首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The purpose of this study was to determine if the renal circulation of normal and cirrhotic dogs behave similarly in response to an acute endotoxin infusion. Endotoxin was administered as a slow continuous infusion (13-26 micrograms/min) to a total of 20 normal dogs through the femoral vein, portal vein, or into the left renal artery. In each case, there was an initial increment in renal blood flow, of the order of 46%, while arterial blood pressure was actually declining. After 8-20 min, blood flow fell as perfusion pressure declined further. The initial increment in renal perfusion was not due to a hyperthermic response following the endotoxin. When similar doses were given to five dogs with chronic biliary cirrhosis and ascites, the biphasic response in renal perfusion was not observed, rather blood flow declined as perfusion pressure declined. When normal dogs were infused with bilirubin, bile salts, noradrenaline, and angiotensin in pressor doses, the subsequent infusion of endotoxin still produced the usual biphasic response in renal perfusion. Chronic elevation of portal pressure (but not acute elevation), volume contraction by diuresis or hemorrhage, and the infusion of bile intravenously, all abolished the biphasic response in renal perfusion and reproduced in normal dogs the response to endotoxin observed in cirrhotic dogs. Investigation of the factors causing the initial decrease in intrarenal vascular resistance in normal dogs following the endotoxin infusion implicated a role for histamine, kinins, and prostaglandins. We conclude there is a fundamental difference in the response of the renal circulation of normal and cirrhotic dogs to an endotoxin infusion, which may depend on failure of this latter group to release one or more humoral agents. This difference may be due to elevated portal pressure, a decreased effective arterial blood volume, or the products of bile having access to the circulation in cirrhotic dogs.  相似文献   

2.
In the present study, we tested the hemodynamic and renal response of 15 sham-operated dogs and 15 dogs with subacute (5-9 days) biliary obstruction to either acute or more chronic hemorrhage. All studies were conducted on sedated but unanaesthetized animals. Both groups were comparable before blood withdrawal with respect to central hemodynamics and renal perfusion. Serum bilirubin was 0.70 +/- 0.09 mg/dL for control dogs and 8.25 +/- 0.14 for experimental dogs (P less than 0.05). In the acute protocol, nine control and seven jaundiced dogs were bled over a period of 30-40 min to lower blood pressure by 19.1 and 19.5%, respectively. Blood volumes required to achieve this drop were 21.3 and 20.05 mL/kg, respectively (P greater than 0.05). Cardiac output declined by an equivalent value for each group and glomerular filtration rate and clearance of p-aminohippurate remained unchanged from control values. In six control and eight experimental dogs, 500 mL of blood was withdrawn over 5 days. Although blood pressure and cardiac output declined for each group by an equivalent amount, renal perfusion remained unchanged for each group from control values. We conclude that acute or chronic hemorrhage of modest degree does not predispose to acute renal insufficiency in dogs with subacute biliary obstruction.  相似文献   

3.
Glucagon in small intravenous (i.v.) doses markedly increases glomerular filtration rate (GFR) in normal anesthetized dogs. In this study, the effects of glucagon 5 mug/min (i.v.) on renal hemodynamics was tested in four canine models of acute pre-renal failure (hemorrhage, barbiturate overdose; renal arterial clamping and renal arterial infusions of noradrenaline) and in a model of unilateral acute tubular necrosis at 4 h and 6-7 days following completion of the ischemic insult. Following hemorrhage and barbiturate excess, with arterial blood pressure maintained at 65-70 mm Hg, whole-kidney GFR and clearance rate of p-aminohippurate decreased by 50-70%. During this reduction of perfusion pressure, the subsequent infusion of glucagon increased GFR by 90-130%. In models where arterial pressure was normal during the period of ischemia (clamping and noradrenaline infusion), not only did glucagon significantly increase renal perfusion, but the ischemic kidney proved to be far more sensitive to the hemodynamic effects of glucagon (delta GFR - 120-160%) than the contralateral control (deltaGFR = 30-40%). In three dogs completely anuric following renal arterial clamping, glucagon was able to improve blood flow and restart urine formation. Glucagon, but not dopamine, was able to simulate the beneficial effects of hypertonic mannitol on renal function in dogs with hemorrhagic hypotension. Glucagon was without effect in established acute tubular necrosis. This study, therefore, indicates that, during renal ischemia, glucagon may be quite effective in preserving urine output and perfusion of the kidneys.  相似文献   

