首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously prepared the oligonucleotides (ODNs) conjugated to an anthraquinone (AQ) group via one carbon linker at the 2'-sugar position. When these modified ODNs bind to cDNA sequences, the AQ moiety can be intercalated into the predetermined base-pair pocket of a duplex DNA. In this paper, 2'-AQ-modified ODNs are shown to be an excellent electrochemical probe to clarify the effect of a mismatch base on the charge transfer (CT) though DNA. Two types of DNA-modified electrodes were constructed by assembly of disulfide-terminated 2'-AQ-ODN duplexes onto gold electrodes. One type of electrodes (system I) contains fully matched base pairs or a single-base mismatch in duplex DNA between the redox center and the electrode. The other (system II) consists of the mismatch but at the outside of the redox center. The modified electrodes were analyzed by cyclic voltammetry to estimate the CT rate through duplex DNA. In system I, the CT rate was found to be approximately 50 s (-1) for the fully matched AQ-ODN duplexes, while the CT rates of the mismatched DNA were considerably slower than that of the fully matched DNA. In system II, the AQ-ODN duplexes showed almost similar CT rates ( approximately 50 s (-1)) for the fully matched DNA and for the mismatched DNAs. The detection of a single-base mismatch was then performed by chronocoulometry (CC). All the DNA duplexes containing a mismatch base in system I gave the reduced electrochemical responses when compared to the fully matched DNA. In particular, the mismatched DNAs including G--A mismatch can be differentiated from fully matched DNA without using any electrochemical catalyst. We further tested the usefulness of single-stranded (ss) AQ-ODN immobilized on a gold electrode in the electrochemical detection of a single-base mismatch through hybridization assay. The ss-AQ-ODN electrodes were immersed in target-containing buffer at room temperature, and the CC measurements were carried out to see the changes in the integrated charge. Within 60 min, the mismatched DNA was clearly distinguishable by the CC differences from the fully matched target. Thus, the electrochemical hybridization assay provides an easy and convenient detection for DNA mutation that does not require any extra reagents, catalyst, target labeling, and washing steps.  相似文献   

2.
Metal-mediated base pairs formed by the interaction between metal ions and artificial bases in oligonucleotides have been developed for potential applications in nanotechnology. We recently found that a natural C:C mismatched base pair bound to an Ag(+) ion to generate a novel metal-mediated base pair in duplex DNA. Preparation of the novel C-Ag-C base pair involving natural bases is more convenient than that of metal-mediated base pairs involving artificial bases because time-consuming base synthesis is not required. Here, we examined the thermodynamic properties of the binding between the Ag(+) ion and each of single and double C:C mismatched base pair in duplex DNA by isothermal titration calorimetry. The Ag(+) ion specifically bound to the C:C mismatched base pair at a 1:1 molar ratio with 10(6) M(-1) binding constant, which was significantly larger than those for nonspecific metal ion-DNA interactions. The specific binding between the Ag(+) ion and the single C:C mismatched base pair was mainly driven by the positive dehydration entropy change and the negative binding enthalpy change. In the interaction between the Ag(+) ion and each of the consecutive and interrupted double C:C mismatched base pairs, stoichiometric binding at a 1:1 molar ratio was achieved in each step of the first and second Ag(+) binding. The binding affinity for the second Ag(+) binding was similar to that for the first Ag(+) binding. Stoichiometric binding without interference and negative cooperativity may be favorable for aligning multiple Ag(+) ions in duplex DNA for applications of the metal-mediated base pairs in nanotechnology.  相似文献   

3.
The fidelity of DNA synthesis by DNA polymerase is significantly increased by a mechanism of proofreading that is performed at the exonuclease active site separate from the polymerase active site. Thus, the transition of DNA between the two active sites is an important activity of DNA polymerase. Here, based on our proposed model, the rates of DNA transition between the two active sites are theoretically studied. With the relevant parameters, which are determined from the available crystal structure and other experimental data, the calculated transfer rate of correctly base-paired DNA from the polymerase to exonuclease sites and the transfer rate after incorporation of a mismatched base are in good agreement with the available experimental data. The transfer rates in the presence of two and three mismatched bases are also consistent with the previous experimental data. In addition, the calculated transfer rate from the exonuclease to polymerase sites has a large value even with the high binding affinity of 3′-5′ ssDNA for the exonuclease site, which is also consistent with the available experimental value. Moreover, we also give some predictive results for the transfer rate of DNA containing only A:T base pairs and that of DNA containing only G:C base pairs.  相似文献   

