosylated glycoproteins were found to carry a unique terminal sequence, +/-Fuc alpha1-->2Fuc alpha1-->[3GalNAc beta1-->4(Fuc alpha1-->2Fuc alpha1--> 2Fuc alpha1-->3) GlcNAc beta1-->3Gal alpha1-->](n), on their O-glycans. Using a mass spectrometry approach coupled with chromatographic separation, sequential exoglycosidase digestion, periodate oxidation, and other chemical derivatization, we demonstrate that Lewis X could also be carried on the cercarial O-glycans, but the two distinctive sets of fucosylated epitopes were conjugated to two different core structures. Lewis X, lacNAc, or single GlcNAc was found to attach directly to the -->3Gal beta1-->3GalNAc core and indirectly via another beta-Gal residue branching off from C6 of the reducing end GalNAc to give a biantennary-like structure. The -->3(+/-Gal beta1-->6)Gal beta1-->3(-->3Gal beta1-->6)GalNAc core thus characterized represents a novel core type for O-glycans. In contrast, the previously characterized multifucosylated terminal sequences were carried on conventional type 1 and 2 cores. The smallest structures of the reductively released O-glycans were defined as GalNAc beta1-->4GlcNAc beta1-->3Gal beta1-->3GalNAcitol with a total of two to four fucoses attached to the terminal lacdiNAc. alpha-Galactosylation of the nonreducing terminal beta-GalNAc instead of fucose capping leads to further elongation with another lacdiNAc unit that could also extend directly from C6 of the reducing end GalNAc and similarly elongated or terminated.  相似文献   

17.
Alterations in glycosylation play an important role during intestinal cell differentiation. Here, we compared expression of mucin-type O-glycan synthases from proliferating and differentiated HT-29 and Caco-2 cells. Mucin-type O-glycan structures were analyzed at both stages by mass spectrometry. Core2 β1,6-N-acetylglucosaminyltransferase-2 (C2GnT-2) was markedly increased in differentiated HT-29 and Caco-2 cells, but the core3 structure was hardly detectable. To determine whether such differential expression of mucin-type O-glycan structures has physiological significance in intestinal cell differentiation, expression of sucrase isomaltase (SI) and dipeptidyl-peptidase IV (DPP-IV), two well known intestinal differentiation markers, was examined. Interestingly, the fully glycosylated mature form of SI was decreased in C2GnT-2 knock-out mice but not in core2 N-acetylglucosaminyltransferase-3 (C2GnT-3) nulls. In addition, expression of SI and DPP-IV was dramatically reduced in C2GnT-1–3 triple knock-out mice. These patterns were confirmed by RNAi analysis; C2GnT-2 knockdown significantly reduced cell surface expression of SI and DPP-IV in Caco-2 cells. Similarly, overexpression of the core3 structure in HT-29 cells attenuated cell surface expression of both enzymes. These findings indicate that core3 O-glycan structure regulates cell surface expression of SI and DPP-IV and that core2 O-glycan is presumably an essential mucin-type O-glycan structure found in both molecules in vivo. Finally, goblet cells in the upper part of the crypt showed impaired maturation in the core2 O-glycan-deficient mice. These studies are the first to clearly identify functional mucin-type O-glycan structures modulating cell surface expression of SI and DPP-IV during the intestinal cell differentiation.  相似文献   

18.
Extracts of BHK (baby hamster kidney) cells catalyse incorporation of galactose from UDP-galactose into asialo bovine submaxillary gland mucin. The galactosylated oligosaccharide products were released by alkaline-borohydride treatment and purified by Bio-Gel P2 chromatography and high-performance liquid chromatography. The structures of the oligosaccharide sequences synthesised have been identified unequivocally by high resolution 500 MHz 1H-NMR as galactosyl-(beta 1----3) N-acetylgalactosamine and galactosyl (beta 1----4) N-acetylglucosaminyl (beta 1----3)-N-acetylgalactosamine. Characterization of the latter sequence shows the presence in bovine mucin of the type III core sequence N-acetylglucosamine-(beta 1----3) N-acetylgalactosamine. Fractionation of BHK cell extracts on alpha-lactalbumin-Agarose has shown that the (beta 1----4)-galactosyl transferase responsible for synthesis of the trisaccharide binds to alpha-lactalbumin, a modulator of the (beta 1----4)-galactosyl transferase involved in N-glycan assembly. The evidence that the same transferase activity may be responsible for galactose transfer to both O-glycans and N-glycans is discussed.  相似文献   

19.
Wu AM  Khoo KH  Yu SY  Yang Z  Kannagi R  Watkins WM 《Proteomics》2007,7(20):3699-3717
Expression of sialyl Lewis x (sLe(x)) and sialyl Lewis a (sLe(a)) on cell-surface glycoproteins endows cells with the ability to adhere to E-, P-, and L-selectins present on endothelia, platelets, or leukocytes. Special arrangements of these glycotopes in cancers are thought to play a key role in metastasis. Previous studies have mostly described membrane-bound sLe(x) and sLe(a) activities. In this report, the major O-glycans of the secreted human ovarian cyst sialoglycoproteins from a Le(a+) nonsecretor individual (human ovarian cyst sample 350) were characterized by MS/MS analyses and immuno-/lectin-chemical assays. The results showed that HOC 350 carries a large number of epitopes for sLe(x), sLe(a), and Le(a) reactive antibodies. Advanced MS/MS sequencing coupled with mild periodate oxidation and exoglycosidase digestions further revealed that the O-glycans from HOC 350 are mostly of core 1 and 2 structures, extended and branched on the 3-arm with both type I and type II chains, complete with variable degrees of terminal sialylation and/or fucosylation to yield the sLe(x) or sLe(a) epitopes. Thus, the underlying core and peripheral backbone structures are similar to that of a previously proposed composite structural model for nonsialylated human ovarian cysts O-glycans, but with some notable distinguishing structural features in addition to sialylation.  相似文献   

20.
Recently, we provided evidence that the glycosylation of hamster oviductin, a member of the mucin family of glycoproteins, is regulated during the estrous cycle. In order to further elucidate the glycosylation process of oviductal glycoproteins, we identified biosynthetic pathways involved in the assembly of mucin-type O-linked oligosaccharide (O-glycan) chains in the hamster oviduct. Our results demonstrated that the hamster oviduct has high activities of glycosyltransferases that synthesize O-glycans with core 1, 2, 3 and 4 structures as well as elongated structures. Oviduct therefore represents a typical mucin-secreting tissue. Our results also showed that specific glycosyltransferase activities are regulated during the estrous cycle. Mucin-type core 2 beta6-GlcNAc-transferase (C2GnT2) is responsible for synthesizing core 2 and core 4 structures in the oviduct. Specific assays for C2GnT2 revealed a cyclical pattern throughout the estrous cycle with high activity at the stages of proestrus and estrus and low activity at diestrus 1. Using semiquantitative RT-PCR, the mRNA levels for C2GnT2 in the estrous cycle stages could be correlated with the enzyme activities. An increase in glycosyltransferase activity in the hamster oviduct at the time of ovulation suggests that glycosylation of oviductal glycoproteins may be necessary for these proteins to exert their functions during the process of fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号