4.
Insufficient cardiac preload and impaired contractility are frequent in early sepsis. We explored the effects of acute cardiac preload reduction and dobutamine on hepatic arterial (Qha) and portal venous (Qpv) blood flows during endotoxin infusion. We hypothesized that the hepatic arterial buffer response (HABR) is absent during preload reduction and reduced by dobutamine. In anesthetized pigs, endotoxin or vehicle (n = 12, each) was randomly infused for 18 h. HABR was tested sequentially by constricting superior mesenteric artery (SMA) or inferior vena cava (IVC). Afterward, dobutamine at 2.5, 5.0, and 10.0 μg/kg per minute or another vehicle (n = 6, each) was randomly administered in endotoxemic and control animals, and SMA was constricted during each dose. Systemic (cardiac output, thermodilution) and carotid, splanchnic, and renal blood flows (ultrasound Doppler) and blood pressures were measured before and during administration of each dobutamine dose. HABR was expressed as hepatic arterial pressure/flow ratio. Compared with controls, 18 h of endotoxin infusion was associated with decreased mean arterial blood pressure [49 ± 11 mmHg vs. 58 ± 8 mmHg (mean ± SD); P = 0.034], decreased renal blood flow, metabolic acidosis, and impaired HABR during SMA constriction [0.32 (0.18-1.32) mmHg/ml vs. 0.22 (0.08-0.60) mmHg/ml; P = 0.043]. IVC constriction resulted in decreased Qpv in both groups; whereas Qha remained unchanged in controls, it decreased after 18 h of endotoxemia (P = 0.031; constriction-time-group interaction). One control and four endotoxemic animals died during the subsequent 6 h. The maximal increase of cardiac output during dobutamine infusion was 47% (22-134%) in controls vs. 53% (37-85%) in endotoxemic animals. The maximal Qpv increase was significant only in controls [24% (12-47%) of baseline (P = 0.043) vs. 17% (-7-32%) in endotoxemia (P = 0.109)]. Dobutamine influenced neither Qha nor HABR. Our data suggest that acute cardiac preload reduction is associated with preferential hepatic arterial perfusion initially but not after established endotoxemia. Dobutamine had no effect on the HABR.  相似文献   

5.
It has been reported that the intraportal infusion of glutamine in Munich-Wistar rats will cause depression of renal perfusion and the urinary excretion of salt and water. We have attempted to reproduce these findings in anaesthetized dogs. L-Glutamine was infused at doses between 120 and 150 mumol/min into the portal vein and femoral vein of anaesthetized dogs. No effect was observed on portal venous pressure, blood pressure, or kidney function. Similar data were obtained with D-glutamine. Liver biopsy revealed no abnormalities. When 1.5-3 micrograms histamine (free base) was infused into the portal system, portal venous pressure rose from 15.2 +/- 0.33 to 24.8 +/- 0.40 cmH2O (p < 0.05) (1 cmH2O = 98.1 Pa). Glutamine infusions do not appear to initiate hepatorenal reflexes in dogs as they have been reported to do in rats.  相似文献   