4.
M W Van Dyke  P B Dervan 《Biochemistry》1983,22(10):2373-2377
The DNA binding sites for the antitumor, antiviral, antibiotics chromomycin, mithramycin, and olivomycin on 70 base pairs of heterogeneous DNA have been determined by using the (methidiumpropyl-EDTA)iron(II) [MPE x Fe(II)] DNA cleavage inhibition pattern technique. Two DNA restriction fragments 117 and 168 base pairs in length containing the lactose operon promoter-operator region were prepared with complementary strands labeled with 32P at the 3' end. MPE x Fe(II) was allowed to partially cleave the restriction fragment preequilibrated with either chromomycin, mithramycin, or olivomycin in the presence of Mg2+. The preferred binding sites for chromomycin, mithramycin, and olivomycin in the presence of Mg2+ appear to be a minimum of 3 base pairs in size containing at least 2 contiguous dG x dC base pairs. Many binding sites are similar for the three antibiotics; chromomycin and olivomycin binding sites are nearly identical. The number of sites protected from MPE x Fe(II) cleavage increases as the concentration of drug is raised. For chromomycin/Mg2+, the preferred sites on the 70 base pairs of DNA examined are (in decreasing affinity) 3'-GGG, CGA greater than CCG, GCC greater than CGA, CCT greater than CTG-5'. The sequence 3'-CGA-5' has different affinities, indicating the importance of either flanking sequences or a nearly bound drug.  相似文献   

5.
The origin binding protein (OBP) of herpes simplex virus (HSV), which is essential for viral DNA replication, binds specifically to sequences within the viral replication origin(s) (for a review, see Challberg, M.D., and Kelly, T. J. (1989) Annu. Rev. Biochem. 58, 671-717). Using either a COOH-terminal OBP protein A fusion or the full-length protein, each expressed in Escherichia coli, we investigated the interaction of OBP with one HSV origin, OriS. Binding of OBP to a set of binding site variant sequences demonstrates that the 10-base pair sequence, 5' CGTTCGCACT 3', comprises the OBP-binding site. This sequence must be presented in the context of at least 15 total base pairs for high affinity binding, Ka = approximately 0.3 nM. Single base pair mutations in the central CGC sequence lower the affinity by several orders of magnitude, whereas a substitution at any of the other seven positions reduces the affinity by 10-fold or less. OBP binds with high affinity to duplex DNA containing mismatched base pairs. This property is exploited to analyze OBP binding to DNA heteroduplexes containing singly substituted mutant and wild-type DNA strands. For positions 2, 3, 5, 6, 7, 8, and 9, substitutions are tolerated on one or the other DNA strand, indicating that base-mediated interactions are limited to one base of each pair. For both Boxes I and II, these interactions are localized to one face of the DNA helix, forming a recognition surface in the major groove. In OriS, the 31 base pairs which separate Boxes I and II orient the two interaction surfaces to the same side of the DNA.  相似文献   

6.
The dissociation kinetics of 19 base paired oligonucleotide-DNA duplex containing a various single mismatched base pair are studied on dried agarose gels. The kinetics of the dissociation are first order under our experimental conditions. The incorporation of a single mismatched base pair destabilizes the DNA duplexes to some extent, the amount depending on the nature of the mismatched base pair. G-T and G-A mismatches slightly destabilize a duplex, while A-A, T-T, C-T and C-A mismatches significantly destabilize it. The activation energy for the overall dissociation processes for these oligonucleotide-DNA duplexes containing 19 base pairs is 52 +/- 2 Kcal mol-1 as determined from the slope of Arrhenius plot.  相似文献   

7.
Temperature-Gradient Gel Electrophoresis (TGGE) was employed to determine the thermal stabilities of 28 DNA fragments, 373 bp long, with two adjacent mismatched base pairs, and eight DNAs with Watson-Crick base pairs at the same positions. Heteroduplex DNAs containing two adjacent mismatches were formed by melting and reannealing pairs of homologous 373 bp DNA fragments differing by two adjacent base pairs. Product DNAs were separated based on their thermal stability by parallel and perpendicular TGGE. The polyacrylamide gel contained 3.36 M urea and 19.2 % formamide to lower the DNA melting temperatures. The order of stability was determined in the sequence context d(CXYG).d(CY'X'G) where X.X' and Y.Y" represent the mismatched or Watson-Crick base pairs. The identity of the mismatched bases and their stacking interactions influence DNA stability. Mobility transition melting temperatures (T u) of the DNAs with adjacent mismatches were 1.0-3.6 degrees C (+/-0.2 degree C) lower than the homoduplex DNA with the d(CCAG).d(CTGG) sequence. Two adjacent G.A pairs, d(CGAG).d(CGAG), created a more stable DNA than DNAs with Watson-Crick A.T pairs at the same sites. The d(GA).d(GA) sequence is estimated to be 0.4 (+/-30%) kcal/mol more stable in free energy than d(AA).d(TT) base pairs. This result confirms the unusual stability of the d(GA).d(GA) sequence previously observed in DNA oligomers. All other DNAs with adjacent mismatched base pairs were less stable than Watson-Crick homoduplex DNAs. Their relative stabilities followed an order expected from previous results on single mismatches. Two homoduplex DNAs with identical nearest neighbor sequences but different next-nearest neighbor sequences had a small but reproducible difference in T u value. This result indicates that sequence dependent next neighbor stacking interactions influence DNA stability.  相似文献   

8.
The Klenow fragment of Escherichia coli DNA polymerase I catalyzes template-directed synthesis of DNA and uses a separate 3'-5' exonuclease activity to edit misincorporated bases. The polymerase and exonuclease activities are contained in separate structural domains. In this study, nine Klenow fragment derivatives containing mutations within the polymerase domain were examined for their interaction with model primer-template duplexes. The partitioning of the DNA primer terminus between the polymerase and 3'-5' exonuclease active sites of the mutant proteins was assessed by time-resolved fluorescence anisotropy, utilizing a dansyl fluorophore attached to the DNA. Mutation of N845 or R668 disrupted favorable interactions between the Klenow fragment and a duplex containing a matched terminal base pair but had little effect when the terminus was mismatched. Thus, N845 and R668 are required for recognition of correct terminal base pairs in the DNA substrate. Mutation of N675, R835, R836, or R841 resulted in tighter polymerase site binding of DNA, suggesting that the side chains of these residues induce strain in the DNA and/or protein backbone. A double mutant (N675A/R841A) showed an even greater polymerase site partitioning than was displayed by either single mutation, indicating that such strain is additive. In both groups of mutant proteins, the ability to discriminate between duplexes containing matched or mismatched base pairs was impaired. In contrast, mutation of K758 or Q849 had no effect on partitioning relative to wild type, regardless of DNA mismatch character. These results demonstrate that DNA mismatch recognition is dependent on specific amino acid residues within the polymerase domain and is not governed solely by thermodynamic differences between correct and mismatched base pairs. Moreover, this study suggests a mechanism whereby the Klenow fragment is able to recognize polymerase errors following a misincorporation event, leading to their eventual removal by the 3'-5' exonuclease activity.  相似文献   