6.
The renal and cardiovascular effects of ANF infusion have been examined in separate series of experiments; in conscious instrumented sheep following either hemorrhage (10 mL/kg body weight) or removal of 500 mL of plasma by ultrafiltration. Renal arterial infusion of hANF (99-126) at 50 micrograms/h increased sodium excretion from 99 +/- 30 to 334 +/- 102 (p less than 0.05) in normal animals, and from 77 +/- 31 to 354 +/- 118 mumol/min in hemorrhaged animals. Similarly in sheep following ultrafiltration, cardiac output and stroke volume were reduced by intravenous infusion of ANF (100 micrograms/h), although these effects were less marked than those observed in normal animals. The rapid modulation of natriuretic responses to ANF observed in volume expanded animals is not seen in this model of acute volume depletion suggesting that the mechanism through which the renal response to ANF is modulated in low sodium or volume states is not simply the reverse of that which produces rapid enhancement of response following blood volume expansion.  相似文献   

7.
Respiratory muscle blood flow and organ blood flow during endotoxic shock were studied in spontaneously breathing dogs (SB, n = 6) and mechanically ventilated dogs (MV, n = 5) with radiolabeled microspheres. Shock was produced by a 5-min intravenous injection of Escherichia coli endotoxin (0.55:B5, Difco, 10 mg/kg) suspended in saline. Mean arterial blood pressure and cardiac output in the SB group dropped to 59 and 45% of control values, respectively. There was a similar reduction in arterial blood pressure and cardiac output in the MV group. Total respiratory muscle blood flow in the SB group increased significantly from the control value of 51 +/- 4 ml/min (mean +/- SE) to 101 +/- 22 ml/min at 60 min of shock. In the MV group, respiratory muscle perfusion fell from control values of 43 +/- 12 ml/min to 25 +/- 3 ml/min at 60 min of shock. In the SB group, 8.8% of the cardiac output was received by the respiratory muscle during shock in comparison with 1.9% in the MV group. In both groups of dogs, blood flow to most organs was compromised during shock; however, blood flow to the brain, gut, and skeletal muscles was higher in the MV group than in the SB group. Thus by mechanical ventilation a fraction of the cardiac output used by the working respiratory muscles can be made available for perfusion of other organs during endotoxic shock.  相似文献   

8.
The continuous infusion or bolus injection of the platelet-activating factor (PAF) is associated with profound hypotension, marked reductions of renal plasma flow, glomerular filtration, and urinary sodium excretion. All these effects are inhibited by blocking PAF receptors. To examine further the potential mediators of PAF on renal function, we utilized L-655,240 (6 mg/kg, intravenously), a thromboxane-prostaglandin endoperoxide antagonist, to study the systemic and renal response to PAF (0.8 micrograms/kg, intravenously) in the anesthetized dog, using clearance methodology. PAF decreased blood pressure from 115 +/- 7 to 54 +/- 4 mmHg (1 mmHg = 133.3 Pa), renal plasma flow from 105 +/- 6 to 74 +/- 56 mL/min, and glomerular filtration from 43 +/- 3 to 32 +/- 1 mL/min. PAF also reduced urine volume from 1.1 +/- 0.2 to 0.4 +/- 0.1 mL/min, and urinary sodium from 158 +/- 7 to 86 +/- 7 mu equiv./min. L-655,240 alone had no significant effect on blood pressure, renal plasma flow, and filtration rate, at any dose. However, the 6-mg/kg dose resulted in a slight elevation of diuresis, from 1.1 +/- 0.2 to 1.9 +/- 0.1 mL/min, and urinary sodium, from 134 +/- 13 to 212 +/- 19 mu equiv./min. All doses of L-655,240 blocked the effect of PAF on blood pressure. However, the two lower doses of this antagonist (1 and 3 mg/kg) failed to prevent the PAF-induced fall of renal plasma flow and filtration rate, and attenuated the effect on urinary sodium in a dose-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We have reported that myocardial inotropism was depressed in acute and chronic endotoxemia. One possible mechanism for this observation is that endotoxemia reduces myocardial perfusion and indeed, we observed reduced myocardial perfusion in acute endotoxemia. This study tested the hypothesis that reduced inotropism of chronic endotoxemia was accompanied by reduced coronary artery blood flow. Fifteen pigs were equipped with left atrial and ventricular catheters, circumflex coronary and pulmonary artery flow meters, left ventricular pressure transducer, and ultrasonic crystals in the anterior-posterior axis to measure internal short axis diameter by sonomicrometry. The pigs recuperated for 3 days before basal data were collected over the next 3-5 days. After at least 7 postoperative days, an osmotic pump containing Salmonella enteriditis endotoxin was implanted in 12 pigs. Endotoxin was delivered at 10 micrograms/hr/kg for 2 days, at which time the animals were sacrificed. Osmotic pumps containing sterile saline were implanted in 3 pigs. Eight of the 12 endotoxemic pigs survived; 4 died before the morning of the second day. The survivors exhibited elevated heart rate, peak left ventricular systolic pressure, and cardiac output. Inotropism was evaluated by calculating the slope of the end-systolic pressure-diameter relationship (ESPDR) and % diameter-shortening. ESPDR was significantly depressed on the second endotoxemic day, while % diameter-shortening was depressed on both endotoxemic days. Coronary artery blood flow was significantly elevated on both endotoxemic days, while cross-sectional stroke work was unchanged. Therefore, the ratio of coronary blood flow to stroke work increased on both endotoxemic days. Nonsurvivors exhibited reduced heart rate, cardiac output, peak left ventricular systolic pressure, ESPDR, and % diameter-shortening. Neither coronary artery blood flow nor flow-to-work ratios increased in this group. Sham endotoxemic pigs demonstrated no cardiac or hemodynamic changes over 3 days. These results indicate that depressed inotropism during chronic endotoxemia was not caused by reduced coronary blood flow; rather, the myocardium was relatively overperfused.  相似文献   