9.
Wang Y  Lamarche BJ  Tsai MD 《Biochemistry》2007,46(17):4962-4976
In addition to linking nicked/fragmented DNA molecules back into a contiguous duplex, DNA ligases also have the capacity to influence the accuracy of DNA repair pathways via their tolerance/intolerance of nicks containing mismatched base pairs. Although human DNA ligase I (Okazaki fragment processing) and the human DNA ligase III/XRCC1 complex (general DNA repair) have been shown to be relatively intolerant of nicks containing mismatched base pairs, the human DNA ligase IV/XRCC4 complex has not been studied in this regard. Ligase IV/XRCC4 is the sole DNA ligase involved in the repair of double strand breaks (DSBs) via the non-homologous end joining (NHEJ) pathway. During the repair of DSBs generated by chemical/physical damage as well as the repair of the programmed DSB intermediates of V(D)J recombination, there are scenarios where, at least conceptually, a capacity for ligating nicks containing mismatched base pairs would appear to be advantageous. Herein we examine whether ligase IV/XRCC4 can contribute a mismatched nick ligation activity to NHEJ. Toward this end, we (i) describe an E. coli-based coexpression system that provides relatively high yields of the ligase IV/XRCC4 complex, (ii) describe a unique rate-limiting step, which has bearing on how the complex is assayed, (iii) specifically analyze how XRCC4 influences ligase IV catalysis and substrate specificity, and (iv) probe the mismatch tolerance/intolerance of DNA ligase IV/XRCC4 via quantitative in vitro kinetic analyses. Analogous to most other DNA ligases, ligase IV/XRCC4 is shown to be fairly intolerant of nicks containing mismatched base pairs. These results are discussed in light of the biological roles of NHEJ.  相似文献   

10.
The macrocyclic bis-naphthalene macrocycle (2,7-BisNP), belonging to the cyclobisintercalator family of DNA ligands, recognizes T-T mismatch sites in duplex DNA with high affinity and selectivity, as evidenced by thermal denaturation experiments and NMR titrations. The binding of this macrocycle to an 11-mer DNA oligonucleotide containing a T-T mismatch was studied using NMR spectroscopy and NMR-restrained molecular modeling. The ligand forms a single type of complex with the DNA, in which one of the naphthalene rings of the ligand occupies the place of one of the mismatched thymines, which is flipped out of the duplex. The second naphthalene unit of the ligand intercalates at the A-T base pair flanking the mismatch site, leading to encapsulation of its thymine residue via double stacking. The polyammonium linking chains of the macrocycle are located in the minor and the major grooves of the oligonucleotide and participate in the stabilization of the complex by formation of hydrogen bonds with the encapsulated thymine base and the mismatched thymine remaining inside the helix. The study highlights the uniqueness of this cyclobisintercalation binding mode and its importance for recognition of DNA lesion sites by small molecules.  相似文献   

11.
Despite major advances in characterizing purine(R)-purine(R), purine(R)-pyrimidine(Y) and pyrimidine(Y)-pyrimidine(Y) mismatches in DNA, there have not been any structural studies on a synthetic DNA duplex containing several different mispairs. Here, using NMR restrained molecular mechanics and dynamics simulations we have structurally characterized a 12 nucleotide long antiparallel DNA duplex with three different mispairs, namely A+-C, G-T and T-C. Our results show that the overall conformation of the antiparallel DNA duplex is B-DNA-like with slight structural distortions at or near the mispairs' sites. All these mispairs are properly stacked with their flanking base pairs. Each mispair is stabilized by two hydrogen bonds and the decreasing order of the hydrogen-bonding interactions is G-T>T-C>A+-C. G-T mispair has smaller configurational space while the structure is slightly bent at A+-C mispair's site. Overall, this study is the first ever structural characterization of a DNA duplex with three different mismatched base pairs and throws light upon the local conformations of the three mispairs present in the DNA duplex.  相似文献   

12.
We employed salt-dependent differential scanning calorimetric measurements to characterize the stability of six oligomeric DNA duplexes (5'-GCCGGAXTGCCGG-3'/5'-CCGGCAYTCCGGC-3') that contain in the central XY position the GC, AT, GG, CC, AA, or TT base pair. The heat-induced helix-to-coil transitions of all the duplexes are associated with positive changes in heat capacity, DeltaC(p), ranging from 0.43 to 0.53 kcal/mol. Positive values of DeltaC(p) result in strong temperature dependences of changes in enthalpy, DeltaH degrees, and entropy, DeltaS degrees , accompanying duplex melting and cause melting free energies, DeltaG degrees, to exhibit characteristically curved shapes. These observations suggest that DeltaC(p) needs to be carefully taken into account when the parameters of duplex stability are extrapolated to temperatures distant from the transition temperature, T(M). Comparison of the calorimetric and van't Hoff enthalpies revealed that none of the duplexes studied in this work exhibits two-state melting. Within the context of the central AXT/TYA triplet, the thermal and thermodynamic stabilities of the duplexes in question change in the following order: GC > AT > GG > AA approximately TT > CC. Our estimates revealed that the thermodynamic impact of the GG, AA, and TT mismatches is confined within the central triplet. In contrast, the thermodynamic impact of the CC mismatch propagates into the adjacent helix domains and may involve 7-9 bp. We discuss implications of our results for understanding the origins of initial recognition of mismatched DNA sites by enzymes of the DNA repair machinery.  相似文献   

13.
In the ternary substrate complex of DNA polymerase (pol) beta, the nascent base pair (templating and incoming nucleotides) is sandwiched between the duplex DNA terminus and polymerase. To probe molecular interactions in the dNTP-binding pocket, we analyzed the kinetic behavior of wild-type pol beta on modified DNA substrates that alter the structure of the DNA terminus and represent mutagenic intermediates. The DNA substrates were modified to 1) alter the sequence of the duplex terminus (matched and mismatched), 2) introduce abasic sites near the nascent base pair, and 3) insert extra bases in the primer or template strands to mimic frameshift intermediates. The results indicate that the nucleotide insertion efficiency (k(cat)/K(m), dGTP-dC) is highly dependent on the sequence identity of the matched (i.e. Watson-Crick base pair) DNA terminus (template/primer, G/C approximately A/T > T/A approximately C/G). Mismatches at the primer terminus strongly diminish correct nucleotide insertion efficiency but do not affect DNA binding affinity. Transition intermediates are generally extended more easily than transversions. Most mismatched primer termini decrease the rate of insertion and binding affinity of the incoming nucleotide. In contrast, the loss of catalytic efficiency with homopurine mismatches at the duplex DNA terminus is entirely due to the inability to insert the incoming nucleotide, since K(d)((dGTP)) is not affected. Abasic sites and extra nucleotides in and around the duplex terminus decrease catalytic efficiency and are more detrimental to the nascent base pair binding pocket when situated in the primer strand than the equivalent position in the template strand.  相似文献   

14.
Abstract It is well known, that local B→A transformation in DNA is involved in several biological processes. In vitro B?A transition is sequence-specific. The physical basis of this specificity is not known yet. Here we analyze the effect of intramolecular interactions on the structural behavior of the GG/CC and AA/TT steps. These steps exemplify sequence specific bias to the B- or A-form structure. Optimization of potential energy of the molecular systems composed of an octanucle-otide, neutralized by Na(+) and solvated with TIP3P water molecules in rectangular box with periodic boundary conditions gives the statistically representative sets of low energy structures for GG/CC and AA/TT steps in the middle of the diverse flanking sequences. Permissible 3D variations of GG/CC and AA/TT, and correlation of the relative motion of base pairs in these steps were analyzed. AA/TT step permits high variability for low energy conformers in the B-form DNA and small variability for low energy conformers in the A-form DNA. In contrast GG/CC step permits high variability for low energy conformers in the A-form DNA and small variability for low energy conformers in the B-form DNA. The relative motion of base pairs in GG/CC step is high correlated, while in AA/TT step this correlation is notably less. Atom-atom interactions inside-the-step always favors the B-form and their component - stacking interactions (atomatom interactions between nucleic bases) is crucial for the duplex stabilization. Formation of the A-form for both steps is a result of interactions with the flanking sequences and water-cation environment in the box. The average energy difference between conformations presenting B-form and A-form for the GG/CC step is high, while for the AA/TT step it is rather low. Thus, intramolecular interactions in GG/CC and AA/TT steps affect the possible conformational diversity ("conformational entropy") of the A- and B- type structures of DNA step. This determines the known bias of the A-form DNA depending on the enrichment of sequences with GG/CC. If structural tuning during the process of protein-DNA complex formation lead to the local B→A transformation of DNA, it is largely directed by high conformational diversity of GG/CC step in the A-form. In such a case the presence in the target site of both kinds of examined steps ensures the reversible character of ligand binding.  相似文献   