10.
The hemodynamic effects of nifedipine and captopril at doses producing similar reductions in arterial pressure were studied in pentobarbital-anesthetized ventilated dogs after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline circulating blood volumes and after increases of 5 and 10 mL/kg. Central blood volumes (pulmonary artery to aortic root) were determined from transit times, and separately determined cardiac outputs (right atrium to pulmonary artery) were estimated by thermodilution. Nifedipine (n = 5) increased Pmcf at all circulating blood volumes and reduced total vascular capacitance without a change in total vascular compliance. Central blood volume, right atrial pressure, and cardiac output were increased with induced increases in circulating blood volume. In contrast, captopril (n = 5) did not alter total vascular capacitance, central blood volume, right atrial pressure, or cardiac output at baseline or with increased circulating volume. Thus, at doses producing similar reductions in arterial pressure, nifedipine but not captopril increased venous return and cardiac output in ganglion-blocked dogs.  相似文献   

11.
The opiate antagonist naloxone increases arterial pressure, maximal left ventricular dp/dt and cardiac output when administered to dogs subjected to hemorrhagic shock. The purpose of this study was to investigate regional blood flow changes associated with naloxone treatment in anesthetized hypovolemic and normovolemic dogs. Hypovolemic dogs (n = 10) were bled over 30 min (t = -30 to t = 0) to a pressure of 45 mm Hg which was maintained for 1 hr. At t = 60, five dogs received naloxone (2 mg/kg + 2 mg/kg X hr), and five received an equal volume of saline. Regional blood flows were determined at t = -30, 45, and 90 min using 15-micron microspheres. Normovolemic dogs (n = 10) were subjected to the same protocol except they were not bled. During hypovolemia, naloxone produced significant increases in myocardial, intestinal, hepatic, and adrenal blood flows whereas saline treatment did not. No significant changes in skin, muscle, fat, pancreatic, renal, or brain flows were detected. The increases in blood flow were not associated with significant changes in vascular resistance. Naloxone had no significant effects on any hemodynamic parameter during normovolemia. The beneficial effects of naloxone in hemorrhagic shock include increased blood flow to vital organs due to increased perfusion pressure which is secondary to improved cardiac performance.  相似文献   