15.
Data obtained show that antiviral activities of bis-linked netropsin derivatives are targeted by specific complexes formed by helicase UL9 of herpes simplex virus type 1 with viral DNA replication origins, represented by two OriS sites and one OriL site. According to the results of footprinting studies, bis-netropsins get bound selectively to an A + T cluster which separates interaction sites I and II for helicase UL9 in OriS. Upon binding to DNA, bis-netropsins stabilize a structure of the A + T cluster and inhibit thermal fluctuation-induced opening of AT base pairs which is needed for local unwinding of DNA by helicase UL9. Kinetics of ATP-dependent DNA unwinding in the presence and absence of Pt-bis-netropsin are studied by measuring the efficiency of Forster resonance energy transfer (FRET) between the fluorescent probes attached covalently to 3′- and 5′-ends of the oligonucleotides in the minimal OriS duplex. Pt-bis-netropsin and related molecules inhibit unwinding of OriS duplex by helicase UL9. Pt-bis-netropsin is also able to reduce the rate of unwinding of the AT-rich hairpin formed by the upper strand in the minimal OriS duplex. The antiviral activities and toxicity of bis-linked netropsin derivatives are studied in cell cultured experiments and experiments with animals infected by herpes virus.  相似文献   

16.
Data obtained show that antiviral activities of bis-linked netropsin derivatives are targeted by specific complexes formed by helicase UL9 of herpes simplex virus type 1 with viral DNA replication origins, represented by two OriS sites and one OriL site. According to the results of footprinting studies bis-netropsins get bound selectively to an A+T-cluster which separates interaction sites I and II for helicase UL9 in OriS. Upon binding to DNA bis-netropsins stabilize a structure of the A+T-cluster and inhibit thermal fluctuation-induced opening of AT- base pairs which is needed for local unwinding of DNA by helicase UL9. Kinetics of ATP-dependent DNA unwinding in the presence and absence of Pt-bis-netropsin are studied by measuring the efficiency of Forster resonance energy transfer (FRET) between the fluorescent probes attached covalently to 3?- and 5?-ends of the oligonucleotides in the minimal OriS duplex. Pt-bis-netropsin and related molecules inhibit unwinding of OriS duplex by helicase UL9. Pt-bis-netropsin is also able to reduce the rate of unwinding of the AT- rich hairpin formed by the upper strand in the minimal OriS duplex. The antiviral activities and toxicity of bis-linked netropsin derivatives are studied in cell cultured experiments and experiments with animals infected by herpes virus.  相似文献   

17.
Vallur AC  Maher RL  Bloom LB 《DNA Repair》2005,4(10):1088-1098
Alkyladenine DNA glycosylase (AAG) excises a structurally diverse group of damaged purines including hypoxanthine, 1,N(6)-ethenoadenine, 3-methyladenine, and 7-methylguanine from DNA to initiate base excision repair at these sites. Excision occurs in an enzyme.DNA complex in which the damaged base is flipped out of the DNA helix into the enzyme active site. To determine whether local DNA sequence could affect the overall efficiency of excision of hypoxanthine from DNA, single-turnover kinetics of excision, AAG.DNA binding, and melting temperatures were measured for DNA substrates that differed in the base pairs immediately 5' and 3' to hypoxanthine. When Hx was flanked by a 5'G and a 3'C, the efficiency of excision was reduced dramatically in comparison to a duplex containing a 5'T and 3'A. The reduction in excision efficiency was largely due to a decrease in binding affinity of AAG for DNA. The overall effect of GC versus TA nearest neighbors was to magnify the difference in the efficiencies of excision of Hx from pairs with thymine and difluorotoluene from a factor of 5 to a factor of about 100. In general, DNA substrates that were more stable as indicated by higher melting temperatures gave reduced efficiencies of excision of Hx. These results are discussed in terms of a model in which the relative stabilities of base-flipped versus unflipped complexes contribute the overall efficiency of excision and substrate specificity of AAG.  相似文献   

18.
Vaccinia virus DNA topoisomerase I forms a 3'-phosphoryl intermediate with duplex DNAs containing the conserved binding/cleavage motif 5'CCCTT decreases. Covalently bound enzyme is capable of transferring the incised DNA strand to a heterologous DNA acceptor containing a 5'OH terminus. Both intramolecular and intermolecular religation reactions are catalyzed. Intramolecular strand transfer occurs to the noncleaved strand of the DNA duplex and results in formation of a hairpin loop. Intermolecular religation to an exogenous DNA strand is favored over hairpin formation and requires the potential for base pairing between the acceptor and the noncleaved strand of the donor complex. As few as 4 potential base pairs are sufficient to support intermolecular transfer. These results in vitro are consistent with the proposal that vaccinia topoisomerase can catalyze sequence-specific strand transfer during genetic recombination in vivo (Shuman, S. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 10104-10108.).  相似文献   

19.
Metal ion-nucleic acid interactions have attracted considerable interest for their involvement in structure formation and catalytic activity of nucleic acids. Although interactions between metal ion and mismatched base pair duplex are important to understand mechanism of gene mutations related to heavy metal ions, they have not been well-characterized. We recently found that the Ag+ ion stabilized a C:C mismatched base pair duplex DNA. A C–Ag–C metal-mediated base pair was supposed to be formed by the binding between the Ag+ ion and the C:C mismatched base pair to stabilize the duplex. Here, we examined specificity, thermodynamics and structure of possible C–Ag–C metal-mediated base pair. UV melting indicated that only the duplex with the C:C mismatched base pair, and not of the duplexes with the perfectly matched and other mismatched base pairs, was specifically stabilized on adding the Ag+ ion. Isothermal titration calorimetry demonstrated that the Ag+ ion specifically bound with the C:C base pair at 1:1 molar ratio with a binding constant of 106 M−1, which was significantly larger than those for nonspecific metal ion-DNA interactions. Electrospray ionization mass spectrometry also supported the specific 1:1 binding between the Ag+ ion and the C:C base pair. Circular dichroism spectroscopy and NMR revealed that the Ag+ ion may bind with the N3 positions of the C:C base pair without distorting the higher-order structure of the duplex. We conclude that the specific formation of C–Ag–C base pair with large binding affinity would provide a binding mode of metal ion-DNA interactions, similar to that of the previously reported T-Hg-T base pair. The C–Ag–C base pair may be useful not only for understanding of molecular mechanism of gene mutations related to heavy metal ions but also for wide variety of potential applications of metal-mediated base pairs in various fields, such as material, life and environmental sciences.  相似文献   

20.
The antitumor agent cis-diamminedichloroplatinum(II) (cisplatin) introduces cytotoxic DNA damage predominantly in the form of intrastrand crosslinks between adjacent purines. Binding assays using a series of duplex oligonucleotides containing a single 1,2 diguanyl intrastrand crosslink indicate that human cell extracts contain factors that preferentially recognise this type of damage when the complementary strand contains T opposite the 3', and C opposite the 5'guanine in the crosslink. Under the conditions of the band-shift assay used, little binding is observed if the positions of the T and C are reversed in the complementary strand. Similarly, duplexes containing CC or TT opposite the crosslink are recognised relatively poorly. The binding activity is absent from extracts of the colorectal carcinoma cell lines LoVo and DLD-1 in which the hMutSalpha mismatch recognition complex is inactivated by mutation. Extensively purified human hMutSalpha exhibits the same substrate preference and binds to the mismatched platinated DNA at least as well as to an identical unplatinated duplex containing a single G.T mismatch. It is likely, therefore, that human mismatch repair may be triggered by 1,2 diguanyl intrastrand crosslinks that have undergone replicative bypass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号