12.
Previous studies have suggested that NMA or similar inhibitors of nitric oxide synthesis from L-arginine reverses or prevents the hypotension associated with endotoxin administration. We wanted to determine if vascular and cardiac responses to NMA support the idea that inhibitors of nitric oxide synthesis might be useful in the treatment of septic shock. Pentobarbital-anesthetized beagle dogs were administered endotoxin for 2 hours at a dose of 250 ng/kg/min. This resulted in reductions in systemic vascular resistance (34% decrease) and mean arterial pressure (25% decrease). Administration of NMA (30 mg/kg, IV) caused large and sustained increases in mean arterial pressure and systemic vascular resistance, and a large decrease in cardiac output and femoral arterial blood flow. Although NMA restored arterial pressure, the large and sustained fall in cardiac output suggests that the cardiovascular action of NMA is detrimental to dogs treated with endotoxin.  相似文献   

13.
We have previously demonstrated that blood pressure elevation by acute blood volume expansion is volume-dependent during the infusion period and resistance-dependent in the post-infusion period in normal anesthetized dogs, and that such an increase in blood pressure is associated with a potentiation of the pressor response to norepinephrine. To evaluate the possible renal contribution to these hemodynamic changes, blood volume expansion was performed for 1 h with dextran dissolved in lactated Ringer's solution (20 ml/kg) in 15 nephrectomized dogs. The mean blood pressure, cardiac output and total peripheral resistance at the end of infusion were 126%, 225% and 60%, respectively; 3 h after volume expansion they were 126%, 151%, and 92% respectively. However, in 4 dogs, there was an increase in mean blood pressure (138%) 3 h after volume expansion. This was thought to result from an increase in the total peripheral resistance (133%) associated with the recovery of cardiac output (106%). The pressor response to norepinephrine (0.5 microgram/kg) was potentiated after volume expansion. These results indicate that the handling of volume by the kidney contributed to the maintenance of an elevated level of cardiac output. However, nephrectomy did not seem to interfere with the hemodynamic switching of the causative factor for blood pressure elevation from increased cardiac output to increased total peripheral resistance. Neither was the potentiation of pressor response to norepinephrine affected.  相似文献   

14.
The role of beta-adrenergic agonists, such as isoproterenol, on vascular capacitance is unclear. Some investigators have suggested that isoproterenol causes a net transfer of blood to the chest from the splanchnic bed. We tested this hypothesis in dogs by measuring liver thickness, cardiac output, cardiopulmonary blood volume, mean circulatory filling pressure, portal venous, central venous, pulmonary arterial, and systemic arterial pressures while infusing norepinephrine (2.6 micrograms.min-1.kg-1), or isoproterenol (2.0 micrograms.min-1.kg-1), or histamine (4 micrograms.min-1.kg-1), or a combination of histamine and isoproterenol. Norepinephrine (an alpha- and beta 1-adrenergic agonist) decreased hepatic thickness and increased mean circulatory filling pressure, cardiac output, cardiopulmonary blood volume, total peripheral resistance, and systemic arterial and portal pressures. Isoproterenol increased cardiac output and decreased total peripheral resistance, but it had little effect on liver thickness or mean circulatory filling pressure and did not increase the cardiopulmonary blood volume or central venous pressure. Histamine caused a marked increase in portal pressure and liver thickness and decreased cardiac output, but it had little effect on the estimated mean circulatory filling pressure. Isoproterenol during histamine infusions reduced histamine-induced portal hypertension, reduced liver size, and increased cardiac output. We conclude that the beta-adrenergic agonist, isoproterenol, has little influence on vascular capacitance or liver volume of dogs, unless the hepatic outflow resistance is elevated by agents such as histamine.  相似文献   

15.
The effects of endogenously generated opioids on distribution of pulmonary perfusion (as assessed by radiolabeled microspheres) and overall gas exchange in acute acid-induced lung injury were studied. In 14 anesthesized dogs, sufficient acid was given to one lung to double shunt fraction (Qs/Qt) from 14.2 +/- 0.8 to 32.4 +/- 2.6% (SE). This resulted in a significant decrease in Po2 from 495 +/- 9 to 136 +/- 21 Torr, cardiac output from 2.47 +/- 0.27 to 1.46 +/- 0.15 1/min, and blood pressure from 139 +/- 3 to 116 +/- 5 mmHg and a significant rise in pulmonary arterial pressure from 9.6 +/- 0.8 to 14.9 +/- 0.8 mmHg. After acid instillation, microsphere distribution to the injured lung segments decreased to 50% of the base-line value. At the same time, microsphere distribution in the normal segments increased to 160% of base line. In 7 of the 14 dogs the effects of naloxone (1 mg/kg) given after lung injury were compared with the other 7 animals that were given saline. Naloxone administration caused a significant redistribution of regional pulmonary perfusion such that microsphere distribution in the injured lung segments increased by a factor of 2 at 35 min compared with the animals given saline. Consistent with this finding, Qs/Qt in the naloxone group increased to 34.7 +/- 5.0% at 35 min, whereas that of the saline group decreased to 28.2 +/- 2.5%. The difference between the two groups was significant at 35 min. These changes occurred without further alterations in cardiac output, pulmonary arterial pressure, or systemic blood pressure in either group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effect of angiotensin II (AII) on systemic and regional haemodynamics was studied in 18 control and 18 cirrhotic, non-ascitic conscious rats (CCl4/phenobarbital model). Cirrhotic rats were found to retain sodium and to have normal plasma renin and plasma aldosterone concentrations when compared with control animals. Cirrhotic rats showed an enhanced cardiac output (34.4 +/- 0.5 vs. 27.5 +/- 2.0 ml/min in controls) and decreased peripheral resistances (2.96 +/- 0.25 vs. 3.95 +/- 0.31 mm Hg/min/100 g/ml in controls) under basal conditions. When AII was administered cardiac output decreased by 10.7 +/- 1.2% in cirrhotic rats, whereas it increased in control animals (11.2 +/- 2%, p less than 0.005). The AII-induced increase in arterial pressure was lower in cirrhotic than in control rats. The renal blood supply was particularly impaired by AII in cirrhotics, with a maintained flow to other organs (muscle, testes). It is concluded that the response to AII is disturbed in rats with hepatic cirrhosis even in a stage without ascites and with plasma renin and aldosterone concentrations similar to those of control animals.  相似文献   

17.
实验在麻醉狗中进行。静脉内匀速注射硝普钠时,平均动脉压和左心室收缩压明显降低,左心室dp/dt_(max)、-dp/dt_(max)和心力环面积均明显减小。此时电刺激一侧腓深神经可使动脉血压和左心室收缩压明显升高,dp/dt_(max)和心力环面积也显著增加。停止刺激后,动脉血压和左心室收缩压逐渐回向刺激前的水平。停止注射硝普钠5~15分钟后,上述各项观察指标基本恢复到注药前的水平。在用大肠杆菌内毒素造成休克的狗中,电刺激一侧腓深神经,也能使平均动脉压和左心室收缩压升高,同时dp/dt_(max)、-dp/dt_(max)和肠系膜血管阻力明显增高,但肾血管阻力增加不明显。本实验结果与以往的实验资料一起表明,在用扩血管药造成低血压时,躯体神经刺激引起的升压效应似乎以心肌收缩力增加为主;而在内毒素休克时,躯体神经刺激可通过改善心肌收缩功能和增加内脏血管阻力而引起升压作用。  相似文献   

18.
The purpose of this study was to elucidate the role of circulating ANG II in mediating changes in systemic and renal hemodynamics, salt and water balance, and neurohormonal activation during the early progression of heart failure. This objective was achieved by subjecting six dogs to 14 days of rapid ventricular pacing (240 beats/min) while fixing plasma ANG II concentration (by infusion of captopril + ANG II) either at approximately normal (days 1-8, 13-14) or at high physiological (days 9-12) levels. Salt and water retention occurred during the initial days of pacing before sodium and fluid balance was achieved by day 8. At this time, cardiac output and mean arterial pressure were reduced to approximately 55 and 75% of control, respectively; compared with cardiac output, reductions in renal blood flow were less pronounced. Although plasma ANG II concentration was maintained at approximately normal levels, there were sustained elevations in total peripheral resistance (to approximately 135% of control), filtration fraction (to approximately 118% of control), and plasma norepinephrine concentration (to 2-3 times control). During the subsequent high rate of ANG II infusion on days 9-12, there were no additional sustained long-term changes in either systemic or renal hemodynamics other than a further rise in right atrial pressure. However, high plasma levels of ANG II induced sustained antinatriuretic, sympathoexcitatory, and dipsogenic responses. Because these same long-term changes occur in association with activation of the renin-angiotensin system during the natural evolution of this disease, these results suggest that increased plasma levels of ANG II play a critical role in the spontaneous transition from compensated to decompensated heart failure.  相似文献   

19.
Initial studies were undertaken to investigate the effects of prolonged administration of angiotensin II (AII), 1 micrograms twice daily, via the lateral ventricles to mongrel dogs on arterial blood pressure and to determine if sodium intake was essential for the development of hypertension. Increasing AII levels in the cerebrospinal fluid for a prolonged period of time produced a sustained hypertensive state only in those dogs in which the daily intake of sodium was increased. The hypertension appeared to be due to an increase in total peripheral resistance. Central administration of AII increased both fluid intake and urine output. In order to assess the hemodynamic effects of increasing endogenous brain AII, renin was injected in doses of 0.025, 0.05, 0.1 and 0.3 units (from porcine kidney) into the lateral ventricles of chronically instrumented awake dogs. Hemodynamic variables were recorded prior to and one and 2 h after the central administration of renin. Renin produced a dose-dependent increase in mean arterial pressure with no significant change in heart rate or carotid, coronary and renal blood flow velocities. Chronic intraventricular administration of renin, 0.15 units twice daily to awake instrumented dogs receiving saline as the drinking fluid, markedly increased the daily intake of saline and increased diastolic and systolic blood pressure without increasing heart rate or carotid, coronary or renal blood flow velocities. There appears to be a direct significant relationship between the increase in mean blood pressure due to the intraventricular administration of renin and the volume of saline consumed.  相似文献   

20.
Recently we reported that hindquarter blood flow, measured 24 h/day, decreased progressively over the first 6 days of type 1 diabetes in rats. That response, coupled with the tendency of mean arterial pressure to increase, suggested a vasoconstrictor response. The purpose of this study was to measure the changes in cardiac output together with the renal hemodynamic and excretory responses to allow integrative determination of whether vasoconstriction likely accompanies the onset of type 1 diabetes. Rats were instrumented with a Transonic flow probe on the ascending aorta and with artery and vein catheters, and cardiac output and mean arterial pressure were measured continuously, 24 h/day, throughout the study. The induction of diabetes, by withdrawing intravenous insulin-replacement therapy in streptozotocin-treated rats, caused a progressive decrease in cardiac output that was 85 +/- 5% of control levels by day 7. This was associated with significant increases in glomerular filtration rate, renal blood flow, and microalbuminuria as well as urinary fluid and sodium losses, with a negative cumulative sodium balance averaging 15.7 +/- 1.6 meq by day 7. Restoring insulin-replacement therapy reversed the renal excretory responses but did not correct the negative sodium balance, yet cardiac output returned rapidly to control values. Increasing sodium intake during the diabetic and recovery periods also did not significantly affect the cardiac output response during any period. These results indicate that cardiac output decreases significantly at the onset of type 1 diabetes without glycemic control, and although volume loss may contribute to this response, there also is a component that is not volume or sodium dependent. We suggest this may be due to vasoconstriction, but to what extent local blood flow autoregulation or active vasoconstriction may have mediated that response is not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号